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ABSTRACT
Most online activity happens in the context of a session; to en-
able better user experience many online platforms aim to dynam-
ically refine their recommendations as sessions progress. A pop-
ular approach is to continuously re-rank recommendations based
on current session activity and past session logs. This motivates
the 2019 ACM RecSys Challenge organised by Trivago. Using the
session log dataset released by Trivago, the challenge aims to
benchmark models for in-session re-ranking of hotel recommen-
dations. In this paper we present our approach to this challenge
where we first contextualize sessions in a global and local man-
ner, and then train gradient boosting and deep learning models
for re-ranking. Our team achieved 2nd place out of over 570 teams,
with less than 0.3% relative difference in Mean Reciprocal Rank
from the 1st place team. Code for our approach can be found here:
https://github.com/layer6ai-labs/RecSys2019
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1 INTRODUCTION
Many existing recommender systems rely on collaborative filter-
ing (CF) to recommend items to users based on preferences of
other users. This approach has proven to be extremely effective in
real-world applications, and is deployed in numerous successful
online platforms such as YouTube, Amazon and Netflix. However,
traditional CF approaches like matrix factorization [5], aim to in-
fer “global" preference patterns across users, and are less effective
at capturing local contextual preferences such as those within a
session. Session intent can significantly deviate from the global
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preference profile, for example a user that typically listens to rock
can be currently looking for a jazz song. To accurately capture ses-
sion intent one must take session activity and context into account.
As most online consumption happens in a context of a session,
accurate and scalable in-session personalization has received in-
creasing attention recently and a number of approaches have been
proposed [4, 8, 12].

The 2019 ACM RecSys Challenge [6] organized by Trivago, fo-
cuses on in-session personalization. Given a large dataset of user
session logs, the challenge task is to re-rank hotel search results
provided by Trivago to accurately capture session intent. Here,
we present our approach to this challenge. We conduct extensive
feature engineering to capture both global and local context infor-
mation for each session, and then apply gradient boosting and deep
learning models to do the re-ranking.

2 THE CHALLENGE AND DATASET
The organizer of the 2019 RecSys Challenge is Trivago, a German
transnational company that specializes in hotel lodging services.
Through its platform, Trivago offers aggregated search results for
available hotels in a given area with ability to filter by cost, lo-
cation, quality etc. In a typical session, a user alternates between
searching/filtering for hotels and viewing returned results. Once
a suitable option is found, the user then clicks on it (clickout) and
gets transferred to an affiliate site to complete the booking. The
goal of the challenge is to develop a dynamic session re-ranking
model to accurately place clickout item at the top of the returned
to the user hotel impression list. Models are evaluated using Mean
Reciprocal Rank (MRR):

MRR = 1
N

N∑
i=1

1
ranki

(1)

where N is the number of sessions, and ranki is the rank of the
clickout item in session i . The Trivago challenge dataset consists of
session logs from November 2018 with 910K training sessions, 291K
test sessions with clickout item masked for leaderboard submission
and item metadata. Each session is a sequence of one of ten possible
actions: six item interactions (clickout, rating, info, image, deals,
item search), and four global interactions (sort, filter, destination
search, POI search). We partition training sessions forward in time
to preserve temporal dynamics, and use 78K sessions for out-of-
time model validation. Results on this set closely match leaderboard
performance, and we use it for all model validation experiments. A
diagram with our data partitioning and challenge re-ranking task
is shown in Figure 1.
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Figure 1: Forward in time data partitioning and challenge re-ranking task. Given a set of ordered impressions (hotel search
results) the goal is to re-order them so that the clickout item is at the top of the re-ordered list.

3 OUR APPROACH
Our approach combines gradient boosting and deep learning (DL)
models trained on item features that are extensively engineered
to capture both session context and item properties. To train the
models we create training instances by extracting features for all
impression items in the last clickout of every session. For every item
we extract 330 features and assign a binary label of 1 if it is a clickout
and 0 otherwise. This gives a training set of 14.5M instances and a
validation set of 1.8M instances. The features roughly divide into
four categories and describe session context activity, item statistics
within the session, item statistics across sessions and statistics for
all items in current impression. Below we provide some examples
of important features in each category:

Session Context
• Item actions that precede clickout
• Non-item actions that precede clickout
• Number of session steps
• Time duration of session
• Device used

Item Session Statistics
• Price and price rank in impression
• Rank position in impression
• Previous actions on this item in current session
• Item dwell time in current session
• Item properties metadata

Item Global Statistics
• Global item action counts across sessions
• Impression statistics across sessions such as average position,
price and price rank

• Number of unique users that interacted with this item
• Difference between current session and global statistics

Impression Items Statistics
• Price summary across impression items
• Metadata properties across impression items
• Item similarity within impression
• Global statistics summary across impression items

Throughout feature engineering we consistently found that per-
formance can be significantly improved by combining both local
session features and global features across sessions. Global features

are particularly useful for short sessions where little context infor-
mation is available. We also found it beneficial to extract features
that summarize all items in the current impression, and contrast
them with the target item. Users tend to make contextual choices
often selecting the cheapest or best reviewed hotel from the shown
list. Summarizing impression items enables the model to learn this
dynamic and improves performance.

3.1 Gradient Boosting
Our strongest model is a gradient boosted tree ensemble (GBM). We
use an excellent XGBoost [1] library and conduct extensive experi-
ments to maximise validation performance. Through these experi-
ments we find that the most important training hyper-parameters
are tree depth, learning rate, feature sampling rate, and L2 regu-
larization. Major advantage of gradient boosting is that virtually
no feature normalisation is required. We were able to successfully
train on the raw feature set that included categorical, ordinal and
numeric features. This is not possible with deep learning models,
and we spent considerable effort on feature normalisation to make
gradient optimization work (see following section).

We train GBM with binary cross entropy objective to predict
clickout probability for every item in impression. To take advantage
of item impression grouping, we experimented with ranking and
softmax objectives that take into account the entire impression list.
However, independent binary cross entropy consistently performed
better. During inference, we make a forward pass through the
GBM and re-rank impression items according to the probability of
clickout.

3.2 Deep Learning

Advances in attention mechanisms and in particular the trans-
former architecture [9], have resulted in substantial accuracy gains
on many sequence-based tasks [2, 10]. Recently, a number of atten-
tion and recurrent architectures have been proposed for session
modeling in recommender systems [7, 8, 12]. Inspired by this work
we explore attention-based architectures to jointly model items in
each impression list. The best architecture that we found consists
of three stages: (1) input embedding, (2) transformer blocks and (3)
feed forward layer. A diagram of this model is shown in Figure 2,
and we give a brief overview of each stage below.



Robust Contextual Models for In-Session Personalization RecSys Challenge ’19, September 20, 2019, Copenhagen, Denmark

Figure 2: Our three-stage transformer architecture.

Input Embedding. The goal of this stage is to transform input
features into a representation that is suitable for gradient optimiza-
tion. Given that features contain ordinal, categorical and numeric
values, we found that appropriately representing each type has
significant effect on model performance. For dense features we
use the Yeo-Johnson transform (see Equation 2 in [11]) where the
parameter λ is chosen separately for every feature to minimize
skewness. Categorical features are represented with learned embed-
ding vectors with dictionary size equal to the number of categories.
The embedding dimension is set through cross validation for each
feature. Finally, we also use embeddings for ordinal features with
the exception that negative and positive values are represented with
the same embedding: x 7→ sign(x) ∗ embed(|x |). Negative ordinal
features arise when we consider position and price rank differences
between items. Multiplying an embedding by sign enables to simul-
taneously model both positive and negative differences without
doubling the dictionary size.

Even with all of the above transformations, we found it difficult
to match GBM performance with deep learning models. To further
enhance our input representation, we experimented with various
ways of extracting information learned by GBM and encode it as
additional input representation. Previous work has explored using
prediction leaf indices from a trained GBM tree model as input
representation to other models [3]. We found this approach to also
work well here. Given a trained GBMmodel withT trees, we extract
prediction leaf indices for every instance by passing it through the
model. This results in a highly sparse representation with exactlyT
non-zero values. We then compress this representation by applying
randomized truncated SVD to get a dense embedding for every
instance. These embeddings summarize information that GBM en-
codes with its tree-based structure. A typical configuration that has
worked well here is a 1000 tree GBM model with depth 10, which

Table 1: Final leaderboard with top 5 teams, our team “Layer
6 AI" is shown in bold. We also show our best single model
which would rank 4’th on the leaderboard.

Rank Team name MRR (final) ∆MRR from 1st place
1 LogicAI 0.685711
2 Layer 6 AI 0.685497 0.03%
3 pvz 0.684071 0.24%
4 RosettaAI 0.679933 0.84%
5 letoh govatri 0.679299 0.94%

single model 0.682834 0.67%

results in ∼2M-dimensional leaf index instance representation that
we then compress to 128 dimensions.

Collectively these feature transformations improve MRR per-
formance by over three points for most DL architectures that we
experimented with when compared to raw features. After input pro-
cessing we separate the features into session-based and item-based
subsets. Item-based set is then passed through the transformer en-
coder and concatenated with session-based set before feed forward
layer.

TransformerBlocks.Weapply standardmulti-head transformer
blocks proposed by [9]. Repeated self-attention enables the model
to focus on different parts of the impression item sequence, and col-
lectively make a decision on which item will result in clickout. To
preserve positional information, which is important here as users
typically scan impressions from top to bottom, we add positional
embeddings to item representations.

Feed Forward Layer. Representations from the transformer
encoder are concatenated with session-based features, and passed
to the feed forward layer that outputs clickout probability for each
item. Weights are shared between items so feed forward layer is
structured like a 1D convolution with stride 1, and operates along
the item impression list from top to bottom. Clickout probability is
obtained by applying sigmoid function to feed forward output for
every item, and we use binary cross entropy loss to optimize the
model:

L = −
1
N

N∑
i=1

1
Ki

Ki∑
j=1

yi j log ŷi j + (1 − yi j ) log(1 − ŷi j ) (2)

where N is the number of sessions, Ki is the number of impression
items in session i , yi j is 1 if item in position j is clickout and 0
otherwise and ŷi j is the predicted clickout probability.

4 EXPERIMENTS
All experiments were conducted on Ubuntu machines with Intel
Xeon CPU E5-2620 v4 @2.10GHz, 256GB RAM and Nvidia Titan V
GPU. All models were tuned using the validation set (see Section 2),
and then submitted to the evaluation server. We generally observed
that validation performance translated well to leaderboard with a
consistent MRR difference of ∼ 0.08 between the two scores.

GBM. After tuning the XGBoost hyper parameters to maximize
validation performance, we found the following settings to be im-
portant: eta = 0.1, max_depth = 10, colsample_bynode = 0.8,
lambda = 4000 and alpha = 10. Validation results for this model
are shown in Table 3. From the table we see that GBM is the best
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Table 2: Top 20most important features for the GBMmodel.

Feature Gain (%)

Is target item in top position in impression (boolean) 42.7
Target item position in impression 9.8
Target item star rating ranking in impression 6.1
Price rank within items above target item in impression 4.2
Number of actions on target item in current session 3.3
Global average price rank for target item position

in impression 3.1

Item-based neighbor similarity between user and target item 3.0
Average price rank of items with same star rating

in impression 2.6

Difference in price rank between target item and last item
that user interacted with before clickout 2.2

Price rank within items with same star rating in impression 1.7
Impression position of last item that user interacted with

before clickout 1.5

Difference in position between target item and last
item that user interacted with before clickout 0.9

Number of items with the same star rating in impression 0.8
Impression length 0.7
Number of actions between clickout and last item action 0.5
Time between clickout and last item action 0.4
Number of items with same user rating in impression 0.4
Number of previous impression lists in session that

exactly match current impression list 0.4

Global same length impression list count 0.4
Target item price rank in impression 0.4

performing model, and DL models even with SVD leaf embeddings
are not able to match it. Table 1 shows final leaderboard results.
Our best submission was a blend of GBM and DL models, but we
also show results for our best single GBM model. We see that our
single model would have achieved 4’th place with less than 0.67%
relative difference in MRR from the top team. Blended models are
challenging to deploy and maintain in production, and these results
indicate that evenwith a single model we can get highly competitive
performance.

To gain additional insight into this problem we analyze feature
importances for the best performing GBM model. Table 2 shows
the top 20 most important features together with their relative im-
portance scores. The importance scores are computed by averaging
loss reduction across all node splits for each feature, and then nor-
malizing across features. From the table we see that top 10 and top
20 features cover 78.7% and 85.1% of the importance respectively.

We observe several patterns from the types of features that our
model places high importance on. First, ordinal features such as
position in impression, rank by price, star and user rating consis-
tently appear at the top of the table. This indicates the importance
of factors like price and rating in hotel selection. Moreover, as we
discussed above, users tend to make contextual choices and often
select cheapest or highest rated hotel for the list. We consistently
found that ordinal features such as relative rank within impression,
worked significantly better than absolute ones. Second, as expected,
session context plays an important role in the clickout decision.
Features like actions right before clickout and actions on target
item in current session, frequently appeared in many of the top
feature lists that we analyzed. These features allow the model to
better capture session intent and re-rank the items accordingly.

Table 3: Validation model performance.

Model Validation MRR
LSTM 0.6721
LSTM+SVD 0.6750
Transformer 0.6734
Transformer+SVD 0.6765
GBM 0.6771
Blend 0.6798
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Figure 3: Attention head scores for a validation session.

Finally, global statistics across sessions also have high importance.
Global statistics further enable the model to contrast current session
against a “typical" global session and act on deviations between the
two.

Deep Learning. All deep learning models were trained until
convergence with Adam optimizer and batch size between 50 and
100. Most optimization runs require 70K-100K updates with a wall-
time of at most 18 hours for the longest run. In addition to the trans-
former architecture outlined in Section 3.2, we also experiment with
LSTM models. For transformer model we use three attention blocks
with three attention heads in each block, and hidden dimensionality
of 75. LSTM models have bi-directional architecture with state size
set to 100. Validation MRR results are shown in Table 3. From the
table we see that our transformer architecture generally outper-
forms LSTMs, but the gains are relatively small. We also see that
adding leaf index SVD embeddings (+SVD) consistently improves
performance for both models. This indicates that even our elaborate
input pre-processing pipeline is not sufficient. A promising future
direction is thus to further investigate feature extraction techniques
suitable for DL models with emphasis on complex categorical and
ordinal features. Linearly blending LSTM, transformer and GBM
models gives a further boost in MRR as shown by the “Blend" model
in Table 3. This is our best performing submission that achieved
2nd place on the final leaderboard.

Figure 3 shows self attention scores for each of the three atten-
tion heads in the first transformer block for one of the validation
sessions. We see that each head specialises on different regions in
the impression list. First head generally spans the entire list ver-
sus second and third heads concentrate on items in bottom and
top positions respectively. This is one of the main advantages of
attention-based architectures, as manually extracting analogous
features for different regions of the impression list is an extremely
time consuming and laborious task.

5 CONCLUSION
In this paper we outlined our approach for the 2019 RecSys Challenge.
We conducted extensive feature engineering to describe both within
and across session user behavior. We then trained a combination of
gradient boosting and deep learning models to achieve 2nd place
on the final challenge leaderboard.
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