
Two-Stage Approach to Item Recommendation from User
Sessions

Maksims Volkovs
Milq Inc.

151 Bloor Street West
Toronto, ON M5S 1S4

maksims.volkovs@gmail.com

ABSTRACT
We present our solution to the 2015 RecSys Challenge [1].
This challenge was based on a large scale dataset of over 9.2
million user-item click sessions from an online e-commerce
retailer. The goal was to use this data to predict which items
(if any) were bought in the 2.3 million test sessions. Our so-
lution to this problem was two-staged, we first predicted if
a given session contained a buy event and then predicted
which items were bought. Both stages were fully automated
and used classifiers trained on large sets of extracted fea-
tures. The prediction rules were further optimized to the
target objective using a greedy procedure developed specif-
ically for this problem. Our best submission, which was a
blend of several different models, achieved a score of 60,265
and placed 4’th out of 567 teams. All approaches presented
in this work are general and can be applied to any problem
of this type.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

Keywords
E-Commerce; Classification; Neural Networks; Gradient
Boosting

1. CHALLENGE OVERVIEW
In this challenge, a large dataset of user sessions was pro-

vided from an online retailer. Each session contained user-
item click history including time stamp, item id and item
category for all clicked items. In addition to session infor-
mation, item buy events were also released for a subset of
sessions. Each buy event contained a corresponding session
id, bought item id, time stamp, quantity bought and price.
Data was further anonymized by removing all user informa-
tion. The goal of the challenge was to predict buy events
for the test sessions. In addition to predicting which test
sessions contained buy events, a second requirement was to
predict which items were bought.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RecSys’15, September 16 - 20, 2015, Vienna, Austria.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3665-9/15/09.̇.$15.00
DOI: http://dx.doi.org/10.1145/2813448.2813512.

Table 1: Dataset statistics for the 2015 RecSys
Challenge. Number of sessions containing at least
one buy event are shown in brackets. train split
and valid split were generated by applying 75%/25%
split to the original training set (train). These sets
were used for training and validation throughout the
challenge.

dataset sessions item clicks buy events

train 9,249,729 33,003,944 1,150,753 (509,696)
test 2,312,432 8,251,791

train split 6,937,297 24,753,225 862,539 (382,256)
valid split 2,312,432 8,250,719 288,214 (127,440)

Full dataset statistics are shown in Table 1. From the
table we see that this dataset is large and extremely imbal-
anced. Only 5.5% of training sessions contain buy events,
and only 3.5% of clicked items were bought. Dealing with
imbalanced classes and optimizing for the custom evalua-
tion metric were the two main challenges that we encoun-
tered throughout this competition. In the following sections
we describe our approach and show empirical evaluation of
proposed methods.

2. FRAMEWORK
We begin with notation and evaluation framework. In the

data we have a set of N sessions S = {s1, ..., sN}, and each
session sn contains Mn clicked items Dn = {dn1, ..., dnMn}.
Note that Dn is a set and only contains unique items. We
also have access to the ground truth buy event data Yn =
{yn1, ..., ynMn} where ynm = 1 if item dnm was bought in
sn and ynm = 0 otherwise. We use yn = 1 to indicate that
session sn has at least one buy event and yn = 0 otherwise.
Matrix/vector notation is used throughout this paper: for
any matrix a, a[i, j] is the element on i’th row and j’th
column, and a[i, :] is the i’th row of a. Similarly for any
vector b, b[i] is the i’th element of b.

The goal of the challenge was to develop a model over
items f : d → {0, 1}, such that f has maximal “agreement”
with the ground truth Y. The agreement between f and Y
is evaluated with a custom metric introduced specifically for
this challenge:

O =

N∑
n=1

γ +
∑Mn

m=1 ynmf(dnm)∑Mn
m=1 ynm+f(dnm)−ynmf(dnm)

if yn = 1

−γ otherwise
(1)

where γ is a constant set to the fraction of test sessions that
have at least one buy event. Since buy events for test ses-

sions were not released, this constant was unknown through-
out the competition and had to be estimated. We estimate
it by randomly sampling the same number of training ses-
sions as in the test set, obtaining the following estimate:
γ ≈ 0.05511.

Note that both f(dnm) and ynm are binary, so the numera-
tor in Equation 1 corresponds to the intersection of predicted
and bought items. Similarly, the denominator corresponds
to the union of predicted and bought items, this objective
thus computes the intersection over union Jaccard score for
every session sn. Furthermore, if the predicted session sn
has at least one buy event, the score for sn is always at least
γ even when all predicted items are wrong.

3. OUR APPROACH
We started with an observation that the target objec-

tive O is not smooth and cannot be optimized directly with
gradient-based methods. We also noted that this objective is
maximized when all sessions with buy events and all bought
items are predicted correctly. This suggested an indirect
optimization approach where we first develop session and
item models, and then use these models to select subsets of
sessions and items that maximizeO. We chose to use a prob-
abilistic approach and generate predictions in the following
way:

f(dnm) =

{
1 if P (yn = 1) > ε and P (ynm = 1) > β

0 otherwise
(2)

Here, ε and β are thresholds applied to probability predic-
tions of session model P (yn = 1) and item model P (ynm =
1) respectively. In practice, this procedure can be short cir-
cuited and terminated early if session probability does not
pass the threshold, leading to considerable savings in infer-
ence time. In the following sections we describe both model
architectures and our greedy inference procedure used to se-
lect the thresholds.

3.1 Session Model
Very little information was provided beyond item and ses-

sion ids, so our initial approach was to use collaborative fil-
tering. We represented each session as a hypothetical user
and experimented with both neighbor and factorization ap-
proaches to predict which items were bought. The accuracy
of these methods was not adequate and as we moved on to
supervised feature-based classification. In this framework
the probability that sn contains at least one buy event is
modeled with a sigmoid:

P (yn = 1) =
1

1 + exp(−gs(sn, θs))
(3)

where gs : sn → R is a parametrized by θs session model
applied to features extracted for sn.

At this stage most effort was spent on feature engineering
and after many rounds of cross validation we selected a total
of 37 session features outlined in Appendix A 1. Throughout
this process we consistently found that“global” features that
included information such as the number of times items in sn
were bought/clicked in other sessions were most predictive.

1Full appendix with all the features can be found at
www.cs.toronto.edu/~mvolkovs/recsys2015.pdf.

Here we give an example of one such feature:

Mn∑
m=1

buy(·, dnm)

click(·, dnm) + β
× click(sn, dnm)

where buy(·, dnm) and click(·, dnm) are the number of train-
ing sessions where dnm was bought and clicked respec-
tively; click(sn, dnm) is the number of times dnm is clicked
in sn and β = 10 is a smoothing constant. The ratio
buy(·, dnm)/(click(·, dnm) + β) can be interpreted as the
probability estimate that dnm is going to be bought in any
session where it is clicked. The additional weighting by
click(sn, dnm) (another option is to weight by time spent)
emphasizes items that user found particularly interesting in
sn. This feature thus combines the global likelihood of buy-
ing dnm with specific user interest for dnm in sn. We found
that the correlation between this features and Y was 0.28
– the highest of any session feature that we experimented
with. It is worth mentioning here that features of this type
resemble TFIDF statistics commonly used in text analysis,
classification and clustering. Analogous features are also
frequently used in web search personalization from user ses-
sions [3, 2], which is a very similar problem to the one pre-
sented in this challenge.

In addition to manually derived features, we found that
it was very useful to include an indicator feature with all
the items that were clicked in a given session. Since there
were only 54,287 unique items in the entire dataset, we were
able to include all items (excluding those not present in the
training data) in this indicator feature. Formally, for every
session sn, we created a 1×54, 287 indicator vector In where
for 1 ≤ m ≤ 54, 287, In[m] = 1 if dnm ∈ Dn and In[m] = 0
otherwise. Incorporating indicator features allows the model
to have item-specific parameters and learn correlations be-
tween groups of clicked items and buy events. All of our
sessions models were trained on concatenated vectors of fea-
tures from Appendix A and In. Note that this approach
can be applied even when the number of items is large by
using the hashing trick [4] or selecting only the most popular
items. We experimented with the latter method and found
that comparable accuracy can be achieved by using only the
top 5,000 most popular items.

3.2 Item Model
After obtaining encouraging results with feature-based

session models we decided to take an analogous approach
for item prediction. The probability that a given item dnm
was bought in sn was similarly modeled by a sigmoid:

P (ynm = 1) =
1

1 + exp(−gd(dnm, θd))
(4)

where gd : dnm → R is a parametrized by θd item model
applied to features extracted for dnm.

In this stage the most effort was also spent on feature
engineering. After several rounds of feature selection we
ended up with a set of 20 features summarized in Appendix
B. Through these experiments we found that features which
contained global buy and click information for a given item
were also the most predictive. In addition to item-specific
features, we also found it useful to include the correspond-
ing session information as input to the item model. For a
given item dnm we first tried to incorporate the output of
the session model P (yn = 1) by appending it to dnm’s fea-
tures. This improved the accuracy but often led to highly

www.cs.toronto.edu/~mvolkovs/recsys2015.pdf

Figure 1: Input/output diagrams for session and item models. Both models use the same session features;
item model also incorporates item-specific features and slightly modified indicator vector Imn (see Equation 5).

over-fitted solutions. Our second approach was to pass raw
session features (including indicator) as additional input to
the item model. This turned out to work very well and to-
gether with item features, was the basis of our item model
throughout the competition.

In the final stages of the competition we also experi-
mented with various ways to incorporate current item info
into the model. In doesn’t distinguish between items that
were clicked in sn. While this is appropriate for the session
model, for the item model we wanted to further indicated
which of clicked items the model is currently generating the
prediction for. To achieve this, we introduced the item-
specific indicator Imn for each item dnm:

Imn [i] =

−1 if i = m

1 if i 6= m and dni ∈ Dn

0 otherwise

(5)

Note that Imn is almost identical to In but contains −1 in
the target position m, thus allowing the model to identify
the item. We consistently found that using Imn in place
of In produced better predictions, although the gains were
not very significant. Figure 1 summarizes the input/output
architectures for both session and item models with all the
feature components that were included in the final versions
of each model.

3.3 Inference
We mentioned above that by thresholding session and item

probabilities we can generate more confident predictions.
However, it is unclear how to choose these thresholds such
that the resulting predictions maximize O. In this section
we outline a greedy procedure that we developed to solve
this problem.

We first note that the contribution from each session to the
overall score is highly dependent on the number of clicked
items in that session. The more items a given session has
the harder it is to maximize the Jaccard score in Equation 1.
This suggests that session probability thresholds should de-
pend on session size. Second, the accuracy of the item model
can vary significantly depending on the position of the item.
If items for each session are sorted by the probability from
the item model, then the top ranked predictions would tend
to be more accurate than those ranked 2’nd, 3’rd etc. This
also suggests that item probability thresholds should depend
on the item position in the sorted by probability ranking.

Combining these observations, we developed an iterative
greedy procedure where we select a separate session proba-
bility threshold and a set of item probability thresholds for
each session size. We first sort item probabilities for each
session in descending order and use rnm ∈ {1, 2, ...,Mn} to
denote the rank of item dnm in this sorted order. We use

Algorithm 1 Greedy Inference

Input: session size k
candidate session thresholds E = {a1, a2, ...}
candidate item thresholds B = {b1, b2, ...}
for i = 1 to |E| do
α[k] = ai
β[k, :] ≡ 0
for t = 1 to k do

select threshold from B for β[k, t] that maximizes Okt
end for
store α[k] and β[k, :] if higher Okk is reached

end for
Output: α[k] and β[k, :] with highest Okk

drnm to denote the item in position rnm with the corre-
sponding target yrnm . We then modify the prediction rule
in Equation 2 to incorporate session and ranking dependent
thresholds:

f(dnm) =

{
1 if P (yn = 1) > α[Mn] and P (ynm = 1) > β[Mn, rnm]

0 otherwise

Here, α is now a vector of thresholds and α[Mn] is a thresh-
old for session with Mn items. Similarly, β is now a matrix
of thresholds and β[Mn, rnm] is a threshold for item ranked
in position rnm. Note that the same α and β are used for
all sessions with the same number of items.

The thresholds are selected using a greedy approach where
at each step we maximize the partial objective:

Okt =

∑
sn:Mn=k

γ +
∑t

i=1 yrni
f(drni

)∑k
i=1 yrni

+
∑t

j=1 f(drnj
)−yrnj

f(drnj
)

yn = 1

−γ ow.

Okt only considers sessions with k items, and for each such
session it only evaluates the top-t items predicted by the
item model. Decomposing O into Okt ’s allows us to con-
duct sequential optimization where for all sessions of size k
we: 1) fix session threshold α[k] 2) sequentially find item
thresholds β[k, 1], β[k, 2],... that maximize Ok1 , Ok2 ,... 3)
check if higher Okk is reached. Steps 1-3 are repeated for
all candidate thresholds, and settings that maximize Okk are
returned. Algorithm 1 summarizes this procedure. We run
Algorithm 1 in parallel for all session sizes to produce the
final α β configurations and use them to generate test set
predictions. It is important to note here that all thresh-
old selection is done on the validation set to avoid biased
solutions from potentially over-fitted models.

Empirically, we found that selecting separate thresholds
for sessions with more than 15 items didn’t generalize well

Table 2: Validation (valid split) and leaderboard re-
sults. NN\I excludes indicator features from both
session and item models. Pruned NN and GBM
models were retrained after removing all sessions
that were not selected by the session thresholds α.

model valid split leaderboard

NN\I 43,994 52,822
NN 49,237 58,594
GBM 49,688 58,820
Pruned NN 50,493 59,826
4. Pruned NN+GBM 50,793 60,265

top-5 results from other teams
1. Peter 63,102
2. Cloud Card 62,656
3. Random Walker 61,075
5. Budapest 59,845
6. Tøyvind thørrud 55,078

since there are too few such sessions. To deal with this we
cap k at 15 and for k = 15 consider all sessions with 15 or
more items. Similarly, we found that predicting more than
7 items per session did not produce significant gains. So we
also cap the maximum number of items predicted for any
session to 7. Both of these constraints were incorporated
into Algorithm 1 to generate our final solutions.

4. EXPERIMENTS
In this section we describe our experimental set-up and

results. For all experiments we used a single 75%/25% train-
ing/validation split (see Table 1) to train and tune all mod-
els. We primarily concentrated on neural net (NN) and gra-
dient boosting (GBM) classifiers for both session and item
models.

For NN classifiers, we used cross entropy (logistic regres-
sion) as the target objective and validation AUC for early
stopping. AUC is well suited for this task since it is not
sensitive to large class imbalances. We optimized all NN
models with minibatch stochastic gradient descent. Mini-
batch size was set to 20K for both session and item models,
and we always ensured that each minibatch contained 10K
positive and 10K negative examples. Having equal class pro-
portions allowed for more stable optimization and we found
it to work at least as well as any other class proportion that
we tried. We experimented with both linear and non-linear
(1, 2 and 3 hidden layers) NNs and found that 1-hidden layer
models gave the best performance. For non-linear models,
given that the feature vectors have more than 50K dimen-
sions, even small models with 100 hidden units in the first
hidden layer have more than 5M parameters. The number
of parameters thus far exceeded the number of positive ex-
amples, and very strict regularization was required to avoid
over-fitting. We experimented with L1, L2 and dropout to
prevent over-fitting and found L2 to work the best. Dropout
also gave good performance but was extremely slow to con-
verge.

For GBM classifiers we used the excellent XGBoost 2 li-
brary. Similarly to NNs, we concentrated on logistic re-
gression GBMs with tree boosters and used validation AUC
for early stopping. GBM is even more prone to over-
fitting so we spent considerable effort tuning the param-

2https://github.com/dmlc/xgboost

eters of XGBoost to prevent over-fitting. We found the
following four parameters to be particularly useful: tree
depth (max_depth), learning rate (eta), min weight to split
a tree node (min_child_weight) and data sub-sampling
(subsample). For both session and item models we set
max_depth in [10, 20], eta in [0.1, 0.01], min_child_weight
in [50, 200] and subsample in [0.7, 0.9]. We generally found
that smaller learning rates produced better models at the
expense of longer training times. On a server with 16 In-
tel Xeon 2.90GHz CPUs and 64GB of RAM, NN generally
took several hours to train for both session and item models
whereas GBMs (using 4 threads) took about 1.5 days.

4.1 Results
Table 2 shows validation and leaderboard results for some

of the better models that we experimented with. Several
patterns can be seen from this table, first, we consistently
found that major improvements on the validation set always
translated to the test set. This suggests that one validation
split is enough for all model tuning, allowing to avoid expen-
sive n-fold validation. Second, we found indicator features to
be very useful with score improvements of over 5K for mod-
els that included these features (NN\I vs NN). Third, given
that very few sessions have buy events and that models have
limited capacity, we introduced an additional pruning step
removing session that didn’t pass the cut-off. After train-
ing both session and item models and selecting appropriate
α and β thresholds, we used α to remove all sessions from
training, validation and test sets that didn’t pass this thresh-
old. This removed over 70% of sessions from each of the 3
sets and we then re-trained the models on the significantly
reduced training data. From Table 2 we see that “Pruned
NN” which was re-trained on the pruned training data pro-
duced gains of up to 1K while taking significantly less time
to train. This suggests a general approach for imbalanced
classification where irrelevant data is iteratively removed al-
lowing the model to concentrate on the important training
examples. We plan to explore this further in the future.

Our best submission with a score of 60,265 achieved 4’th
place using a blend of several NN and GBM models trained
on the pruned subset of the training data. We experimented
with several blending techniques but found that simple prob-
ability averaging produced the best results. It was surprising
that blending gave only marginal improvement. After fur-
ther analysis we think that this can be attributed to the
disconnect between the cross entropy/AUC objectives opti-
mized during training and the target O. We often saw cases
where improvement in AUC did not translate to improve-
ment in O.

5. REFERENCES
[1] D. Ben-Shimon, A. Tsikinovsky, M. Friedman,

B. Shapira, L. Rokach, and J. Hoerle. Recsys challenge
2015 and the yoochoose dataset. In ACM RecSys, 2015.

[2] P. Masurel, K. Lefèvre-Hasegawa, C. Bourguignat, and
M. Scordia. Dataiku’s solution to yandex’s personalized
web search challenge. In WSDM, 2014.

[3] J. Teevan, S. T. Dumais, and D. J. Liebling. To
personalize or not to personalize: Modeling queries
with variation in user intent. In SIGIR, 2008.

[4] K. Weinberger, A. Dasgupta, J. Langford, A. Smola,
and J. Attenberg. Feature hashing for large scale
multitask learning. In ICML, 2009.

https://github.com/dmlc/xgboost

APPENDIX
A. SESSION FEATURES

After many rounds of cross validation we used a total of 37
session features for each session sn. To extract the features
we use the following helper functions:

buy(sn, dnm): number of times dnm was clicked in sn.

click(·, dnm): number of training sessions where dnm
was clicked.

buy(·, dnm): number of training sessions where dnm
was bought.

sim click(dni, dnj): similarity between dni and dnj
using collaborative filtering item-based neighborhood
similarity on session-item click matrix. Higher sim click
score indicates that dni and dnj are frequently clicked
together.

sim buy(dni, dnj): similarity between dni and dnj
using collaborative filtering item-based neighborhood
similarity on session-item buy matrix. Higher sim buy
score indicates that dni and dnj are frequently bought
together.

dnMn : last clicked item in sn.

Session statistics

1. sn duration in milliseconds

2. number of clicks in sn

3. number of unique items clicked

4. max time spent on any item

5. cross entropy of “time spent” distribution across items

6-7. number of items with 2 clicks and ≥ 3 clicks

8-10. number of items with category 0, -1 and in (0, 12]

Global statistics The goal here was to aggregate buy and
click information for items in sn from all training sessions
where these items appear. We then combine this “global”
information with “local” click patterns in sn to estimate the
likelihood of sn containing a buy event.

11.
∑Mn
m=1 click(·, dnm)

12. number of unique items in sn that were previously
bought in other training sessions

13.
∑Mn
m=1 buy(·, dnm)

14.
∑Mn
m=1 buy(·, dnm)× click(sn, dnm)

15. maxdnm

buy(·,dnm)
click(·,dnm)+β

16.
∑Mn
m=1

buy(·,dnm)
click(·,dnm)+β

17.
∑Mn
m=1

buy(·,dnm)
click(·,dnm)+β

× click(sn, dnm)

18. click(·, dnMn)

19.
buy(·,dnMn)

click(·,dnMn)+β
× click(sn, dnMn)

Collaborative filtering item similarity
The motivation behind these features is that users who
are looking to buy are more likely to do targeted brows-
ing. Targeted browsing often involves items that are fre-
quently bought together such as items from the same cate-
gory/type. Sessions where many items are “similar” and are
often clicked/bought together by other users are thus more
likely to contain a buy.

20.
∑
i>j sim click(dni, dnj)

21.
∑
i>j sim click(dni, dnj) × (click(sn, dni) +

click(sn, dnj))

22. maxi>j sim click(dni, dnj)

23. maxi>j sim click(dni, dnj) × (click(sn, dni) +
click(sn, dnj))

24. stdi>j sim click(dni, dnj)

Time features
From initial data inspection we found evidence of seasonality
where number clicks/buys changed depending on day of the
week and hour of the day 3. Time features were aimed at
capturing these seasonality effects.

25-31. day of the week indicator

32-37. hour of day indicator grouped into six four-hour inter-
vals 0-4, 4-8, 8-12 etc.

B. ITEM FEATURES
Similarly to session features, after several rounds of cross-

validation we selected a total of 20 item features:
Session statistics

1. click(sn, dnm)

2. time spent on dnm in milliseconds

3. 1 if dnm was clicked last in sn and 0 otherwise

4-6. item category indicator for categories: -1, 0, and in (0,
12]

Global statistics

7. click(·, dnm)

8. buy(·, dnm)

9. buy(·, dnm)× click(sn, dnm)

10. buy(·,dnm)
click(·,dnm)+β

11. buy(·,dnm)
click(·,dnm)+β

× click(sn, dnm)

Collaborative filtering item similarity
A given item is more likely to be bought if corresponding
session contains other items that are similar (frequently co-
clicked and co-bought together). Similar items indicate that
the user was doing targeted browsing and was looking for
a particular category/type of items which in turn increases
the likelihood of a buy.

12.
∑
i sim click(dnm, dni)

13. maxi sim click(dnm, dni)

14. stdi sim click(dnm, dni)

15.
∑
i sim buy(dnm, dni)

16. maxi sim buy(dnm, dni)

17. stdi sim buy(dnm, dni)

18.
∑
i

sim buy(dnm,dni)
sim click(dnm,dni)

× (click(sn, dnm) + click(sn, dni))

19. maxi
sim buy(dnm,dni)
sim click(dnm,dni)

× (click(sn, dnm) + click(sn, dni))

20. stdi
sim buy(dnm,dni)
sim click(dnm,dni)

× (click(sn, dnm) + click(sn, dni))

3Similar patterns were found by Humberto Corona and sum-
marized in this blog post: http://aloneindecember.com/
words/recsys-challenge-part-ii/

http://aloneindecember.com/words/recsys-challenge-part-ii/
http://aloneindecember.com/words/recsys-challenge-part-ii/

	Challenge Overview
	Framework
	Our Approach
	Session Model
	Item Model
	Inference

	Experiments
	Results

	References
	Session Features
	Item Features

