
Learning to Rank By Aggregating Expert Preferences

Maksims N. Volkovs
University of Toronto
40 St. George Street

Toronto, ON M5S 2E4
mvolkovs@cs.toronto.edu

Hugo Larochelle
Université de Sherbrooke
2500 boul. de l’Université
Sherbrooke, QC J1K 2R1

hugo.larochelle@usherbrooke.ca

Richard S. Zemel
University of Toronto
40 St. George Street

Toronto, ON M5S 2E4
zemel@cs.toronto.edu

ABSTRACT
We present a general treatment of the problem of aggregat-
ing preferences from several experts into a consensus rank-
ing, in the context where information about a target ranking
is available. Specifically, we describe how such problems can
be converted into a standard learning-to-rank one on which
existing learning solutions can be invoked. This transfor-
mation allows us to optimize the aggregating function for
any target IR metric, such as Normalized Discounted Cu-
mulative Gain, or Expected Reciprocal Rank. When applied
to crowdsourcing and meta-search benchmarks, our new al-
gorithm improves on state-of-the-art preference aggregation
methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Preference Aggregation, Meta-search, Crowdsourcing

1. INTRODUCTION
Preference aggregation is the problem of combining multi-

ple preferences over objects into a single consensus ranking.
This problem is crucially important in many applications,
such as information retrieval (IR), collaborative filtering and
crowdsourcing. Across various domains, the preferences over
objects are expressed in many different ways, ranging from
full and partial rankings to arbitrary comparisons. For in-
stance, in meta-search an issued query is sent to several
search engines and the (often partial) rankings returned by
them are aggregated to generate more comprehensive rank-
ing results. In crowdsourcing, tasks often involve assigning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

ratings to objects or pairs of objects ranging from images to
text. The ratings from several users are then aggregated to
produce a single labelling of the data.

Research in preference aggregation has largely concen-
trated on unsupervised aggregation where the ground truth
ranking is unknown and the aim is to produce an aggregate
ranking that satisfies the majority of the observed prefer-
ences. However, many of the recent aggregation problems
are amenable to supervised learning, as ground truth rank-
ing information is available. For example, in meta-search the
documents retrieved by the search engines are often given
to annotators who assign relevance labels to each document.
The relevance labels provide ground truth preference infor-
mation about the documents i.e., the documents with higher
relevance label are to be ranked above those with lower one.
Similarly, in crowdsourcing, a domain expert typically la-
bels a subset of the data shown to the “crowd”. These labels
are then used to evaluate the quality of annotations submit-
ted by each worker. In these settings aggregating methods
that aim to satisfy the majority often lead to suboptimal
results since the majority preference can often be wrong.
In meta-search for instance, many of the search engines are
likely to return incorrect results for difficult long-tail queries,
and we expect high quality rankings only from a few search
engines that were specifically optimized for these queries.
Consequently, we need the aggregating function to be able
to “specialize” and infer when to use the majority preference
and when to concentrate only on a small subset of prefer-
ences. The specialization property is impossible to achieve
with unsupervised preference aggregation techniques. There
is thus an evident need to develop an effective supervised
aggregation method that is able to fully utilize the labeled
data.

In this paper we address this problem by developing a gen-
eral framework for supervised preference aggregation. Our
framework is based on a simple yet powerful idea of trans-
forming the aggregation problem into a learning-to-rank one.
This transformation makes it possible to apply any learning-
to-rank method to optimize the parameters of the aggregat-
ing function for the target metric. Experiments on crowd-
sourcing task from TREC2011 [17] and meta-search tasks
with Microsoft’s LETOR4.0 [20] data sets show that our
model significantly outperforms existing aggregation meth-
ods.

2. PREFERENCE AGGREGATION
A typical supervised preference aggregation problem con-

sists of N training instances where for each instance n we are

given a set of Mn items. We also have a set of K “experts”
and each expert k generates a list of preferences for items in
each instance. The preferences can be in the form of full or
partial rankings, top-T lists, ratings, relative item compar-
isons, or combinations of these. All of these forms can be
converted to a set of partial pairwise preferences, which in
most cases will be neither complete nor consistent. More-
over, for each instance n we are also given a set of ground
truth preferences over the items. The goal is to learn an ag-
gregating function which takes expert preferences as input
and produces an aggregate ranking that maximally agrees
with the ground truth preferences.

In this work we concentrate on the rank aggregation in-
stance of this problem from the information retrieval do-
main. However, the framework that we develop is general
and can be applied to any supervised preference aggregation
problem in the form defined above. In information retrieval
the instances correspond to queries Q = {q1, ..., qN} and
items to documents Dn = {dn1,, dnMn} where Mn is the
number of documents retrieved for qn. For each query qn the
experts’ preferences are summarized in a rank matrix Rn

where Rn(i, k) denotes the rank assigned to document dni
by the expert k ∈ {1, ..,K}. Note that the same K experts
rank items for all the instances so K is instance indepen-
dent. Furthermore, Rn can be sparse, as experts might not
assign ranks to every document in Dn; we use Rn(i, k) = 0
to indicate that document dni was not ranked by expert k.
The sparsity arises in problems like meta-search where qn
is sent to K different search engines and each search engine
typically retrieves and ranks only a portion of the documents
in Dn. The ground truth preferences are expressed by the
relevance levels Ln = {ln1, ..., lnMn} which are typically as-
signed to the documents by human annotators.

A ranking of documents in Dn can be represented as
a permutation of Dn. A permutation π is a bijection
π : Dn → {1, ...,Mn} mapping each document dni to its
rank π(dni) = j, and dni = π−1(j). Given the training
queries the goal is to create an aggregating function such
that, given a set of documents D with relevance levels L
and ranking matrix R retrieved for a new query q, the ag-
gregate ranking π produced by the function has maximal
agreement with L.

Normalized Discounted Cumulative Gain (NDCG) [14] is
typically used to evaluate the agreement between the ag-
gregate permutation and the relevance levels. Given the
aggregate permutation π, relevances L, and truncation level
T ≤M , NDCG is defined as:

NDCG(π,L)@T =
1

GT (L)

T∑
i=1

2L(π−1(i)) − 1

log(i+ 1)
(1)

where L(π−1(i)) is the relevance level of the document in
position i in π and GT (L) is a normalizing constant.

In contrast to the learning-to-rank problem where each
document is represented by a fixed length, query dependent,
and typically heavily engineered feature vector, in rank ag-
gregation the rank matrix R is the only information avail-
able to train the aggregating function. Additionally this ma-
trix is typically very sparse. Hence there is no fixed length
document description, as is required by most supervised
methods. To overcome this problem we convert the rank
matrix into a pairwise preference matrix and demonstrate
that through this conversion the rank aggregation problem

(a) R (b) Y2

Figure 1: (a) An example rank matrix R where 4
documents are ranked by 3 experts. Note that in
meta-search the rank for a given document can be
greater than the number of documents in R. (b)
The resulting pairwise matrix Y2 for expert 2 (sec-
ond column of R) after the ranks are transformed
to pairwise preferences using the log rank difference
method.

can be cast into a learning-to-rank one which is well explored
with many developed approaches readily available.

2.1 Pairwise Preferences
Given theMn×K ranking matrix Rn our aim is to convert

it into K Mn×Mn pairwise matrices Yn = {Yn1, ...,YnK},
where each Ynk expresses the preferences between pairs
of documents based on the expert k. To convert Rn

to Yn we use a transformation of the form Ynk(i, j) =
g(Rn(i, k),Rn(j, k)). In this work we experiment with three
versions for g that were proposed by Gleich & Lim [12]:

1. Binary Comparison

The rank magnitude is ignored:

Ynk(i, j) = I[Rn(i, k) < Rn(j, k)]

here I[x] is an indicator function evaluating to 1 if x
is true and to 0 otherwise.

2. Rank Difference

Here the normalized rank difference is used:

Ynk(i, j) = I[Rn(i, k) < Rn(j, k)]
Rn(j, k)−Rn(i, k)

max(Rn(:, k))

Normalizing by the maximum rank assigned by the
expert k (max(Rn(:, k))) ensures that the entries of
Ynk have comparable ranges.

3. Log Rank Difference

This method uses the normalized log rank difference:

Ynk(i, j) =

I[Rn(i, k) < Rn(j, k)]
log(Rn(j, k))− log(Rn(i, k))

log(max(Rn(:, k)))

In all cases both Ynk(i, j) and Ynk(j, i) are set to 0 if either
Rn(j, k) = 0 or Rn(i, k) = 0 (missing ranking). Non-zero
entries Ynk(i, j) represent the strength of the pairwise pref-
erence of dni over dnj expressed by expert k. Figure 1 shows
an example ranking matrix and the resulting pairwise matrix
after the ranks are transformed to pairwise preferences using
the log rank difference method. Note that preferences in the
form of ratings and top-N lists can easily be converted into

Table 1: A summary of notation.
Variable Description
Q = {q1, ..., qN} input queries
Dn = {dn1,, dnMn} documents for qn
Ln = {ln1, ..., lnMn} relevance levels for qn
Rn(i, k) ranking for dni by expert k
Yn = {Yn1, ...,YnK} pairwise representation of Rn

ψ(dni) feature vector for dni
f(ψ(dni),W) scoring function
Sn = {sn1, ..., snMn} scores given by f to Dn

Ynk using the same transformations. Moreover, if pairwise
preferences are observed, we simply skip the transformation
step and fill the entries Ynk(i, j) directly. Table 1 summa-
rizes the notation used throughout this paper.

Working with pairwise comparisons has a number of ad-
vantages, and models over pairwise preferences have been
extensively used in areas such as social choice [10], infor-
mation retrieval [16, 5], and collaborative filtering [22, 12].
First, pairwise comparisons are the building blocks of al-
most all forms of evidence about preference and subsume
the most general models of evidence proposed in literature.
A model over pairwise preferences can thus be readily ap-
plied to a wide spectrum of preference aggregation problems
and does not impose any restrictions on the input type. Sec-
ond, pairwise comparisons are a relative measure and help
reduce the bias from the preference scale. In meta-search for
instance, each of the search engines that receives the query
can retrieve diverse lists of documents significantly varying
in size. By converting the rankings into pairwise preferences
we reduce the list size bias emphasizing the importance of
the relative position.

3. RELEVANT WORK
Relevant previous work on rank aggregation can be di-

vided into two categories: permutation-based and score-
based. In this section we briefly describe both types of mod-
els.

3.1 Permutation-Based Models
Permutation based models work directly in the permuta-

tion space. The most common and well explored such model
is the Mallows model [24]. Mallows defines a distribution
over permutations and is typically parametrized by a cen-
tral permutation σ and a dispersion parameter φ ∈ (0, 1];
the likelihood of a ranking matrix R under this model is
given by:

P (Rn|φ, σn) =

K∏
k=1

1

Z(φ, σn)
φ−d(Rn(:,k),σn)

where d(R(:, k), σn) is a distance between the ranking given
by the expert k and the σn. For rank aggregation problems
inference in this model amounts to finding the aggregate per-
mutation σn that maximizes the likelihood of the observed
rankings R. However, finding the most likely permutation is
typically very difficult and in many cases is intractable [25].
A number of extensions of the Mallows model, e.g., [28, 22,
18, 19], have also recently been explored.

Another disadvantage of these models is that they are
difficult to adapt to the fully supervised rank aggregation

problem considered here. The dispersion parameter φ and
the parameters that define the distance function d are typi-
cally estimated via maximum likelihood with σn clamped to
the ground truth ranking. This learning procedure cannot
be used to optimize for a particular target metric, such as
NDCG.

3.2 Score-Based Models
In score-based approaches the goal is to learn a set of

real valued scores (one per document) Sn = {sn1, ..., snMn}
which are then used to sort the documents. Working with
scores avoids the discontinuity problems of the permutation
space.

A number of heuristic score-based methods for rank aggre-
gation have been proposed. For example, BordaCount [1],
Condorcet [26] and Reciprocal Rank Fusion [8] derive the
document scores by averaging (weighted) ranks across the
experts or counting the number of pairwise wins. In statis-
tics a popular pairwise score model is the Bradley-Terry [4]
model:

P (Rn|Sn) =

K∏
k=1

∏
i6=j

I[Rn(i, k) < Rn(j, k)]
esni

esni + esnj

where exp(sni)
exp(sni)+exp(snj)

can be interpreted as the probability

that document dni beats dnj in the pairwise contest and I
is an indicator function. Note that the scores do not depend
on the expert k and thus represent the consensus preference
expressed by the experts. In logistic form the Bradley-Terry
model is very similar to another popular pairwise model,
the Thurstone model [29]. Extensions of these models in-
clude the Elo Chess rating system [11], adopted by the World
Chess Federation FIDE in 1970, and Microsoft’s TrueSkill
rating system [9] for player matching in online games, used
extensively in Halo and other games. The popular learning-
to-rank model RankNet [5] is also based on this approach.
The Bradley-Terry model was later generalized by Plackett
and Luce to a Plackett-Luce model for permutations [23,
27]. A Bayesian framework was also recently introduced for
the Plackett-Luce model by placing a Gamma prior on the
selection probabilities [13].

Recently, factorization approaches have been developed
to model the joint pairwise matrix [12, 15]. There the pair-
wise matrices are aggregated into a single matrix Ytot

n =∑K
k=1 Ynk which is then approximated by a low rank fac-

torization such as: Ytot
n ≈ SneT −eSTn . The resulting scores

Sn are used to rank the documents.
Finally, a supervised score-based rank aggregation ap-

proach based on a Markov Chain was recently introduced
[21]. In this model the authors use the ground truth prefer-
ences to create a pairwise constraint matrix and then learn a
scoring function such that the produced aggregate rankings
satisfy as many pairwise constraints as possible. The main
drawbacks of this approach are that it is computationally
very intensive requiring constrained optimization (semidef-
inite programming), and it does not incorporate the target
IR metric into the optimization.

In general, none of the models mentioned above take the
target metric into account during the optimization of the
aggregating function. To the best of our knowledge no such
approach has been developed.

4. SUPERVISED FRAMEWORK
In this section we describe our supervised framework for

preference aggregation. To simplify notation, for the remain-
der of this section, we drop the query index n and work with
a general query q with M documents D = {d1,, dM},
relevance labels L = {l1, ..., lM} and ranking matrix R
that has been converted to a set of pairwise matrices Y =
{Y1, ...,YK} using one of the techniques mentioned earlier.

The main idea behind our approach is to summarize the
relative preferences for each document across the K experts
by a fixed length feature vector. This transforms the pref-
erence aggregation problem into a learning-to-rank one, and
any of the standard methods can then be applied to opti-
mize the aggregating function for the target IR metric such
as NDCG. In the next section we describe an approach to
extract the document features.

4.1 Feature Extraction
Given the rank matrix R and the resulting pairwise matrix

Yk for expert k (as shown in Figure 1), our aim is to convert
Yk into a fixed length feature vector for each of the docu-
ments in D. Singular Value Decomposition (SVD) based
approaches for document summarization such as Latent Se-
mantic Indexing are known to produce good descriptors even
for sparse term-document matrices. Another advantage of
SVD is that it requires virtually no tuning and can be used to
automatically generate the descriptors once the pairwise ma-
trices are computed. Because of these advantages we chose
to use SVD to extract the features. For a given M × M
pairwise matrix Yk the rank-p SVD factorization has the
form:

Yk ≈ UkΣkV
′
k

where Uk is an M × p matrix, Σk is an p× p diagonal ma-
trix of singular values and Vk is an M × p matrix. The full
SVD factorization has p = M , however, to reduce the noise
and other undesirable artifacts of the original space most
applications that use SVD typically set p � M . Reducing
the rank is also an important factor in our approach as pair-
wise matrices tend to be very sparse with ranks significantly
smaller than M .

Given the SVD factorization we use the resulting matrices
as features for each document. It is important to note here
that both U and V contain useful document information
since Yk is a pairwise document by document matrix. To
get the features for document di and expert k we use:

ψ(di,Yk) = [Uk(i, :),diag(Σk),Vk(i, :)] (2)

here Uk(i, :) and Vk(i, :) are the i’th rows of Uk and Vk

respectively and diag(Σk) is the main diagonal of Σk repre-
sented as a 1×p vector. Note that the diag(Σk) component
is independent of i and will be the same for all the docu-
ments in D. We include the singular values to preserve as
much information from the SVD factorization as possible.
The features ψ(di,Yk) summarize the relative preference
information for di expressed by the expert k. To get a com-
plete view across the K experts we concatenate together the
features extracted for each expert:

ψ(di) = [ψ(di,Y1), ..., ψ(di,YK)] (3)

Each ψ(di,Yk) contains 3p features so the entire represen-
tation will have 3Kp features. Moreover, note that since
both K and p are fixed across queries this representation

Figure 2: The flow diagram for the feature-based
preference aggregation approach. (1) The ranking
matrix R is converted to a set of pairwise matrices
Y. (2) SVD is used to extract document features
from each pairwise matrix Yk. (3) The learned scor-
ing function is applied to the features to produce
the scores for each document. The scores are then
sorted to get the aggregate ranking.

will have the same length for every document in each query.
We have thus created a fixed length feature representation
for every document di, effectively transforming the aggrega-
tion problem into a standard learning-to-rank one. Dur-
ing training our aim is now to learn a scoring function
f : R3Kp → R which maximizes the target IR metric such
as NDCG. At test time, given a new query q′ with rank ma-
trix R′, we (1) convert R′ into a set of pairwise matrices
Y′ = {Y′1, ...,Y′K}; (2) extract the document features using
rank-p SVD; and (3) apply the learned scoring function to
get the score for every document. The scores are then sorted
to get the aggregate ranking. This process is shown in Fig-
ure 2. The feature representation allows us to fully utilize
the available labeled training data to optimize the aggregat-
ing function for the target metric, which is not possible to
do with the existing aggregation methods.

It is worth mentioning here that the SVD factorization
of pairwise matrices has been used in the context of prefer-
ence aggregation (see [12] for example). However, previous
approaches largely concentrated on applying SVD to fill the
missing entries in the joint pairwise matrix Ytot =

∑K
k=1 Yk

and then use the completed matrix to infer the aggregate
ranking. Our approach on the other hand uses SVD to com-
press each pairwise matrix Yk and produce fixed length fea-
ture vector for each document.

4.2 Learning the Scoring Function
Given the document features extracted via the SVD ap-

proach our goal is to use the labeled training queries to opti-
mize the parameters of the scoring function for the target IR
metric. The main difference between the introduced feature-
based rank aggregation approach and the typical learning-
to-rank setup is the possibility of missing features. When
a given document di is not ranked by the expert k the row

Yk(i, :) and column Yk(:, i) will both be missing (i.e., 0). To
account for this we modify the conventional linear scoring
function to include a bias term for each of the K experts:

f(ψ(di),W) =

K∑
k=1

wk · ψ(di,Yk) + I[R(i, k) = 0]bk (4)

where W = {wk, bk}Kk=1 is the set of free parameters to
be learned with each wk having the same dimension as
ψ(di,Yk), and I is an indicator function. The bias term
bk provides a base score for di if di is not ranked by expert
k. The weights wk control how much emphasis is given to
preferences from expert k. It is important to note here that
the scoring function can easily be made non-linear by adding
additional hidden layer(s) as done in conventional multilayer
neural nets. In the form given by Equation 4 our model has a
total of (3p+1)K parameters to be learned. We can use any
of the developed learning-to-rank approaches to optimize
W; in this work we chose to use the LambdaRank method.
We chose LambdaRank because it has shown excellent em-
pirical performance recently winning the Yahoo! Learning
To Rank Challenge [7]. We briefly describe LambdaRank
here and refer the reader to [6] and [5] for a more extensive
treatment.

LambdaRank learns pairwise preferences over documents
with emphasis derived from the NDCG gain found by swap-
ping the rank position of the documents in any given pair, so
it is a listwise algorithm (in the sense that the cost depends
on the sorted list of documents). Formally, given a pair of
documents (di, dj) with li 6= lj , the target probability that
di should be ranked higher than dj is defined as:

Pij =

{
1 if li > lj
0 otherwise

The model’s probability is then obtained by passing the dif-
ference in scores between di and dj through a logistic:

Qij =
1

1 + exp(−(f(ψ(di),W)− f(ψ(dj),W)))

=
1

1 + exp(−(si − sj))

The aim of learning is to match the two probabilities for
every pair of documents with different labels. To achieve
this a cross entropy objective is used:

Oq = −
∑
li>lj

Pij log(Qij)

This objective weights each pair of documents equally thus
placing equal importance on getting the relative order of
document correctly both at the top and at the bottom of the
ranking. However, most target evaluation metrics including
NDCG are heavily concentrated on the top of the ranking.
To take this into account the LambdaRank framework uses a
smooth approximation to the gradient of a target evaluation
measure with respect to the score of a document di, and we
refer to this approximation as λ-gradient. The λ-gradient for
NDCG is defined as the derivative of the cross entropy ob-
jective weighted by the difference in NDCG obtained when
a pair of documents swap rank positions:

λij = |∆NDCG@M(si, sj)|
∂Oq

∂si − sj

Algorithm 1 Learning Algorithm

Input: {(q1,D1,L1,R1), ..., (qN ,DN ,LN ,RN)}
Parameters: learning rate η
initialize weights: W
for n = 1 to N do {feature extraction: §4.1}

from Rn compute Yn = {Yn1, ...,YnK}
for i = 1 to Mn do

compute features ψ(dni)
end for

end for
repeat {scoring function optimization: §4.2}

for n = 1 to N do
calculate query cross entropy objective:
Oqn =

∑
lni>lnj

log(1 + esnj−sni)

compute λ-gradients: ∇W =
∑
i λni

∂sni
∂W

update weights: W = W − η∇W
end for

until convergence
Output: W

Thus, at the beginning of each iteration, the documents are
sorted according to their current scores, and the difference
in NDCG is computed for each pair of documents by keeping
the ranks of all of the other documents constant and swap-
ping only the rank positions for that pair (see [6] for more
detail on λ calculation). The λ-gradient for document di
is computed by summing the λ’s for all pairs of documents
(di, dj) for query q:

λi =
∑
j:lj 6=li

λij

The |∆NDCG| factor emphasizes those pairs that have the
largest impact on NDCG. Note that the truncation in NDCG
is relaxed to the entire document set to maximize the use of
the available training data.

To make the learning algorithm more efficient the doc-
ument features can be precomputed a priori and re-used
throughout learning. This significantly reduces the com-
putational complexity at the cost of additional storage re-
quirement of O(MnKp) for each query qn. The complete
stochastic gradient descent learning procedure is summa-
rized in Algorithm 1.

5. CROWDSOURCING EXPERIMENTS
Our approach is primarily designed for supervised prefer-

ence aggregation problems where sufficient expert preference
data is available to learn a feature-based model for each ex-
pert. However, to further examine the utility of the proposed
method we also conducted experiments on the crowdsourc-
ing problem where very limited preference data is typically
available for each expert.

For crowdsourcing experiments we use the dataset from
Task 2 of the TREC2011 Crowdsourcing Track1 [17]. The
dataset is a collection of binary (relevant or not relevant)
judgements from 762 workers for 19,033 documents. The
documents are split into 100 topics and for each topic ground
truth or “gold” labels are provided for a subset of the docu-
ments. The topics in this task can be thought of as queries in
the traditional search problem. For each topic n the judge-
ments for the documents are represented as a matrix Rn

1https://sites.google.com/site/treccrowd/home

Table 2: TREC2011 crowdsourcing dataset NDCG results.

N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10

Condorcet 42.00 50.00 49.28 49.87 49.04 49.53 49.35 50.34 52.16 51.41
Majority vote 59.00 64.00 62.80 63.95 63.96 64.45 64.93 66.34 66.46 64.83
LR-consensus 70.00 72.00 70.80 69.56 69.85 69.47 68.86 68.79 68.83 66.79
LR-labeled 80.00 79.50 77.46 75.63 74.10 73.80 73.29 73.18 72.78 71.13
LR-unlabeled 83.00 82.00 80.80 78.76 77.94 76.77 75.93 75.34 75.36 73.37

where each entry Rn(i, k) is either 1 (relevant), -1 (not rel-
evant) or 0 (not observed). The ground truth (gold) labels
Ln are available only for a subset of the documents under
each topic and are given by one of two values: 1 = relevant
and 0 = not relevant. There are a total of 2275 gold labels:
1275 relevant and 1000 not relevant. The aim is to use the
worker judgements to accurately rank the documents under
each topic (note that this is a different problem from the
Task 2 in TREC2011 where the goal was to predict each
document’s relevance label). To evaluate the models we cre-
ated 5 random splits of topics into 60/20/20 sets for train-
ing/validation/testing. The results shown for each model
are the average test set results for the five folds. For each
topic the models are evaluated using only those documents
for which the gold labels are available.

Across all topics the data contains 89,624 judgements and
each document is judged by 5 workers on average. Moreover,
out of the 762 workers 547 have less than 40 judgements so
the dataset is very imbalanced with the majority of judge-
ments coming from a small subset of the workers. Given
the label sparsity there is not enough preference data to
learn an accurate feature-based model for each worker. In-
stead of extracting preference features for every worker, we
used a hybrid approach. Separate features were extracted
for workers that had 500 or more preferences in the training
set, there were around 20 such workers in each fold. Prefer-
ences for all the other workers were combined into a single
preference matrix for which we extracted an additional set of
features. Using Γ500 to denote the set of workers that have
500 or more preferences in the training set we can write the
complete feature vector as:

ψ(dni) = {ψ(dni,Yk) | k ∈ Γ500} ∪ ψ(dni,Y
<500
n) (5)

where Y<500
n is given by Y<500

n =
∑
k/∈Γ500

Ynk. The hybrid
approach allows us to learn accurate feature-based models
for those workers that have enough preferences in the train-
ing data and combine these models with a consensus-based
model for workers with few training ratings. Each pairwise
matrix was computed using the binary comparison approach
(see Section 2.1) since it is the only suitable approach for bi-
nary judgements.

5.1 Results
We conducted experiments with three versions of the

LambdaRank model. The first model, which we refer to as
LR-consensus, did not use the per-worker features and only
used features from the SVD factorization of the combined
matrix Ytot

n =
∑K
k=1 Ynk. This model thus does not take

the individual worker preferences into account and ranks
only based on consensus features. The second model, LR-
labeled, uses the individual worker features as per equation
Equation 5 but the features were computed using preferences
only for the documents that had ground truth labels. The

last model, LR-unlabeled, included the preferences for the
unlabeled documents during feature computation. Through
cross validation we found that setting p = 1 (SVD rank)
gave the best performance which is expected considering the
sparsity level of the pairwise matrices Y. For all settings,
LambdaRank was run for 200 iterations with a learning rate
of 0.01, and validation NDCG@10 was used to choose the
best model.

We compare our feature based model with the condorcet
and the majority vote approach which was shown to work
well on the related TREC2011 Task 2 [3]. Table 2 shows test
NDCG (N@T) at truncations 1 − 10. From the table it is
seen that all LambdaRank models significantly outperform
the majority vote baseline on the ranking task. It is also
seen that the consensus based model LR-consensus performs
significantly worse than the models that take the individual
worker preferences into account. This indicates that ranking
based on consensus alone leads to suboptimal performance,
as we further demonstrate in the meta-search experiments
in the next section. Finally, we see that using features com-
puted from preferences for only the labeled documents (LR-
labeled) does not perform as well as using all the preferences
(LR-unlabeled). The LR-unlabeled model performs signifi-
cantly better than the LR-labeled at all truncations. This
indicates that preferences from the unlabeled documents do
contain useful information and should be included during
the feature extraction. This can be especially relevant when
the number of labeled documents and/or preferences is small
which is the case here.

6. META-SEARCH EXPERIMENTS
For our meta-search experiments we use the LETOR4.0

benchmark datasets. These data sets were chosen because
they are publicly available, include several baseline results,
and provide evaluation tools to ensure accurate comparison
between methods. In LETOR4.0 there are two meta-search
data sets, MQ2007-agg and MQ2008-agg. MQ2007-agg con-
tains 1692 queries with 69,623 documents and MQ2008-agg
contains 784 queries and a total of 15,211 documents. Each
query qn contains a ranking matrix Rn with partial expert
rankings of the documents under that query. There are 21
experts in MQ2007-agg and 25 experts in MQ2008-agg. In
this setting the experts correspond to the search engines to
which the query was submitted. In addition, in both data
sets, each document is assigned one of three relevance levels:
2 = highly relevant, 1 = relevant and 0 = irrelevant. Fi-
nally, each dataset comes with five precomputed folds with
60/20/20 splits for training/validation/testing. The results
shown for each model are the averages of the test set results
for the five folds. The MQ2007-agg dataset is approximately
35% sparse, meaning that for an average query the ranking
matrix is missing 35% of its entries. MQ2008-agg is signifi-
cantly sparser, with ∼ 65% entries missing.

Table 3: MQ2008-agg and MQ2007-agg results; all differences between LambdaRank and the best baseline
are statistically significant.

NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008-agg

BordaCount 23.68 28.06 30.80 34.32 37.13 29.72 30.42 29.38 29.75 29.03 39.45
CPS-best 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Bradley-Terry 38.05 39.24 40.77 41.79 42.62 44.77 39.73 36.26 33.19 30.28 44.35
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
Condorcet 35.67 37.39 39.11 40.50 41.59 40.94 37.43 34.73 32.08 29.59 42.63
RRF 38.77 40.73 43.48 45.70 47.17 44.89 41.32 38.82 36.51 34.13 47.71
LR-I 40.22 43.94 46.33 48.30 50.16 46.94 44.00 41.45 38.52 36.28 49.54
LR-R 40.90 42.75 45.83 47.93 49.68 47.45 42.92 41.20 38.77 36.22 49.26
LR-logR 42.81 44.53 47.02 49.00 50.69 48.85 44.13 41.84 39.09 36.50 50.32

MQ2007-agg

BordaCount 19.02 20.14 20.81 21.28 21.88 24.88 25.24 25.69 25.80 25.97 32.52
CPS-best 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Bradley-Terry 39.88 39.86 40.40 40.60 40.91 46.34 44.65 43.48 41.98 40.95 43.98
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
Condorcet 37.31 37.63 38.03 38.37 38.66 43.26 42.14 40.94 39.85 38.75 42.56
RRF 41.93 42.66 42.42 42.73 43.13 48.70 47.20 44.84 43.52 42.52 46.72
LR-I 46.13 46.76 46.71 46.87 47.28 52.90 51.39 49.33 47.80 46.66 50.05
LR-R 45.02 45.40 45.68 45.87 46.12 51.83 50.36 48.88 47.25 45.98 49.55
LR-logR 46.30 46.18 46.46 46.56 47.02 53.19 51.04 49.26 47.48 46.29 50.39

The goal is to use the rank lists to infer an aggregate
ranking of the documents for each query which maximally
agrees with the held-out relevance levels. To evaluate this
agreement, in addition to NDCG (N@T), we also compute
Precision (P@T) and Mean Average Precision (MAP) [2].
MAP only allows binary (relevant/not relevant) document
assignments, and is defined in terms of average precision
(AP). For an aggregate ranking π, and relevance levels L,
AP is given by:

AP (π,L) =

∑M
t=1 P@t ∗ L(π−1(t))∑M

t=1 L(π−1(t))
(6)

where L(π−1(t)) is a relevance label for document in position
t in π; and P@t is the precision at t:

P@t =

∑t
i=1 L(π−1(i))

t
(7)

MAP is then computed by averaging AP over all queries.
To compute P@t and MAP on the MQ-agg datasets the rel-
evance levels are binarized with 1 converted to 0 and 2 con-
verted to 1 (as per LETOR4.0 evaluation guidelines). All
presented NDCG, Precision and MAP results are averaged
across the test queries and were obtained using the evalua-
tion script available on the LETOR4.0 website2.

6.1 Results
To investigate the properties of our approach we con-

ducted extensive experiments with various versions of the
model. We experimented with binary, rank difference, and
log rank difference methods to compute the pairwise ma-
trices (see Section 2.1) and refer to these models as LR-I,
LR-R and LR-logR respectively. Through cross validation
we found that setting p = 1 (SVD rank) gave the best perfor-

2research.microsoft.com/en-us/um/beijing/projects/letor/

mance. For all settings, LambdaRank was run for 200 itera-
tions with a learning rate of 0.01, and validation NDCG@10
was used to choose the best model.

We compare the results of our model against the best
methods currently listed on the LETOR4.0 website, namely
the BordaCount model and the best of the three CPS mod-
els (combination of Mallows and Plackett-Luce models) on
each of the MQ-agg datasets. We also compare with the
established meta-search standards Condorcet and Recipro-
cal Rank Fusion (RRF) as well as the Bradley-Terry and
Plackett-Luce models and the SVD-based method SVP. The
above models cover all of the primary leading approaches in
the rank aggregation research except for the Markov Chain
model [21]. We were unable to compare with this method
because it is neither publicly available nor listed as one of
the baselines on LETOR, making standardized comparison
impossible.

The NDCG and Precision results for truncations 1-5 as
well as MAP results are shown in Table 3. From the table we
see that all versions of the LambdaRank model significantly
outperform the other aggregation methods, improving by
as much as 5 NDCG points over the best baseline on each
of the MQ-agg datasets. The results on the MQ2008-agg
which is more than 65% sparse demonstrate that features
extracted by the SVD approach are robust and generalize
well even in the sparse setting. From the table we also see
that the binary and log rank transformations lead to the
best performance, with LR-logR significantly outperforming
the other LambdaRank models on MQ2008-agg and having
comparable performance to LR-I on MQ2007-agg.

To investigate the utility of representing each expert’s
preferences with a separate set of features we ran experi-
ments with a combined approach. For each query qn we
combined all pairwise preference matrices into a single ma-
trix Ytot

n =
∑K
k=1 Ynk and trained the LR-logR model on

the SVD features from Ytot
n only. Note that this model has

(a) NDCG, MQ2008-agg (b) Precision, MQ2008-agg (c) NDCG, MQ2007-agg (d) Precision, MQ2007-agg

Figure 3: Test NDCG@1-5 and Precision@1-5 results for LR-logR trained on SVD features extracted from
each Ynk (individual), versus LR-logR trained on SVD features extracted only from the joint preference
matrix Ytot

n (combined).

Figure 4: The matrix on the left shows the expert ranking matrix R for a test query in Fold 1 of the MQ2008-
agg dataset. 8 documents {d1, ..., d8} were retrieved for this query and the normalized expert rankings are
represented by white squares. The size of each square reflects the preference strength, so that large squares
correspond to high rankings (strong preference). Missing rankings are represented by empty cells. The
matrix on the right shows the normalized scores for each document produced by the Reciprocal Rank Fusion
(RF) and the LR-logR (LR) models, as well as the ground truth relevance levels (L). Note that only d6 is
relevant to this query.

no information about the individual expert preferences. We
refer to this model as “combined” and compare it to the full
model which uses SVD features from each Ynk referred to
as “individual”. The results for the two datasets are shown
in Figure 3. From the figure we see that the individual
model significantly outperforms the combined one on both
datasets. The performance of the combined model is compa-
rable to the best baseline consensus method, the Reciprocal
Rank Fusion. This is not surprising since Ytot

n summarizes
the consensus preference across the agents, and without ac-
cess to the individual preferences the ranker can only learn
to follow the consensus. Note however, that the gain from
using the individual expert features is very significant which
further supports the conclusion that specialization is very
important for the supervised preference aggregation.

Figure 4 further demonstrates the importance of spe-
cialization. The figure shows the expert ranking matrix
together with the scores produced by the Reciprocal
Rank Fusion and LR-logR for an example test query from
MQ2008-agg. From the the ground truth relevance levels
(L) it is seen that only document d6 is relevant to this
query. However, from the ranking matrix we see that
the experts express strong net preference for documents
d1, d4, d5 and d8, whereas the preferences for d6 are

mixed with many positive and negative preferences. The
Reciprocal Rank Fusion is a consensus-based approach
and as such ranks documents d1, d4, d5 and d8 above d6
with NDCG@1-4 of 0. Other consensus-based methods
produce similar rankings. LR-logR on the other hand, is
able to ignore the consensus and concentrate on a small
subset of the preferences, placing d6 on top and producing
a perfect ranking. Moreover, note that the scores for the
other documents produced by the LR-logR are significantly
lower than the score for d6, so the model is confident in
this ranking. The query shown in Figure 4 is an example
of a difficult query (often these correspond to long-tail
queries) where the majority of experts generate incorrect
preferences. For these queries the aggregated rankings
produced by the consensus-based methods will also be
incorrect. Our feature-based supervised approach is able to
fix this problem through specialization. By examining the
queries in both MQ2008-agg and MQ2007-agg we found
that both datasets contain a number of such queries and
that our approach performs significantly better on those
queries than all of the consensus-based baselines.

7. CONCLUSION
We presented a fully supervised rank aggregation frame-

work. Our approach transforms the rank aggregation prob-
lem into a supervised learning-to-rank one. The transforma-
tion is based on feature summarization of pairwise preference
matrices. To compute the features we employ a low-rank
SVD factorization. The extracted features allow us to use
any supervised learning-to-rank approach to learn the ag-
gregating function. This in turn allows us to optimize the
aggregating function for any target IR metric. Experimental
results with LambdaRank as the learning-to-rank approach
show that our method outperforms the existing methods on
supervised aggregation tasks. The improvements are espe-
cially significant on difficult queries where the majority of
preferences are wrong. Future work includes investigating
other ways of producing effective fixed length representa-
tions from full/partial preferences.

8. REFERENCES
[1] J. A. Aslam and M. Montague. Models for

metasearch. In Proceedings of the International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 276–284, 2001.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Information
Retrieval. Addison-Wesley, 1999.

[3] P. N. Bennett, E. Kamar, and G. Kazai. MSRC at
TREC 2011 Crowdsourcing Track. In To Appear in
Proceedings of the Text Retrieval Conference, 2011.

[4] R. Bradley and M. Terry. Rank analysis of incomplete
block designs. I. The method of paired comparisons.
Biometrika, 39:324–345, 1952.

[5] C. J. C. Burges. From RankNet to LambdaRank to
LambdaMART: An overview. Technical Report
MSR-TR-2010-82, Microsoft Research, 2010.

[6] C. J. C. Burges, R. Rango, and Q. V. Le. Learning to
rank with nonsmooth cost functions. In NIPS, 2007.

[7] O. Chapelle, Y. Chang, and T.-Y. Liu. The
Yahoo! learning to rank challenge, 2010.

[8] G. V. Cormack, C. L. A. Clarke, and S. Büttcher.
Reciprocal rank fusion outperforms condorcet and
individual rank learning methods. In Proceedings of
the International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2009.

[9] P. Dangauthier, R. Herbrich, T. Minka, and
T. Graepel. TrueSkill through time: Revisiting the
history of chess. In Proceedings of the Neural
Information Processing Systems, 2007.

[10] H. A. David. The method of paired comparissons.
Hodder Arnold, 1988.

[11] A. E. Elo. The rating of chess players: Past and
present. Acro Publishing, 1978.

[12] D. F. Gleich and L.-H. Lim. Rank aggregation via
nuclear norm minimization. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 60–68, 2011.

[13] J. Guiver and E. Snelson. Bayesian inference for
Plackett-Luce ranking models. In Proceedings of the
International Conference on Machine Learning, pages
377–384, 2009.

[14] K. Jarvelin and J. Kekalainen. IR evaluation methods
for retrieving highly relevant documents. In
Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 41–48, 2000.

[15] X. Jiang, L.-H. Lim, Y. Yao, and Y. Ye. Statistical
ranking and combinatorial hodge theory. Mathematical
Programming, 127:203–244, 2011.

[16] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 133–142, 2002.

[17] G. Kazai and M. Lease. TREC2011 Crowdsourcing
Track, 2011.

[18] A. Klementiev, D. Roth, and K. Small. Unsupervised
rank aggregation with distance-based models. In
Proceedings of the International Conference on
Machine Learning, pages 472–479, 2008.

[19] G. Lebanon and J. Lafferty. Cranking: Combining
rankings using conditional probability models on
permutations. In Proceedings of the International
Conference on Machine Learning, pages 363–370,
2002.

[20] T. Liu, J. Xu, W. Xiong, and H. Li. LETOR:
Benchmark dataset for search on learning to rank for
information retrieval. In ACM SIGIR Workshop on
Learning to Rank for Information Retrieval, 2007.

[21] Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li.
Supervised rank aggregation. In Proceedings of the
International Conference on World Wide Web, pages
481–489, 2007.

[22] T. Lu and C. Boutilier. Learning Mallows models with
pairwise preferences. In Proceedings of the
International Conference on Machine Learning, 2011.

[23] R. D. Luce. Individual choice behavior: A theoretical
analysis. Wiley, 1959.

[24] C. L. Mallows. Non-null ranking models. Biometrika,
44:114–130, 1957.

[25] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes.
Consensus ranking under the exponential model. In
Proceedings of the Uncertainty in Artificial
Intelligence Conference, 2007.

[26] M. Montague and J. A. Aslam. Condorcet fusion for
improved retrieval. In Proceedings of the International
ACM CIKM Conference on Information and
Knowledge Management, 2002.

[27] R. Plackett. The analysis of permutations. Applied
Statistics, 24:193–302, 1975.

[28] T. Quin, X. Geng, and T.-Y. Liu. A new probabilistic
model for rank aggregation. In Proceedings of the
Neural Information Processing Systems, pages
681–689, 2010.

[29] L. L. Thurstone. The method of paired comparisons
for social values. Journal of Abnormal and Social
Psychology, 21:384–400, 1927.

