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ABSTRACT

Online advertising has seen exponential growth transforming into a
vast and dynamic market that encompasses many diverse platforms
such web search, e-commerce, social media and mobile apps. The
rapid growth of products and services presents a formidable chal-
lenge for advertising platforms, and accurately modeling user intent
is increasingly critical for targeted ad placement. The 2023 ACM
RecSys Challenge, organized by ShareChat, provides a standard-
ized benchmark for developing and evaluating user intent models
using a large dataset of impression from the ShareChat and Moj
apps. In this paper we present our approach to this challenge. We
use Transformers to automatically capture interactions between
different types of input features, and propose a self-supervised opti-
mization framework based on the contrastive objective. Empirically,
we demonstrate that self-supervised learning effectively reduces
overfitting improving model generalization and leading to signifi-
cant gains in performance. Our team, Layer 6 Al achieved 1st place
on the final leaderboard out of over 100 teams.
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1 INTRODUCTION

Machine learning has become a key component of online advertis-
ing platforms providing vital capabilities for advertisers, publishers
and consumers. With the rapid growth of products and services,
automated ad placement that targets user intent through personal-
ization is now the default approach on most advertising platforms.
Improving the underlying models that power these services while
ensuring fairness, privacy and transparency has been an ongoing
area of research that has received much attention. The 2023 ACM
RecSys Challenge, organized by ShareChat, provides a standardized
benchmark for developing and evaluating user intent models. The
challenge is based on a large scale dataset of user impressions from
the ShareChat and Moj apps, and the goal is to predict whether
users installed the app following the ad impression.
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In this paper we present our approach to this challenge. We in-
troduce a model agnostic self-supervised learning framework that
is based on contrastive optimization. To facilitate contrastive learn-
ing we develop data augmentation operators that produce positive
and negative views tailored specifically to the types of input fea-
tures that are commonly encountered in the online personalization
tasks. Using a Transformer-based [26] model and jointly optimizing
supervised and self-supervised objectives we demonstrate signif-
icant improvements in model accuracy and generalization. Over
100 teams participated in this challenge and our team, Layer 6 Al,
achieved first place with over 2.5% relative improvement over the
2nd place team.

2 APPROACH

Each instance in the ShareChat dataset corresponds to a user-ad
impression sampled from a 22-day time period. Typical for data of
this type, instances contain real-valued x”, categorical x¢ and binary
x features that summarize user and ad information as well as
historical user-ad interactions. Each instance is also associated with
a binary target y where y = 1 if user installed the app following the
ad impression and y = 0 otherwise. The dataset of instance-target
pairs {(x1,91), ..., (Xn, yn) } where x; = [x;,xf,x?] is partitioned
into a training set that covers the first 21 days of the time period,
and a test set that spans the 22nd day. The aim is to leverage the
training data to predict which impressions led to the app install in
the test set. In the following sections we describe our approach to
this problem where we leverage Transformers and self-supervised
learning to model user intent. Figure 1 shows the full architecture
diagram of our model.

2.1 Input Representation

To facilitate information flow and reduce gradient instability that
can result from features of different types, we represent each in-
stance by a set of embeddings. Categorical and binary features are
passed through a standard embedding layer where separate embed-
ding is learned for each category (binary features are treated as
having two categories):

1)

Numerical features are converted into embeddings through dis-
cretization. Discretizing numerical features stabilizes optimization
when features have different ranges and makes the model more
robust to noises and outliers. A number of feature discretization
techniques have been proposed in the literature, such as fixed (equal-
width) binning [13], quantile-based (equal-frequency) binning [9],
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Figure 1: Model architecture diagram for our contrastive learning approach. For each input instance x; we sample two augmen-
tation operators and apply them to x; as it is passed through an embedding layer and k Transformer blocks, resulting in two
augmented view representations h} and h?. The views are then passed through an MLP to get the embeddings zl! and zl? which
are treated as a positive pair in the contrastive loss and pushed together; all other views in the batch are treated as negatives

and pushed away from (z},z?).
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and k-means clustering [11]. We adopt the quantile-based binning
here due to its robustness to highly skewed data distributions.

Quantile binning discretizes a continuous variable into discrete
bins based on specified quantiles (or percentiles). Formally, for
a given numerical feature x", we divide its value range into the
disjoint set of ¢ bin intervals by, ..., b;. Bin intervals are constructed
on the training set so all bins have the same number of data points.
Note that when the number of unique values for a feature is less than
t, we directly assign each value to a bin. Once bins are constructed,
each instance x] is mapped to a bin interval based on its feature
value effectively transforming x” into a categorical feature. We
then treat x” the same way as categorical features by learning an
embedding for each category:

e = Embed(Bin(x})) 2)

where Bin() is the binning operation that assigns a bin index to each
feature in xlr. The resulting embedding tensor e; = [e;, ef, ef.’] €
R™*4 where m is the number of features and d is the embedding

dimension, forms the input to our model.

2.2 Model Architecture

We aim to learn extensive feature interactions that can accurately
identify patterns of user behavior that lead to the target action of
app install. Transformers [26] have shown excellent generalization
in many domains [4, 10, 18, 20, 31] with an intrinsic ability to learn
rich representation from diverse input data. Self-attention can be
highly beneficial to personalization allowing to dynamically focus
on subsets of features relevant to a given user [14, 19, 23]. Inspired
by these results we form our model architecture with k Transformer

x; € Rmxl
i

Feature Corruption

blocks:
h; = Transformery (....Transformer; ([[CLS], €;])) (3)

where h; € RUm*1)*d jg the output representation. Note that we
prepend the [CLS] token to e; that summarizes relevant information
from the input so h; has an extra dimension.

2.3 Training and Inference

Self-supervised learning has established itself as a default approach
to learn robust representations that improve model generaliza-
tion [17, 19]. Virtually all recent advances in generative models
are largely enabled by self-supervision [3, 5, 8, 22, 25, 29]. Given
that our labeled training set has relatively few instances, we ap-
ply self-supervised learning to provide additional regularization to
the model and improve representation quality. We combine self-
supervised and supervised objectives, and first train with a joint
loss followed by finetuning with a supervised loss only to adapt
the model to the target task. In the following sections we describe
both objectives.

2.3.1 Supervised Objective. The supervised objective follows the
standard binary classification set-up. Given the output represen-
tation h; from the last Transformer block, we pass it through a
multilayer perceptron (MLP) followed by a sigmoid activation to
get the app install probability:

ji=o (MLP (hi,cls)) @)

icls 1s the representation for the [CLS] token. We then
apply the binary cross entropy loss to maximize the probability of

where h
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installs:
1 n
Lop === (yiloggi+(1-y)log1=90)) ()
i=1

During inference, given a test instance x j, we apply the full pipeline
and take gj; as model prediction.

2.3.2  Self-supervised Objective. For the self-supervised objective
we focus on contrastive learning [7, 24] where representations are
learned via a contrastive loss that pushes apart dissimilar data pairs
while pulling together similar ones. Similar (positive) pairs are typ-
ically generated by constructing different views of the same data
instance via augmentation, while dissimilar (negative) pairs are
generated from views of other data instances. We utilize three dif-
ferent data augmentation approaches: feature corruption [1, 28], em-
bedding perturbation [27, 30] and model perturbation [12], which
perturb the input instance at different levels of granularity.

Feature Corruption. This augmentation is applied directly to
input features. Given an input instance x;, we randomly sample a
subset of features and replace the value for each sampled feature
with a random sample from a uniform distribution over all possible
values that this feature takes in the training set. The augmented
instance X; is then passed to the embedding layer described in
Section 2.1, and the resulting embedding €; is given to the model.
This augmentation is applicable to both numeric and categorical
features and encourages the model to be robust to noise. Moreover,
there is an interesting analogy to masked training in NLP where
models such as BERT [8] corrupt input sentences by randomly
replacing words with other words sampled from the corpus.

Embedding Perturbation. Inspired by previous works on self-
supervised learning in recommender systems [27, 30], we also con-
struct augmented views by perturbing the input embeddings e;.
The embeddings are perturbed with random binary masks sampled
from the Bernoulli distribution, which is analogous to applying the
embedding dropout. Formally, given the input embedding tensor
e; € R™*4 the perturbed embedding tensor & € R™*9 s obtained
by:

e;=e; I, I; ~Bernoulli(p;) € Z%Xd (6)
where I € Z;"x‘i is the binary tensor, and p; is the masking rate
for the j-th feature. We use different perturbation rates for differ-
ent features to account for the fact that each feature has its own
distribution. Similarly to feature corruption, this augmentation is
designed to make the model robust to feature corruption but at the
embedding level.

Model Perturbation. Both feature corruption and embedding
perturbation are applied explicitly to the input and encourage the
model to be robust to noise and missing features. We additionally ap-
ply implicit data augmentation, which uses the internal stochasticity
of the model to generate different views of a data instance. In par-
ticular, for the same data instance we make two passes through
the model with different dropout seeds at each Transformer block.
This produces two representations of the same input that have
been perturbed by the internal model structure and encourages full
model robustness.

The three augmentation approaches cover all stages of our pipeline
from raw features to input embeddings and the model itself. By
stochastically combining them we can encourage all components of
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Table 1: Final leaderboard results for the top 5 teams. Our
team is Layer 6 Al

Position ‘ Team Name Score

1 Layer 6 AI | 5.744062
2 LearningFE | 5.892977
3 hahaha 5.904369
4 Ainvest 5.949816
5 Shield 5.958641

the model to be robust to noise and missing data. We leverage this
approach to define the contrastive objective. Given a batch of data
with [ instances {x1, X2, ..., X; }, we generate two augmented views
for each instance by sampling separate augmentation operators.
The views generated from the same instance are considered a posi-
tive pair, while the other 2(/ — 1) augmented views from the batch
are taken as negative examples. Passing these views through the
model produces 2! representations {(h!, h%), (hl, h%), oy (b1, hlz)}
where (h}, h?) is the positive pair for the i’th input instance x;.

Inspired by SimCLR [7], we use an MLP with one hidden layer
to obtain compact hidden representations:

z} = max (0, h;,ClS - W, +b1) - W32 +b2 "
Z? = max (O’hfcls - Wy +b1) - W3 + by

Here, we also use the [CLS] representation h; .j, to ensure that

icls
information flow is consistent with the supervised objective. These

representations are then passed to the contrastive loss [21]:

1
1
Leon = -7 Z log (softmax (sim(z}, z?)/r)) (8)
i=1
where sim(u,v) = %2 s the cosine similarity, 7 is the tem-
Tull]lo] 4

perature, and softmax is normalized over all views in the batch.
The contrastive objective aims to bring views in each positive pair
together and separate them from all other views in the batch.

The joint objective combines supervised and contrastive losses:

Ljoint = Leup + (1 - ) - Leon )

where « € [0, 1] is a hyperparameter controlling the contribution
of each loss. For the pre-training phase we set « < 1 to include the
contrastive optimization, then during fine-tuning we set « = 1 to
focus on the target supervised task.

3 EXPERIMENTS

We partition the data by taking the last day of the 21-day training
period as validation set and the other 20 days as training set. This
results in 3,387,880, 97,972 and 160,973 instances for training, valida-
tion and test respectively. Our Transformer model architecture has
k = 6 self-attention blocks with input embedding dimension 128,
feed forward dimension 128 and 8 attention heads. The dropout rate
is set to 0.1 for pre-training, and to 0.05 for fine-tuning. The model
is trained using the AdamW optimizer [16] with a batch size of
4096. Learning rate is warmed up for 2000 iterations until 3e —4 and
decayed with cosine decay afterwards. For pre-training « is set to
0.6 in the joint objective, and this phase is followed by fine-tuning
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Figure 2: Validation log loss curves for models trained with
supervised and joint supervised-contrastive objectives.
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with a supervised only objective. In both phases we monitor the
validation log loss to find the best epoch for early stopping.

To compute views for the contrastive loss we randomly sample
two augmentation operators for each instance in the batch. For
Feature Corruption we randomly select a subset of 5% - 25% features
and replace their values. Similarly, for Embedding Perturbation we
sample masks from the Bernoulli distribution with masking rates
pj € [0.05,0.25]. Finally, for the Embedding Perturbation we use
the default dropout rate of 0.1 and make two passes through the
model for each instance letting the stochasticity of the dropout do
the perturbation.

We perform distributed hyperparameter search across GPUs, and
use the Tree-structured Parzen Estimator algorithm [2] to perform
efficient search. To mitigate the effect of random seeds on final
performance, for each set of hyperparameters, we retrain the model
with 5 different random seeds and use the validation log loss of
the ensembled predictions to evaluate the hyperparameters. After
obtaining the best hyperparameters, we retrain the model on the
full 21 day training period to get the final model for submission.
All experiments are done on the p4d.24xlarge instance from the
Amazon Web Services with 8 NVIDIA A100 GPUs.

3.1 Results

The final leaderboard test set results are shown in Table 1. The
teams are evaluated using the normalized cross entropy metric
which is proportional to log loss. Over 100 teams participated in
this challenge and our team, Layer 6 Al, achieved first place with
over 2.5% relative improvement over the 2nd place team. Our final
submission is based on a linear blend of multiple models trained
with different seeds using the joint supervised-contrastive objective
described in Section 2.3.

To demonstrate the effectiveness of incorporating self-supervised
learning into model optimization, Figure 2 shows validation log loss

Yichao Lu and Maksims Volkovs

Table 2: Top: results for tree-based gradient boosting base-
lines. Middle: ablation results for different objectives. Bot-
tom: results for different self-supervised tasks.

Method ‘ Log loss
LightGBM 0.3615
XGBoost 0.3582
supervised 0.3471
supervised + augmentation 0.3448
joint 0.3297
value estimation [28] 0.3385
value + mask estimation [28] | 0.3353
contrastive 0.3297

curves for models trained with supervised and joint supervised-
contrastive objectives. The supervised only model exhibits signifi-
cant overfitting after the 3rd epoch despite having dropout in every
Transformer block and weight regularization. This is expected as
with 6 Transformer blocks the model has over 2M learnable pa-
rameters, and has the capacity to memorize a large portion of the
relatively small training set. Adding the contrastive objective pro-
vides effective regularization and improves model generalization
leading to significantly lower validation log loss. Across all exper-
iments we were unable to achieve competitive results with the
supervised only setting so self-supervised learning is essential for
high capacity models.

3.1.1 Ablation Study. To further investigate the contribution of
individual components in our model pipeline we conduct an exten-
sive ablation study. Table 2 expands on results in Figure 2 where
in addition to supervised only and joint objectives, we also experi-
ment with adding augmentation to the supervised training. This
is done by passing each instance in a batch through a randomly
sampled augmentation operator, but still optimizing the model with
a supervised only loss. From the middle section of Table 2 we see
that supervised+augmentation improves over the supervised only
training indicating that augmentation can improve generalization.
However, performance is still considerably lower than for joint
training so explicitly incorporating contrastive loss is important.
Moreover, comparing to popular tree-based gradient boosting mod-
els LightGBM [15] and XGBoost [6], that are typically the default
choice for tabular datasets, we see that our Transformer approach
is significantly better even with the supervised only objective. Note
that both LightGBM and XGBoost were extensively tuned during
the competition and represent the best scores that we were able to
obtain.

Bottom section of Table 2 shows performance for different self-
supervised tasks. We baseline contrastive learning against the popu-
lar approach of mask prediction used in BERT [8] and other models.
We follow the adaptation of this approach to tabular data by [28]
that introduced the tasks of value and mask estimation. From the
table we see that value+mask estimation is also effective and im-
proves performance considerably over the supervised only model.
However, contrastive task is still the best performing method so
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Table 3: Ablation results for augmentation operators.

Augmentation ‘ Log loss
Feature Corruption (FC) 0.3417
Embedding Perturbation (EP) | 0.3438
Model Perturbation (MP) 0.3455
FC + EP 0.3337
FC + EP + MP 0.3297

placing explicit constraints on distances between representations
is beneficial for tabular data.

Table 3 shows ablation results for augmentation operators in the
contrastive loss. To evaluate the contribution of each operator we
apply them individually where all augmented views are done by the
same operator. We also evaluate Feature Corruption and Embed-
ding Perturbation without Model Perturbation. The results show
that contrastive learning is beneficial even with a single augmenta-
tion operator as results for all three individual operators improve
over the supervised only model. Interestingly, Feature Corruption
shows the strongest performance indicating that conditioning the
model to noise in raw input features is highly beneficial for perfor-
mance. Combining operators further improves performance by a
large margin and using all three operators gives the best results.
Augmenting at different stages of the pipeline promotes robustness
of the entire model and stochasticity between operators acts as
additional regularization.

4 CONCLUSION

In this paper, we present our approach to the 2023 ACM RecSys
Challenge organized by ShareChat. Our best model is based on a
Transformer architecture tailored to online advertising. The model
is trained with a combination of self-supervised and supervised
tasks, and we demonstrate the effectiveness of incorporating self-
supervised learning for online user intent modeling. We achieved
highly competitive performance, placing 1st on the final leader-
board out of over 100 teams.
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