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The fundamental question of how to best simulate quantum systems using conventional computational re-
sources lies at the forefront of condensed matter and quantum computation. It impacts both our understanding of
quantum materials and our ability to emulate quantum circuits. Here we present an exact formulation of quantum
dynamics via factorized generalized measurements which maps quantum states to probability distributions with
the advantage that local unitary dynamics and quantum channels map to local quasistochastic matrices. This
representation provides a general framework for using state-of-the-art probabilistic models in machine learning
for the simulation of quantum many-body dynamics. Using this framework, we have developed a practical
algorithm to simulate quantum circuits using an attention network based on a powerful neural network ansatz
responsible for the most recent breakthroughs in natural language processing. We demonstrate our approach by
simulating circuits that build Greenberger-Horne-Zeilinger and linear graph states of up to 60 qubits, as well
as a variational quantum eigensolver circuit for preparing the ground state of the transverse field Ising model
on several system sizes. Our methodology constitutes a modern machine learning approach to the simulation of
quantum physics with applicability both to quantum circuits as well as other quantum many-body systems.

DOI: 10.1103/PhysRevA.104.032610

I. INTRODUCTION

In his celebrated keynote address at the California Insti-
tute of Technology in May 1981, Feynman introduced the
idea of a computer that could act as a quantum mechani-
cal simulator [1], which has inspired the field of quantum
computing since its inception. In his keynote, Feynman also
intriguingly asked “can quantum systems be probabilistically
simulated by classical computer?,” which he answered nega-
tively observing that a probabilistic simulation is unfeasible
since the description of both the quantum state and its evo-
lution necessarily involves nonpositive quasiprobabilities. In
fact, quantum computers will display potential speedups over
their classical counterparts at the onset of negative values
in the quasiprobabilities associated with the description and
evolution of their quantum states. This observation about neg-
ative probabilities eventually stimulated the field of quantum
computation.

Given the difficulty of simulating quantum comput-
ers probabilistically, it is interesting to instead ask what
alternatives exist for classical simulations of quantum cir-
cuits. One promising approach is to compress the quan-
tum state into a compact representation and then update
this compact representation upon the application of each
quantum gate. The nonpositive quasiprobabilities contribute
to making even this approach difficult as the signs in-
duce rapid oscillations that are naively more difficult to
compress.

One area where there has been significant work in
compressing large vectors is in machine learning where
exponentially large probability distributions are commonly
compressed into generative models. The most mature of these
is in the area of language modeling and translation where
neural probabilistic models such as transformers [2] encode
the probability that a given string of characters results in a
sensible conversation. Recently, such models have been used
in the context of quantum state reconstruction [3]. Such a
strategy resulted in an accurate quantum state representation
of families of prototypical states in quantum information as
well as complex ground states of one- and two-dimensional
local Hamiltonians describing large many-body systems rele-
vant to condensed matter, cold atomic systems, and quantum
simulators [3].

To use this technology, it is important to be able to map
a quantum state to a probability distribution. One might
naively expect to simply consider the state’s amplitude but
this loses critical phase information. Although the presence
of negative quasiprobabilities is often linked to intrinsically
quantum phenomena with no classical counterpart such as
entanglement and quantum interference, a purely probabilistic
representation of the quantum state is possible [3–7]. While in
the standard formulation of quantum mechanics a quantum
state is represented by a density operator, a quantum state
can also be completely specified by the outcome probability
of a physical measurement, provided that the measurement
probes enough information about the quantum state. This
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notion is made precise through two fundamental concepts in
quantum theory: The so-called Born rule, which is the theo-
retical principle of quantum physics linking quantum theory
and experiment, and the concept of informationally complete
(IC) measurements, which are described by positive-operator
valued measures (POVMs). Whereas POVMs describe the
most general type of measurements allowed by quantum the-
ory going beyond the notion of projective measurements [8],
informational completeness means that the outcome statis-
tics of such a measurement specifies the quantum state
unambiguously.

To compactly represent these probability distributions, we
will use an autoregressive model to store the instantaneous
state in its probabilistic representation. We then develop
a powerful stochastic algorithm to update the probabilistic
model representing the quantum state under the application
of unitary dynamics. We note that other approaches [9–15]
to compactly represent and update states of a quantum circuit
exist.

The choice of autoregressive models is motivated in vari-
ous ways. To begin with, such models are known to be able to
capture long-range correlations and volume law states [16,17].
This would in principle allow them to capture states efficiently

beyond the capabilities of matrix product states. In addition,
our algorithms to update the compressed state after the ap-
plication of a quantum gate require the use of Monte Carlo
approaches. Typically, this would be done through a Markov
chain Monte Carlo (MCMC) technique, but we emphasize
that such MCMC methods are potentially affected by issues
such as long autocorrelation times and lack of ergodicity,
which effectively decrease in speed the simulations as well as
affect the quality of the estimators used to update the models.
Autoregressive models, and in particular a deep-learning ar-
chitecture called “the Transformer,” avoid all these problems
by allowing for exact sampling, making the entire algorithm
significantly more efficient.

We test our ideas by considering quantum circuits which
prepare prototypical states in quantum information. In par-
ticular we consider the Greenberger-Horne-Zeilinger (GHZ)
state, linear graph state, and the variational ground state of
the transverse field Ising model (TFIM). Through numerical
experiments, we show that our strategy produces accurate
results for the target states of up to 60 qubits, which opens
up a probabilistic avenue for simulation of quantum circuits,
as well as quantum channels and quantum dynamics more
broadly.

(a)

(d)

(b) (c)

(e)

(f)

FIG. 1. Tensor-network representation of the mapping between quantum states (gates) and probability distributions (quasistochastic
matrices) used in this work. (a) N-qubit measurement M = {M (a1 ) ⊗ M (a2 ) ⊗ · · · M (aN )}a1,...,aN

made from (N = 3) single-qubit measurements
{M (a)}a (red). Vertical indices in the red tensors act on the physical degrees of freedom (qubits) while the horizontal index labels the
measurement outcome a. (b) The overlap matrix T and its inverse T −1 (light blue) (c) multiqubit version of (b). (d) The Born rule relates
the probability P(a) (green; indices encode the different measurement outcomes on each qubit) to the quantum state � (blue). (e) Unitary gates
(purple) map to quasistochastic matrices (yellow). (f) Application of a unitary matrix to a density matrix corresponds to the contraction of a
quasistochastic matrix with P.

032610-2



PROBABILISTIC SIMULATION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 104, 032610 (2021)

II. FORMALISM

We focus on physical systems composed of N qubits whose
quantum state, traditionally represented by a density matrix
�, will be uniquely specified by the measurement statistics
of an informationally complete POVM (IC-POVM). To build
an IC-POVM for N qubits, we first consider an m-outcome
single-qubit IC-POVM defined by a collection {M (a)}a∈{1...m},
of positive semidefinite operators M (a) � 0, each one
labeled by a measurement outcome a = 0, 1, . . . , m − 1
[see Fig. 1(a) where we describe our representation
through the lens of tensor networks and its graphical
notation [18]]. Following Ref. [3], we construct N-qubit
measurements as tensor products of the single-
qubit IC-POVM elements M = {M (a1 ) ⊗ M (a2 ) ⊗
· · · M (aN )}a1,...,aN ∈{1...m}N , as graphically depicted in
Fig. 1(a). We choose for our numerical simulations
the four-Pauli IC-POVM measurement described in
Ref. [3], {M (0) = 1

3 |0〉〈0|, M (1) = 1
3 |+〉〉+|, M (2) = 1

3 |r〉〈r|,
M (3) = 1 − M (0) − M (1) − M (2)}. Here |0〉, |+〉, |r〉 are the
eigenvectors with eigenvalue +1 of the Pauli matrices
σ x, σ y, σ z, respectively. Note that this is a natural choice
for quantum circuits since the probability distribution over
these operators can easily be measured on currently available
gate-based quantum computers. Born’s rule predicts that
the probability distribution P = {P(a)}a=(a1,a2,...,aN ) over
measurement outcomes a on a quantum state � is given by
the following:

P(a) = Tr[M (a)�], (1)

which is graphically explained in Fig. 1(d). Note that a
quantum state is specified by mN probabilities. Due to the
factorized nature of the IC-POVM, a product state

⊗
i |�i〉

takes the form of a product distribution over statistically inde-
pendent sets of variables P(a) = P(a1)P(a2) · · · P(aN ) where
P(ai ) = Tr[M (ai )|�i〉〈�i|]. Provided that the measurement is
informationally complete, the density matrix can be inferred
from the statistics of the measurement outcome as

� =
∑
a,a′

P(a′) T −1
a,a′ M (a), (2)

where T represents the overlap matrix given by Ta,a′ =
Tr[M (a)M (a′ )]. See Fig. 1(d) for a graphical representation of
these elements in Eq. (2).

To study quantum circuits, we first have to translate the ac-
tion of a quantum gate on the density matrix in the IC-POVM
representation. The former corresponds to a unitary trans-
formation, i.e., �U = U�U †. If the initial quantum state is
prescribed in terms of the outcome statistics of an IC-POVM
P, we can track its evolution directly in the probabilistic
representation:

PU (a′′) = Tr[U�U †M (a′′ )] =
∑

a′
Oa′′a′P(a′), (3)

where

Oa′′a′ =
∑

a

Tr[UM (a)U †M (a′′ )]T −1
a,a′ (4)

is a somewhat stochastic matrix since the values in each col-
umn add up to 1 but its entries can be positive or negative

[5,6,19,20]. Somewhat stochastic matrices are also known as
pseudostochastic or quasistochastic matrices [5,6]. We note
that the evolution described in Eq. (3) leads to a formulation
of quantum mechanics equivalent to, e.g., Heisenberg’s matrix
mechanics, including the description of open quantum sys-
tems, quantum channels, and measurements of other POVMs
(see Appendices A, B, C, and D).

Here we emphasize that Eq. (3) resembles the standard
rule for stochastic evolution commonly used to describe the
transitions in a Markov chain, where the traditional stochastic
(or Markov) matrix has been replaced with a quasistochastic
matrix. Despite the resemblance, a generic classical MCMC
simulation of quantum evolution in the probabilistic factor-
ized POVM language remains unfeasible due to the numerical
sign problem arising from the negative entries of the quasis-
tochastic matrix describing the process.

Due to the factorized nature of the IC-POVM, if a uni-
tary matrix or a quantum channel acts nontrivially on only
k qubits of the quantum system, the quasistochastic matrix
Oa′′a′ acts only on the measurement outcomes of those k qubits
too. For example, a two-qubit unitary gate acting on qubits
i and j is represented by a m2 × m2 quasistochastic matrix
acting on outcomes ai and a j . The relation between the local
quasistochastic matrices and the local unitary gates, as well
as their action on a quantum state, are graphically depicted
in Figs. 1(e) and 1(f) using tensor diagrams. Furthermore, the
locality of Oa′′a′ implies that traditional quantum circuit dia-
grams [8] translate into probabilistic circuits that look exactly
the same as their traditional counterparts.

A quantum circuit is a generalization of the circuit model of
classical computation where a product state is evolved through
a series of unitary gates, U (1),U (2), . . . ,U (r), each of which
acts nontrivially on a constant number k qubits. Note that for
each gate U (i) there is a corresponding somewhat stochastic
matrix O(i) as in Eq. (4). In the IC-POVM representation, an
initial probability distribution P0(a) = P(a1)P(a2) · · · P(aN )
of statistically independent sets of variables a is evolved
through a series of local quasistochastic matrices of the form
depicted in Fig. 1(e). The measurement statistics after uni-
tary evolution through the first gate U (1) is given by P1 =
O(1)P0, and the application of each subsequent gate U (i) de-
fines a series of intermediate probability distributions Pi =
O(i)O(i−1) · · · O(2)O(1)P0 with i = 1, . . . , r. The main goal of
our approach is to accurately represent the distribution Pr

since it contains all the information of the final quantum state
which specifies the outcome of the quantum computation.

III. OPTIMIZATION ALGORITHMS

The strategy to approximate the output distribution Pr

consists in constructing models Pθi = {P(a; θi )}a=(a1,a2,...,aN )

based on a rich family of probability distributions P(a; θ ).
These are expressed in terms of a neural network with param-
eters θ so that Pθi ≈ Pi. At each time step i, we assume that an
accurate neural approximation has been reached Pθi ≈ Pi, and
consider the exactly evolved distribution P(e)

i+1 ≡ O(i+1)Pθi .
While the representation of the quantum state at step i is not
exact, if Pθi is sufficiently accurate the expectation is that the
distribution Pθi+1 ≈ Pi+1. See Fig. 2 for a depiction of the
distributions involved during the simulation.
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FIG. 2. Schematics of the different distributions involved in the
training procedure for a circuit with three gates. Black arrows indi-
cate the exact trajectory while green arrows represent the trajectory
of the optimized models Pθi . The red dotted arrows point to the
exactly evolved distributions P(e)

i+1 after the application of each gate
O(i+1) on the trained model Pθi . Note that if the resulting KL di-
vergence after training KL(P(e)

i+1||Pθi+1 ) = 0 for every gate in the
circuit, then the black trajectory coincides with the green one and
the procedure becomes exact.

To train the model Pθi given a gate i + 1, we adopt a
variational approach and select the parameters θi+1 such that
the Kullback-Liebler (KL) divergence between P(e)

i+1 and Pθi+1 ,

KL
(
P(e)

i+1

∣∣∣∣Pθi+1

) = −
∑

a

P(e)
i+1(a) ln

(
Pθi+1 (a)

P(e)
i+1(a)

)
(5)

is minimized. Recall KL(P(e)
i+1||Pθi+1 ) � 0, with the equality

being satisfied only when Pθi+1 = P(e)
i+1. To minimize the KL

divergence, we will apply a variant of gradient descent (i.e.,
Adam [21]) where we repeatedly update the parameters of
θi+1 by taking steps in the direction of the gradient of Eq. (5).
This gradient, assuming that the model is normalized, can be
written as

∇θi+1 KL
(
P(e)

i+1||Pθi+1

)
(6a)

= −
∑

a

P(e)
i+1(a)∇θi+1 ln [Pθi+1 (a)] (6b)

= −Ea∼Pθi+1 (a)

[
P(e)

i+1(a)

Pθi+1 (a)
∇θi+1 ln [Pθi+1 (a)]

]
(6c)

= −Ea∼Pθi+1 (a)

[(
P(e)

i+1(a)

Pθi+1 (a)
− k

)
∇θi+1 ln [Pθi+1 (a)]

]
.

(6d)

Here, k = Ea∼Pθi+1 (a)[
P(e)

i+1(a)
Pθi+1 (a) ]. Note that Ea∼Pθi+1 (a)∇θi+1

ln[Pθi+1 (a)] = 0, which justifies the equality in Eq. (6d). To
estimate the gradient in Eq. (6a), we generate a minibatch
of Ns samples of a sampled from Pθi+1 (a) and average over
these samples both to compute the value of k as well as Eq.
(6d). While computing Eq. (6d) or (6c) (both evaluate the
gradient), Eq. (5d) has a significantly lower variance. In the
limit where Pθi+1 (a) approaches P(e)

i+1(a) (i.e., ideally towards
the end of the optimization of step i + 1), the variance of the
gradient estimator Eq. (6d) goes to zero. This is known as

the zero-variance principle [22]. For a fixed a we evaluate
P(e)

i+1(a) = ∑
a′ O(i+1)

aa′ Pθi (a
′) by explicitly summing over the

substring of outcomes in a′ on which O(i+1) acts (with the
other outcomes in the string fixed).

By construction, the unitary matrices and their correspond-
ing quasistochastic matrices considered here are k local,
which means that the calculation of the gradient estimator
in Eq. (6a) is efficient. Barring the cost of evaluating the
probabilities Pθi+1 (a) and Pθi (a), using Ns samples the gradient
can be computed in O(Ns4k ), which is a significant improve-
ment over the full multiplication Pi+1 = O(i+1)Pi which takes
O(22N ).

Another algorithm we adopt in this paper is the forward-
backward gate algorithm. Consider a unitary gate U and
decompose it as U = U1U1. Under the POVM transformation,
U1 is transformed into O1 and in the exact evolution O1Pθi

should match OT
1 Pθi+1 . U1 (O1 under POVM transformation)

and U †
1 (OT

1 under POVM transformation) can be considered
as the forward and backward evolution gate separately. We
define a cost function by optimizing the following:

C = ∥∥O1Pθi − OT
1 Pθi+1

∥∥
1 (7a)

=
∑

a

∣∣∣∣∣
∑

a′
O1,aa′ Pθi (a

′) − OT
1,aa′ Pθi+1 (a′)

∣∣∣∣∣. (7b)

The gradient can be computed as follows:

∇θi+1C = Ea∼Pθi+1

1

Pθi+1 (a)

∑
a′

OT
1,aa′∇θi+1 Pθi+1 (a′) (8)

× sgn

{∑
a′

O1,aa′ Pθi (a
′) − OT

1,aa′ Pθi+1 (a′)

}
. (9)

The details for optimization can be found in Appendix G.

IV. TRANSFORMER ARCHITECTURE

For simplicity, in order to model Pi, we restrict to models
Pθi (a) with a tractable density and exact sampling. While
other models such as the variational autoencoder [25] can
represent the quantum state probabilistically, having both a
tractable density and exact sampling significantly simplifies
the calculation of the quantities involved in the gradient
estimation. The exact sampling avoids expensive MCMC
simulation which would otherwise be required to obtain the
samples for the gradient estimator. Specifically, we consider
prototypical autoregressive models commonly used in neu-
ral machine translation and language modeling based on
Transformer encoder blocks [2]. This neural architecture mod-
els a probability distribution Pθ (a) through its conditionals
Pθ (ak+1|a1, . . . , ak ). Note that we can recover P via the
chain rule

Pθ (a1, . . . , aN ) =
N∏

k=1

Pθ (ak|a<k ),

which we heavily use in our simulations.
The Transformer architecture is constructed using the ele-

ments depicted in Fig. 3. The first and most important element
is the self-attention mechanism. Self-attention takes an em-
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FIG. 3. Schematic representation of the Transformer model.
Lines with arrowheads denote incoming arrays from the output
of one node to the inputs of others. The Transformer architecture
starts with an input measurement a. First, a high-dimensional linear
embedding Â of the input measurement is computed. This is fol-
lowed by the addition of positional encoding vectors to the input
embeddings Â. The multihead attention mechanism is applied to the
modified embedding, followed by a residual connection [23] and
layer normalization [24]. A positionwise feedforward is then applied
to the outcome of the previous layer again followed by a residual
connection and layer normalization. The output of the last layer is
processed through a linear layer followed by a softmax which returns
the conditional probabilities Pθ (ak+1|a1, . . . , ak ).

bedding of the measurement outcome a, and computes an
autocorrelation matrix where the different measurement out-
comes across the different qubits form the columns and rows.
The embedding is a linear transformation on the original input
a, i.e., a trainable matrix multiplying a one-hot encoding of
the input. The self-attention and its correlation matrix are
useful to introduce correlations between qubits separated at
any distance in the quantum system. This is analogous to a
two-body Jastrow factor [26] which induces pairwise long-
distance correlations between the bare degrees of freedom
(i.e., spins, qubits, electrons) in a wave function. In contrast
to traditional sequence models based on recurrent neural net-
works, which tend to suppress correlations beyond a certain
length ξ , the self-attention networks are suitable to model
systems exhibiting power-law correlations present in natural
sequences as well as physical systems exhibiting (classical or
quantum) critical behavior [16].

More precisely, the attention mechanism can be described
as a map between a “query” array Q, a “key” array K , and
“value” V , to an output vector. The query, keys, and values are
linear transformations of the input vectors, e.g., K = ÂW (K ),

where Â ∈ RN×dmodel is a dmodel-dimensional embedding of the
measurements outcome at the different qubits j = 1, . . . , N ,
and W (K ) ∈ Rdmodel×dk is a parameter of the model. Analo-
gously, the values and queries are calculated as a parametrized
linear transformation on the embedding Â.

The specific type of attention mechanism the Transformer
uses is the so-called scaled dot-product attention. The input
consists of queries and keys of dimension dk , and values of
dimension dv , and the output is computed as

Attention(Q, K,V ) = softmax

(
QKT

√
dk

)
V, (10)

where the softmax function acting on a vector results
in softmax(xi ) = exi∑

j ex j . The argument of the softmax is

ÂW (Q)W (K )T
ÂT, which induces pairwise, all-to-all correla-

tions between the qubits in the system, thus resembling a
Jastrow factor with parameters W (Q)W (K )T.

As in Ref. [2], we use a multihead attention mechanism
where instead of computing a single attention function, we
linearly project the queries, keys, and values h times with dif-
ferent, learned linear projections to dk , dk , and dv dimensions.
Each of these projections are then followed by the attention
function in parallel, producing dv-dimensional output values.
These are concatenated and projected. The output of the mul-
tihead attention is

Multihead(Q, K,V ) = Concat(head1, . . . , headh)W (0),

(11)

where headi = Attention(Qi, Ki,Vi ), Ki = ÂW (K )
i ,

Qi = ÂW (Q)
i , and Vi = ÂW (V )

i . Here, W (K )
i ∈ Rdmodel×dk ,

W (Q)
i ∈ Rdmodel×dk , and W (V )

i ∈ Rdmodel×dv . In our work we
use h = 8 attention heads, and dk = dv = dmodel/h with
dmodel = 16 or 32. Since the conditional probability requires
that the later input information cannot be known to the prior
input, a mask is added in the multihead attention.

Additionally, the Transformer features a positionwise feed-
forward network, which is a fully connected feedforward
network applied to each position separately and identically.
This layer consists of two linear transformations with a ReLU
[27] activation in between.

Each sublayer (i.e., the self-attention and the position-
wise feedforward network) has a residual connection around
it, and is followed by a layer-normalization step. That is,
the output of each sublayer is LayerNorm[x + Sublayer(x)],
where Sublayer(x) is the function implemented by either the
self-attention or the positionwise feedforward network. The
residual connection [23] makes it simple for the architecture to
perform the identity operation on the input x since Sublayer(x)
can easily be trained to output zeros. The layer normalization
[24] is a technique to normalize the intermediate outcome of
the sublayers to have zero mean and unit variance, which en-
ables a more stable calculation of the gradients in Eq. (6a) and
faster training. An encoder block is defined as the composition
of one self-attention layer and one positionwise feedforward
layer with residual connection and layer normalization as the
orange part in Fig. 3 shows. A number of encoder blocks
can be further composed to enhance the expressiveness of the
model and the number of encoder blocks is denoted as ned .
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The embedding mentioned earlier converts the values of
measurements a to vectors of dimension dmodel through a
parametrized linear transformation. Since the Transformer
model contains no recurrence or convolutions, the model can-
not naturally use the information of the spatial ordering of the
qubits. To fix this, we include information about the relative or
absolute position of the measurements in the system by adding
positional encodings to the input embeddings. The positional
encodings have the same dimension dmodel as the embeddings
and are added to the original embedding [2]. The last element
of the Transformer is a linear layer followed by a softmax
activation that outputs the conditional distribution.

V. APPLICATIONS

A. GHZ state and linear graph state preparation

We first demonstrate our approach on quantum circuits that
produce a GHZ state and one-dimensional graph states. We
use a variety of quality metrics to quantify the efficacy of our
method: The KL divergence of Eq. (5), the classical fidelity
Fc(P, Q) = ∑

a

√
P(a)Q(a), and the L1 norm of the proba-

bility distributions are all designed to measure the difference
between the probability distribution of the neural probabilistic
model and the exact probability distribution (either Pi+1 or
P(e)

i+1) of the POVM. Note that these measures directly bound
how far off the POVM measurement statistics of the actual
quantum state differ from our simulation. These measures
depend on the POVM basis; we can also directly compare
basis-independent quantities such as the quantum fidelity of
the state,

F (�1, �2) = Tr[
√√

�1 �2
√

�1] (12)

and

F2(�1, �2) =
√

1 − ‖�1 − �2‖2
F /2 . (13)

Here we would like to make a few remarks on the different
measures that are used in the paper. F and F2 are equal to
the overlap |〈�1|�2〉| when �1 and �2 represent pure states.
The quantum fidelity F in Eq. (12) is standard for comparing
density matrices in quantum information science [28]. In addi-
tion, 1 − F and

√
1 − F 2 provide a lower bound and an upper

bound for the trace distance between quantum states. For F2,
it is a general norm for matrices and it is well defined even if
the “density matrices” generated from the POVM probability
do not correspond to physical density matrices. In terms of
measures on POVM representation of the quantum states,
the KL divergence used in Eq. (5) is the objective function
used in optimization and hence indicates its importance. The
classical fidelity Fc is also widely used in the literature [3,29–
32] and provides an upper bound of the quantum fidelity F .
In addition, since the POVMs are physical observables, Fc

also encodes the quality of the measurements statistics with
respect to the measuring of the four-Pauli POVMs. Besides the
KL divergence and Fc, we will also compute the L1 distance
between two states in the POVM representation. It is worth
noticing that the L1 distance of the classical distribution is
twice that of the total variance distance, which has a quan-
tum generalization as the trace distance. Note that of these
observables, the ones that are computable on large systems (in
polynomial time) are KL divergence, Fc, and the L1 distance
making them suitable choices for comparisons on a larger
number of qubits.

Figures 4(a)–4(d) show these measures for two quantum
gates [see Fig. 4(a)(inset)] which generate the GHZ state with
N = 2 qubits, namely, the Bell state |�〉 = 1√

2
(|00〉 + |11〉).

(a) (b) (d)(c)

(e) (f) (h)(g)

FIG. 4. Measures of training of two qubit circuits [shown in the insets of (a) and (e)] between the exact state and the quantum state
represented by a Transformer (dmodel = 16, ned = 1) after each circuit element. KL divergence (a) and (e), classical fidelity (b) and (f), L1 norm
(c) and (g), and the quantum fidelity (d) and (h). The main panels use a log-linear scale whereas the inset in (h) displays the fidelity in linear
scale.
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For the application of each of the two gates, the KL diver-
gence, the L1 classical error, the classical fidelity error, and the
quantum fidelity error all initially approach zero exponentially
in the number of steps. The quantum fidelity oscillates around
1 until finally settling at 1 by the end of the optimization.
The KL divergence and the classical fidelity error both even-
tually saturate, but, interestingly, the L1 classical error and
the quantum fidelity error both continue to improve for the
application of the first gate in the circuit. This suggests that
further improvements due to better training of the ansatz and a
better choice of objective function are possible. The observed
saturation at ∼10−8 also suggests some quantities are limited
by the 32-bit floating-point precision used in computations.
Increasing the precision could also lead to improved con-
vergence. In Figs. 4(e)–4(h), we present analogous results
for a circuit generating a two-qubit graph state, i.e., |�〉 =
1
2 (|00〉 + |10〉 + |01〉 − |11〉), where we observe similar be-
havior. Note that for these examples, we are primarily probing
the quality of our optimization given that the Transformer with
hidden dimension 16 should be powerful enough to exactly
represent the exact probability distribution.

The small oscillations of the fidelity above 1.0 evident in
the inset of Fig. 4(h) exists because the Transformer model can
represent probability distributions without a corresponding
physical density matrix. This is because only a subset of the
probability simplex, which is the space where the distributions
expressed by the Transformer live, corresponds to physical
density matrices upon inversion in Eq. (2). The subset of
probability distributions with a valid quantum state in our
setting forms a convex set similar to the so-called Qplex in
quantum Bayesian theory [33]. Here we emphasize that the
fidelity values in Figs. 4(d) and 4(h) eventually converge to
1 and the oscillations above and below 1 are suppressed ex-
ponentially with the training steps, suggesting that the model
converges to the target quantum state. We provide more details
about the Qplex and the presence of unphysical states in our
representation in Appendix E.

We now turn our attention to the quality of the circuit
simulation as a function of the number of qubits in the circuit,
letting both the depth and gate number grow linearly with the
number of qubits. We find in constructing GHZ and linear
graph states [see Fig. 5 (inset)] in the range from 10 to 60
qubits that the classical fidelity falls approximately linearly
with number of qubits (see Fig. 5) reaching a classical fidelity
of approximately 0.9 at 60 qubits. In addition, we have consid-
ered two different hidden dimensions, 16 and 32, and find that
there is an improvement of the classical fidelity over all qubit
sizes as we increase the hidden dimension. We attribute this to
an improved representability power of the larger transformers
suggesting that one of the bottlenecks of our simulation is
the ability of our neural probabilistic model to represent the
probability distribution that corresponds to the output of the
quantum circuit.

B. Simulation of VQE circuits

We further apply our method to simulate variational cir-
cuits for the ground state of the transverse Ising field model
at the critical point [34]. We start with state preparation of
a six-qubit TFIM ground state using a variational quantum

FIG. 5. Classical fidelity Fc between the final probability distri-
bution of the Transformer versus the exact POVM measurements of
the postcircuit quantum states as a function of the total number of
qubits for circuits (see insets) generating the GHZ state and linear
graph states. The Transformers have dmodel = 16 and 32 and ned = 1.

eigensolver circuit [34] (see Appendix F). The variational
quantum eigensolver [35] (VQE) is a quantum-classical hy-
brid algorithm that can be used to approximate the lowest
energy eigenvalues and eigenvectors of a qubit Hamiltonian
H on a quantum processor. Rather than performing an op-
timization of the VQE ansatz, we focus on the probabilistic
preparation of an already optimized VQE circuit for the
ground state of the TFIM, as demonstrated below. The simula-
tion is performed by optimizing the KL divergence in Eq. (5).
We note that the particular circuit we consider has more gates
per qubit than our previous examples. However, we limit our
simulation to a small number of qubits so that the estimation
of quantum fidelity, whose computational cost is exponential
in the number of qubits in our approach [3], remains possible.
Thus we evaluate both classical and quantum infidelity be-
tween the Transformer model and the exact state at each step
after the application of each quasistochastic gate in the circuit
(see Appendix F for a precise specification of the quantum
circuit and details of its probabilistic preparation). Both the
classical and quantum infidelities shown in Fig. 6 increase
with the number of gates in the circuit; in fact, as demonstrated
in Appendix F in Fig. 12, there is a correlation between the
classical and quantum fidelity as classical fidelity approaches
1. It is natural to expect that the increase of infidelity observed
in our simulation is brought on by an accumulation of errors
building up after successive gates in the circuit. We can give
further evidence of this by looking at the error made after a
single step, 1 − F2(�i, �

(e)
i ), which directly compares P(e)

i and
Pθi (see Fig. 6). We find that the single-step error is roughly
constant and small throughout the circuit suggesting each step
of the simulation is fairly accurate. This is consistent with the
observations in Fig. 4.

We further extend the simulation to the VQE circuits for
system size L = 8, 10, 12, 14, 16, 18 in Ref. [34]. The sim-
ulation is performed by using the forward-backward gate
algorithm through optimizing Eq. (7a). The details of archi-
tectures can be found in Appendix F. It can be seen that the
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FIG. 6. Different infidelity measurements of a VQE circuit for
the preparation of a six-qubit ground state of the TFIM as a function
of the gate number.

classical fidelity drops roughly linearly and the L1 difference
increases roughly linearly as the gate number increases (see
Fig. 7).

VI. CONCLUSIONS

We have introduced an approach for the classical sim-
ulation of quantum circuits using probabilistic models and
validate it on a number of different circuits. This is done by
using a POVM formalism which maps states to probability
distributions and gates to quasistochastic matrices. To repre-
sent the probability distribution over this POVM basis, we
use a Transformer, a powerful machine learning architecture
heavily used in natural language processing. We develop an
efficient sampling scheme which updates the Transformer
after each gate application within the quantum circuit. This
sampling scheme works well out to a large number of qubits;
in this work we demonstrate simulations up to 60 qubits
and empirically see that the accuracy of the simulation drops

FIG. 7. Classical fidelity and L1 difference of VQE circuits for
the preparation of ground states of the TFIM as a function of the gate
number for system size L = 8, 10, 12, 14, 16, 18.

roughly linearly with the number of qubits at a fixed hidden
dimension of the Transformer architecture. We observe that
increasing the hidden dimension of the model improves our
results for the circuits we considered. Although this observa-
tion suggests that our approach is scalable, a detailed study of
the representational power of the Transformer and its relation
to optimization over a wider class of circuits and Transformer
hyperparameters is required to properly establish the scalabil-
ity and applicability of our approach.

Optimizing the Transformer after each gate is a critical step
in our algorithm. While already reasonably efficient, there are
various ways this optimization might be further improved. For
example, our current simulations allow probabilistic represen-
tations which do not map to physical quantum states (i.e.,
outside of the Qplex). We anticipate that constraining the op-
timization to the physically relevant subspace would improve
the quality of the simulations and their broad applicability.
Additionally, further strategies from machine learning may be
applicable; a common training strategy in natural language
processing has been to simultaneously train multiple models
selecting the best one at each step and this technique may
improve the accuracy in our quantum circuit simulations.

The choice of the POVM basis directly affects the struc-
ture of the underlying probability distributions describing
the quantum states as well as the efficiency of their sim-
ulation. Here we chose a simple IC-POVM basis which is
single-qubit factorable, which means that all of the entan-
glement and complexity associated with the quantum state
can be traced back to P and not the POVM basis. Practi-
cally, the factorized IC-POVM representation ensures local
unitaries and quantum channels map to local quasistochastic
matrices allowing for the design of practical algorithms. A
common alternative POVM basis, the SIC-POVM [4–7,36]
has an elegant formalism but is more difficult to work with
algorithmically since SIC-POVM bases are not known to
exist for large systems [37] and do not map local unitaries
to local matrices. It is nonetheless an interesting research
question whether these more complicated bases can be use-
ful in the context of numerical simulations. Indeed, POVM
is related to the Wigner-function quasiprobability represen-
tation and it will also be worth further investigating their
relation.

While in this work we have stored the probability distribu-
tion using a Transformer, there are other options for storing
this probability distribution including other machine-learning
architectures and tensor networks. In fact, it is not even neces-
sary to explicitly store the representation at all; instead, in the
spirit of quantum Monte Carlo, it could be sampled stochas-
tically. While such a simulation will generically have a sign
problem, there may be preferred basis choices for the POVM
which minimize that effect for a particular set of quantum
circuits.

In general, the classical simulation of quantum circuits is
known to be difficult [38]. Nonetheless, in the era of noisy
intermediate-scale quantum technology it is important to be
able to benchmark machines which have qubit sizes that
are outside the limits of what can be simulated exactly on
classical computers to validate and test quantum computers
and algorithms. Moreover, the ability to simulate ever larger
and more difficult circuits helps better delineate the boundary

032610-8



PROBABILISTIC SIMULATION OF QUANTUM CIRCUITS … PHYSICAL REVIEW A 104, 032610 (2021)

between classical and quantum computation. The number of
approaches for simulating quantum circuits is small and our
approach introduces an alternative to the standard approach
of simulating the quantum state either explicitly [9–15,39], or
stochastically [40,41]. We anticipate advantages with respect
to established algorithms enabled by the ability of Transform-
ers to model long-range correlations [16], the autoregressive
nature of the model, as well as the nature of the self-attention
mechanism, which allows a high degree of parallelization of
most of the computations required in our approach. Addition-
ally, extensions of the model which encode information about
the spatial structure of the problem (e.g., two-dimensional
Transformers [42]) can be easily defined while retaining all
the computational and modeling advantages of the Transform-
ers used in this work.

Beyond the simulation of circuits, our POVM approach
can be naturally extended to various problems in quantum
many-body systems, such as the simulation of real-time dy-
namics of closed and open quantum systems (see Appendices
A and B). Thus our work opens up possibilities for combining
the POVM formalism with different numerical methods, rang-
ing from quantum Monte Carlo to machine learning to tensor
networks, in an effort to better classically simulate quantum
many-body systems.
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APPENDIX A: QUANTUM CHANNELS

A complete description of the evolution of closed and
open quantum systems is fundamental to the understanding
and manipulation of quantum information devices. In contrast
to closed quantum systems, the evolution of open quantum

FIG. 8. Tensor network representation of Oa′′a′ corresponding
to a quantum channel that acts on two qubits. The green tensors
represent the Kraus operators, which specify the quantum channel
and are understood as a rank-3 array.

systems is not unitary. Instead, the evolution of the density
operator of an open quantum system is described by the ac-
tion of a quantum operation or quantum channel, which is
specified by a completely positive trace-preserving (CPTP)
map between spaces of operators [8]. A commonly used
representation of CPTP maps is the Kraus or operator-sum
representation [43] where a CPTP map E acts on a quantum
state � as

E (�) =
D∑
α

K (α)�K (α)†, (A1)

where
∑D

α K (α)K (α)† = 1. The set of matrices {K (α), α =
1, . . . , D} act on the Hilbert space of the qubits and can be
thought of as an array with three indices. The maximum value
of D = 4N , and the minimum is D = 1, which corresponds to
a unitary transformation.

Similar to the unitary evolution, if the initial quantum
state � is prescribed in terms of the outcome statistics of an
IC-POVM P, we can track its evolution under a CPTP map
directly in its probabilistic representation:

PE (a′′) =
D∑
α

Tr[K (α)�K (α)†M (a′′ )] =
∑

a′
Oa′′a′P(a′), (A2)

where

Oa′′a′ =
∑
a,α

Tr[K (α)M (a)K (α)†M (a′′ )] T −1
a,a′ (A3)

is a quasistochastic matrix since, as in the unitary case, the val-
ues in each column add up to 1 but its entries can be positive or
negative [5,6,19,20]. In Ref. [7], a similar formulation specific
to SIC-POVM has also been proposed to describe quantum
channel evolution and master equations in open systems.

If a quantum channel acts nontrivially on only k qubits, it
implies that the quasistochastic matrix Oa′′a′ acts also only on
k qubits. The relation between the quasistochastic gates and
the local quantum channel in Eq. (A3) is graphically depicted
in Fig. 8 using tensor diagrams.
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APPENDIX B: LIOUVILLE–VON NEUMANN
EQUATION IN POVM FORMULATION

In Eq. (3) we have discussed how unitary evolution on
a quantum state in the traditional density matrix formula-
tion translates into the factorized IC-POVM formulation used
in our study. Accordingly, the unitary dynamics induced by
Hamiltonian H acting on the system during an infinitesimal
time �t , i.e., U (t ) = e−i�tH, implies an equation of motion
for the measurement statistics

i
∂P(a′′, t )

∂t
=

∑
a,a′

Tr([H, M (a)]M (a′′ ) )T −1
a,a′ P(a′, t ). (B1)

This is equivalent to the Liouville–von Neumann equation
i ∂ρ

∂t = [H, ρ].
A solution to Eq. (B1) for a time-independent Hamilto-

nian is given by P(t ) = e−iAt P(0), where the matrix elements
Aa′′a′ = ∑

a T −1
a,a′ [Tr([H, M (a)]M (a′′ ) )].

APPENDIX C: LINDBLAD EQUATION
IN POVM FORMULATION

Applicable to open quantum systems, an infinitesimal
Markovian but nonunitary evolution leads to the equivalent
of the Linblad equation

i
∂P(a, t )

∂t
=

∑
a

Aa′′,a′P(a, t ), (C1)

where the matrix elements are augmented to

Aa′′a′ =
∑

a

T −1
a,a′

{
Tr([H, M (a)]M (a′′ ) )

+
∑

k

[
− i

2
Tr({L†

k Lk, M (a)}M (a′′ ) )

+ i Tr(LkM (a)L†
k M (a′′ ) )

]}
. (C2)

Here, the operators Lk are called Lindblad operators or
quantum jump operators. Like the Liouville–von Neumann
equation, Eq.(C2) has a solution for a time-independent
Hamiltonian given by P(t ) = e−iAt P(0).

APPENDIX D: MEASUREMENTS

Although the probabilistic representation of the quantum
state in Eq. (2) already provides the measurement statistics of
the factorized POVM M (a), the statistics of other POVMs �(b),
e.g., a POVM describing standard measurements in the com-
putational basis and other experimentally relevant operators,
are related to M (a) via the Born rule:

P�(b) =
∑
a,a′

P(a′) T −1
a,a′ Tr[M (a)�(b)]

=
∑

a′
q(b|a′)P(a′),

where q(b|a′) = ∑
a T −1

a,a′ Tr[M (a)�(b)] can be characterized as
a quasiconditional probability distribution since its entries can
either be positive or negative but its trace over b is the identity

1a′ . Due to its evocative resemblance with the law of total
probability, the relation between measurement statistics P�(b)
and P(a) is often called the quantum law of total probability
in quantum Bayesianism [44].

APPENDIX E: QPLEX AND POSITIVITY
OF QUANTUM STATES

The traditional quantum theory can be viewed as a
noncommutative generalization of probability theory where
quantum states are specified by Hermitian, positive semidefi-
nite trace one matrices. However, quantum states can also be
specified through probability distributions corresponding to
the statistics of the outcome of an informationally complete
physical measurement. From this viewpoint, quantum theory
is not necessarily a generalization of probability theory; in-
stead, it can be seen as augmenting probability theory with
further rules for dynamics and measurements on quantum
systems [33]. When we represent the probabilities of a IC-
POVM as points in the corresponding probability simplex
�4N , these probabilities are not arbitrary, since not any point
of the simplex � can represent a quantum state, only a subset
of the simplex. For a symmetric IC-POVM [45], this subset
is referred to as the Qplex [33]. Even though the IC-POVM
used in our work is not symmetric, we will still refer to the
subset of distributions with a corresponding quantum state
in Eq. (2) as a Qplex. The space of all possible states of
a given quantum system and the corresponding Qplex are
schematically represented in Figs. 9(a) and 9(b).

A small quantum computation is also depicted schemati-
cally in Figs. 9(a) and 9(b). This computation starts with a
simple pure product state �0 followed by the application of
three unitary matrices which take the state from �0 to �3.
These computations occur at the boundary separating valid
quantum states from other operators; such boundary includes
all the pure states. Correspondingly, since the relation between
the space of quantum states and the Qplex is linear, quantum
computations in the probabilistic language take place at the
interior of the Qplex, as illustrated in Fig. 9(b).

While these observations do not have any major con-
ceptual implication for the physical realization of quantum

(a) (b)

FIG. 9. Geometry of quantum states. (a) Schematic representa-
tion of the subset of density matrices (blue sphere). For one qubit, this
set corresponds to the Bloch sphere. (b) Schematic representation of
the probability simplex �mN , which represents the set of all possible
categorical probability distributions with mN outcomes. A subset of
these distributions termed Qplex (blue oval) is isomorphic to the
usual space of quantum states in (a).
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FIG. 10. Variational circuit preparation for TFIM. Only the first
of the four layers in our calculation is shown. The gates encircled
in rounded blue squares are combined and subsequently transformed
into quasistochastic gates for the probabilistic simulation of the quan-
tum circuit.

computations, this geometric interpretation can help us clarify
some aspects we observe in the results from our simula-
tion strategy. The most important aspect is the fact that the
probabilistic model in our study, in general, lives in a stan-
dard simplex �mN and is not constrained to the subset of
valid “quantum” distributions. Even though the update rule
in Eq. (3) should produce distributions that live on the Qplex,
since we use an approximate update, it is possible that the
model may temporarily leave the Qplex. This is observed
in Figs. 4(d) and 4(h) where we observe values of quantum
fidelity higher than 1, which means that during the training
process, the Transformer induces matrices in Eq. (2) that are
not valid quantum states. Note that the fidelity in Figs. 4(d)
and 4(h) eventually converges and stays at values very close
to 1 and that the oscillations above 1 disappear, suggesting
that the state is getting closer and closer to the target, valid
quantum state.

APPENDIX F: VARIATIONAL CIRCUIT FOR TFIM

We use the variational circuit depicted in Fig. 10 for
the six-qubit TFIM preparation [34]. The parameters
for gamma and beta are taken alternatively from the
following sequence describing a circuit with four layers,
(0.2496, 0.6845, 0.4808, 0.6559, 0.5260, 0.6048, 0.4503,

0.3180). For L = 8, 10, 12, 14, 16, 18, the circuit parameters
are the same as Ref. [34]. Note that in our simulations, we do
not directly transform the original gates into quasistochastic
gates. To save computational resources, we combine the
quantum gates encircled in rounded blue squares, after which
we transform them into quasistochastic matrices.

For Transformers used in the VQE circuits simulation,
the encoder block does not include LayerNorm. For L =
6, 8, 10, 12, dmodel = 16 and ned = 1. For L = 14, 16, 18,
dmodel = 32 and ned = 1.

Using this circuit, we have also computed the σ z
i σ z

j corre-
lation of the exact variational circuit in Fig. 10 and the POVM
trained circuit, which are compared in Fig. 11. Even though

FIG. 11. Comparison between σ z
i σ z

j correlation from exact quan-
tum circuit state and the gate training state.

there is a nice polynomial bound between quantum fidelity
and classical fidelity under the SIC-POVM formulation [7], it
is not known in general the bound between a non SIC-POVM
(like we use) and the classical fidelity. We therefore numeri-
cally plot the relation between quantum fidelity and classical
fidelity of the L = 6 VQE simulation in Fig. 12.

APPENDIX G: OPTIMIZATION DETAILS

The models are optimized using Adam optimizer [21] in
PyTorch [46] with an initial learning rate of 0.01. The weights
and biases are initialized using PyTorch’s [46] default ini-
tialization except for the last layer. We use single-precision
(32-bit) floating-point representation for real numbers. The
batch size of each training is around 104. Most models con-
verge in less than 200 steps. VQE circuit simulations can be
completed within a few hours for small system size L and
up to 1 day for L = 18 with one V100 GPU. GHZ circuits
and graph state circuits simulation up to 60 qubits can be
completed within 1 or 2 days with four V100 GPUs in parallel.

FIG. 12. Correlation between classical fidelity and quantum fi-
delity. The darker color corresponds to gate that is applied earlier.
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