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ABSTRACT

Self-supervised representation learning (SSRL) has advanced considerably by
exploiting the transformation invariance assumption under artificially designed data
augmentations. While augmentation-based SSRL algorithms push the boundaries
of performance in computer vision and natural language processing, they are often
not directly applicable to other data modalities, and can conflict with application-
specific data augmentation constraints. This paper presents an SSRL approach
that can be applied to any data modality and network architecture because it does
not rely on augmentations or masking. Specifically, we show that high-quality
data representations can be learned by reconstructing random data projections.
We evaluate the proposed approach on a wide range of representation learning
tasks that span diverse modalities and real-world applications. We show that it
outperforms multiple state-of-the-art SSRL baselines. Due to its wide applicability
and strong empirical results, we argue that learning from randomness is a fruitful
research direction worthy of attention and further study.

1 INTRODUCTION

Learning data representations in a self-supervised manner is commonly associated with well-designed
pretext tasks that can create heuristics for machine learning models to identify and encode useful
information from unlabelled data. While pretext tasks are often highly customized to specific
applications, they are typically based on a handful of underlying assumptions. Pretext tasks utilizing
the transformation invariance assumption across data augmentation views show leading performance
in multiple research domains. For computer vision, image representations are commonly guided to
remain identical after cropping, rotating, flipping, or corrupting, among others (Chen et al., 2020;
Grill et al., 2020). Similarly, in natural language processing, sentences with similar words and
semantic meaning are expected to have the same representation (Wei & Zou, 2019; Wu et al., 2019).
In these and other domains transformation invariance is encouraged explicitly through contrastive or
momentum objectives that aim to bring together representations before and after transformation.

Despite their strong performance in many domains, self-supervised representation learning (SSRL)
algorithms that enforce transformation invariance are limited in that they do not support generic
data types. Many well-known data augmentation methods are tailored to specific modalities, and are
restricted in their generality across different domains. For instance, Gaussian noise corruption cannot
be applied directly to textual data, while image rotation is not applicable in the tabular domain. Thus,
augmentation based SSRL techniques are inherently constrained in their cross-domain applicability.

While these examples show modality limitations, a more subtle problem is that even standard
augmentations can conflict with application-specific constraints. For example, pathology images of
stained tissue samples have low color variation (Shen et al., 2022; Kang et al., 2023), so naı̈ve color-
jittering produces unnatural augmentations (see Fig. 1). Such incorrect images may be inappropriate
and unsafe for use in critical medical imaging applications (Elgendi et al., 2021). For time series
with high periodicity, such as online monitoring data, random shifting augmentations can create
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Figure 1: Top: H&E stained histopathology im-
ages have a characteristic appearance with blue
tones indicating cell nuclei, while cytoplasm is
stained pink (Chan, 2014). Bottom: Color jitter
with the standard settings of (Chen & He, 2021)
produces unrealistic augmentations with altered
meanings. Choosing good augmentations requires
domain knowledge (Shen et al., 2022).

identical augmented views that are not useful for
pretext tasks (Eldele et al., 2021; Zhang & Ma,
2022). In tabular settings where relatively few
options for augmentations are available, random
noise addition or random swapping of features
between training examples can easily produce
unrealistic examples. As a concrete example
from particle physics, consider energies and mo-
menta of interacting particles collected experi-
mentally (Brehmer & Cranmer, 2020). Since
the incoming and outgoing energies are con-
strained by the laws of physics, only certain
combinations are possible to observe. Tabular
augmentations would produce unphysical com-
binations, harming the consistency of learned
representations and leading to unpredictable fail-
ures on downstream tasks (Shorten & Khoshgof-
taar, 2019).

Instead of relying on transformation invariance,
many self-supervised learning techniques involve masking and reconstructing input data including
masked image modelling (He et al., 2022; Xie et al., 2022) for computer vision and masked language
modelling (Devlin et al., 2019; Raffel et al., 2020) for natural language processing. However, these
methods often require specific backbone architectures like transformers (Vaswani et al., 2017) to
achieve good performance (Balestriero et al., 2023).

In this paper, we introduce a SSRL training scheme that requires neither domain-specific data
augmentations nor particular architectures as in masking approaches. Instead, the proposed learning
method is based on a surprising hypothesis that good data representations can be obtained by learning
to simultaneously reconstruct multiple randomly generated data projection functions. The hypothesis
comes from the conventional motivation of representation learning – capturing and extracting abstract
and valuable concepts that can support a range of downstream predictive tasks (Bengio et al., 2013;
Le-Khac et al., 2020). In particular, the downstream tasks could include arbitrary data projections.
Formally, given random projection functions G = {· · · g(k)(x) · · · } whose input domains are raw
data features x ∈ X , the motivation above suggests that, for a good representation z of data x, there
is another group of simple prediction functions H = {· · ·h(k)(z) · · · } that can correctly predict the
random functions’ outputs. With this insight, the representation learning task can be construed as a
search for a combination of representation z and prediction functions H that can reproduce random
data projections. In short, we conduct SSRL by learning from randomness (LFR).

The primary advantage of LFR is that random projection functions G can easily be created for
any data modality. One straightforward instantiation is by taking a neural network with suitable
architecture for consuming the data, and randomly initializing its parameters. Hence, LFR applies to
all subfields of SSRL. Also, data augmentations are not used, so LFR avoids any concerns of unsafe,
identical, or unrealistic augmentations as discussed above.

We empirically evaluate the effectiveness of LFR on a wide range of representation learning tasks that
span diverse data types (including image, sequential, and tabular) and multiple real-world applications
(banking, healthcare and natural sciences). The results show that LFR outperforms commonly used
domain-agnostic SSRL algorithms. It is even competitive with many domain-specific approaches that
rely heavily on expert knowledge for their data augmentation designs. The remarkable performance
demonstrates that learning high-quality data representations from randomness is a feasible and
plausible alternative when the transformation invariance assumption is hard to establish or enforce in
a given application domain.

2 BACKGROUND AND RELATED WORK

Self-supervised representation learning (SSRL) methods enable the extraction of informative and
compact representations from raw data without manual annotation or labelling. These methods rely
on large amounts of unlabeled data and pretext tasks to implicitly model the observed distribution
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and optimize deep neural networks. In computer vision (CV) and natural language processing (NLP),
SSRL has gained considerable attention due to an abundance of widely available unlabeled data.

Adopting the definitions as outlined in (Balestriero et al., 2023), SSRL methods in the field of CV
can be grouped into four main categories: deep metric learning (Chen et al., 2020), self-distillation
(Grill et al., 2020; Chen et al., 2020), canonical correlation analysis (Zbontar et al., 2021), and
masked image modeling (He et al., 2022). Among these, the first three rely on creating positive
views of a given image to learn invariances. This is achieved by creating augmented versions of the
same image and enforcing that the latent embeddings of these versions should be identical, with the
underlying assumption that the semantic meaning of the original image is invariant across different
views. Recently, masked image modeling has emerged as a popular SSRL approach due to the
success of Vision Transformers (Dosovitskiy et al., 2021). These methods predict masked vision
tokens (He et al., 2022) or pixel patches (Doersch et al., 2015), which have proven useful in learning
representations. In NLP, masked language modelling is very prominent. The dominant models,
including BERTs and GPTs, are trained to predict masked language tokens, which encourages the
model to encode contextual information and reconstruct its inputs. Occasionally, other efficient
language-focused pretext tasks emerge in the literature, such as maximizing the mutual information
between a global sentence representation and n-grams in the sentence (Kong et al., 2020).

Despite the remarkable success in CV and NLP, the effectiveness of SSRL for other data modalities,
such as tabular data, has been limited (Bahri et al., 2022; Balestriero et al., 2023). One challenge for
SSRL methods relying on transformation invariance lies in identifying and designing appropriate
augmentations. Augmentation strategies that work well for one modality may not directly translate to
others due to inherent differences, and the choice of suitable augmentations can also be influenced
by the specific application domain. For example, augmentations designed for natural images may
not be suitable for medical images with low color variation, leading to unrealistic results and
unsatisfactory performance (Kang et al., 2023). Appendix A provides further information on research
efforts dedicated to designing effective modality- and application-specific augmentation techniques.
While masking approaches offer general applicability to all data modalities, the most effective
frameworks often rely on transformer-based backbones for optimal performance (Majmundar et al.,
2022; He et al., 2022; Cheng et al., 2023). In this work, we focus on a model-agnostic SSRL
approaches. Classic autoencoder-based methods provide an alternative to SSRL without relying
explicitly on transformation invariance (Hinton & Salakhutdinov, 2006; Vincent et al., 2008; Zhang
et al., 2017). However, these methods tend to prioritize low-level reconstruction over capturing high-
level abstractions required for downstream tasks, resulting in suboptimal performance in practical
applications (Liu et al., 2021).

The current landscape of SSRL research highlights the need for a more versatile and effective
approach capable of addressing a wider range of modalities, applications, and architectures.

3 REPRESENTATION LEARNING FROM RANDOM DATA PROJECTORS

In this section, we present learning from randomness (LFR), an efficient and general SSRL algorithm.
We recap the representation learning problem setting as the following: given observed raw data
X = {· · ·xi · · · }, where all data points share the same feature domain X , the representation learning
task is to learn a function fθ(X ) that produces a low-dimensional representation zi ∈ Z for each
raw data input xi. The representation zi should carry useful information about xi such that for
an arbitrary downstream task g(X ) it is possible to learn a simple prediction function hϕ(Z) that
replicates g(xi) as hϕ (fθ(xi)) for all xi ∈ X .

3.1 PRETEXT TASK: MULTI-OBJECTIVE LEARNING FROM RANDOMNESS

As mentioned in the problem statement above, the ultimate purpose of representation learning is to
support arbitrary downstream predictive tasks. In reality, there is usually a small subset of downstream
tasks which are considered important. It is not a priori clear that directly learning to predict purely
random tasks would lead to good representations for important tasks.

To demonstrate the possibility of learning from randomness, we propose the surprising pretext task
shown in Figure 2. The pretext task contains three components, namely a representation model
fθ(X ), a set of randomly generated data projection functions G = {· · · g(k)(X ) · · · }, and a set of
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Random Projectors

… … …

<latexit sha1_base64="zGFTI8bB7qbHU9XWMcotIkqU4fo=">AAAB7nicbVDLSsNAFL2pr1pfVZduBotQQUoi9bUruHFZwT6gjWUynbRDJ5MwMxFK6Ee4caGIW7/HnX/jJA2i1gMXDufcy733eBFnStv2p1VYWl5ZXSuulzY2t7Z3yrt7bRXGktAWCXkoux5WlDNBW5ppTruRpDjwOO14k+vU7zxQqVgo7vQ0om6AR4L5jGBtpM7oPqk6x7NBuWLX7AxokTg5qUCO5qD80R+GJA6o0IRjpXqOHWk3wVIzwums1I8VjTCZ4BHtGSpwQJWbZOfO0JFRhsgPpSmhUab+nEhwoNQ08ExngPVY/fVS8T+vF2v/0k2YiGJNBZkv8mOOdIjS39GQSUo0nxqCiWTmVkTGWGKiTUKlLISrFGffLy+S9mnNOa/Vb+uVxkkeRxEO4BCq4MAFNOAGmtACAhN4hGd4sSLryXq13uatBSuf2YdfsN6/AI+6jyM=</latexit>

g(1)

<latexit sha1_base64="X9hpPTE2SmRAyDbjaYoj7fxivp0=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBEqSElKfe0KblxWsA9oY5lMJ+3QySTMTIQS+hFuXCji1u9x5984SYOo9cCFwzn3cu89XsSZ0rb9aS0tr6yurRc2iptb2zu7pb39tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqdx6oVCwUd3oaUTfAI8F8RrA2Umd0n1RqJ7NBqWxX7QxokTg5KUOO5qD00R+GJA6o0IRjpXqOHWk3wVIzwums2I8VjTCZ4BHtGSpwQJWbZOfO0LFRhsgPpSmhUab+nEhwoNQ08ExngPVY/fVS8T+vF2v/0k2YiGJNBZkv8mOOdIjS39GQSUo0nxqCiWTmVkTGWGKiTULFLISrFGffLy+Sdq3qnFfrt/Vy4zSPowCHcAQVcOACGnADTWgBgQk8wjO8WJH1ZL1ab/PWJSufOYBfsN6/AJFAjyQ=</latexit>

g(2)

<latexit sha1_base64="UiF36UAodxrC9ccXSosIu5gpjqs=">AAAB7nicbVDLSsNAFL3xWeur6tLNYBEqSEmkvnYFN4KbCvYBbSyT6aQdOpmEmYlQQj/CjQtF3Po97vwbJ2kQtR64cDjnXu69x4s4U9q2P62FxaXlldXCWnF9Y3Nru7Sz21JhLAltkpCHsuNhRTkTtKmZ5rQTSYoDj9O2N75K/fYDlYqF4k5PIuoGeCiYzwjWRmoP75PKzdG0XyrbVTsDmidOTsqQo9EvffQGIYkDKjThWKmuY0faTbDUjHA6LfZiRSNMxnhIu4YKHFDlJtm5U3RolAHyQ2lKaJSpPycSHCg1CTzTGWA9Un+9VPzP68bav3ATJqJYU0Fmi/yYIx2i9Hc0YJISzSeGYCKZuRWREZaYaJNQMQvhMsXp98vzpHVSdc6qtdtauX6cx1GAfTiACjhwDnW4hgY0gcAYHuEZXqzIerJerbdZ64KVz+zBL1jvX7dWjz0=</latexit>

g(K)

<latexit sha1_base64="OjNdrcF/H5/QV+hrgeo+lTXDfuk=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiSl9bEruHFZwT6wDWUynbRDJ5MwMxFq6F+4caGIW//GnX/jJA2i1gMDh3PuZc49XsSZ0rb9aRVWVtfWN4qbpa3tnd298v5BR4WxJLRNQh7KnocV5UzQtmaa014kKQ48Trve9Cr1u/dUKhaKWz2LqBvgsWA+I1gb6W4QYD3x/ORhPixX7KqdAS0TJycVyNEalj8Go5DEARWacKxU37Ej7SZYakY4nZcGsaIRJlM8pn1DBQ6ocpMs8RydGGWE/FCaJzTK1J8bCQ6UmgWemUwTqr9eKv7n9WPtX7gJE1GsqSCLj/yYIx2i9Hw0YpISzWeGYCKZyYrIBEtMtCmplJVwmaLxffIy6dSqzlm1flOvNGt5HUU4gmM4BQfOoQnX0II2EBDwCM/wYinryXq13hajBSvfOYRfsN6/ABUkkUg=</latexit>z

<latexit sha1_base64="TKDSUCEGGLO5bWwjAg4fbITHxCE=">AAAB+XicbVDLSsNAFL3xWesr6tJNsAh1U5JSX7uCG5cV7APaWCbTSTt0Mgkzk0II/RM3LhRx65+482+cpEHUemDgcM693DPHixiVyrY/jZXVtfWNzdJWeXtnd2/fPDjsyDAWmLRxyELR85AkjHLSVlQx0osEQYHHSNeb3mR+d0aEpCG/V0lE3ACNOfUpRkpLQ9McBEhNPD9N5g9p1TmbD82KXbNzWMvEKUgFCrSG5sdgFOI4IFxhhqTsO3ak3BQJRTEj8/IgliRCeIrGpK8pRwGRbponn1unWhlZfij048rK1Z8bKQqkTAJPT2Y55V8vE//z+rHyr9yU8ihWhOPFIT9mlgqtrAZrRAXBiiWaICyozmrhCRIIK11WOS/hOsP595eXSadecy5qjbtGpVkv6ijBMZxAFRy4hCbcQgvagGEGj/AML0ZqPBmvxttidMUodo7gF4z3L1Mwk4w=</latexit>

y(1)

<latexit sha1_base64="1sfi6NiGrVemupVs9+9VLA0wMCA=">AAAB+XicbVDLSsNAFL3xWesr6tJNsAh1U5JSX7uCG5cV7APaWCbTSTt0Mgkzk0II/RM3LhRx65+482+cpEHUemDgcM693DPHixiVyrY/jZXVtfWNzdJWeXtnd2/fPDjsyDAWmLRxyELR85AkjHLSVlQx0osEQYHHSNeb3mR+d0aEpCG/V0lE3ACNOfUpRkpLQ9McBEhNPD9N5g9ptX42H5oVu2bnsJaJU5AKFGgNzY/BKMRxQLjCDEnZd+xIuSkSimJG5uVBLEmE8BSNSV9TjgIi3TRPPrdOtTKy/FDox5WVqz83UhRImQSensxyyr9eJv7n9WPlX7kp5VGsCMeLQ37MLBVaWQ3WiAqCFUs0QVhQndXCEyQQVrqscl7CdYbz7y8vk0695lzUGneNSrNe1FGCYziBKjhwCU24hRa0AcMMHuEZXozUeDJejbfF6IpR7BzBLxjvX1S2k40=</latexit>

y(2)

<latexit sha1_base64="On+a8dSCVxGqgxXNO8oB7NOpZyg=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0Wom5KU+toV3AhuKtgHtLFMppN26GQSZiaFEPInblwo4tY/ceffOEmDqPXAwOGce7lnjhsyKpVlfRqlldW19Y3yZmVre2d3z9w/6MogEph0cMAC0XeRJIxy0lFUMdIPBUG+y0jPnV1nfm9OhKQBv1dxSBwfTTj1KEZKSyPTHPpITV0vidOHpHZ7mo7MqlW3csBlYhekCgq0R+bHcBzgyCdcYYakHNhWqJwECUUxI2llGEkSIjxDEzLQlCOfSCfJk6fwRCtj6AVCP65grv7cSJAvZey7ejLLKf96mfifN4iUd+kklIeRIhwvDnkRgyqAWQ1wTAXBisWaICyozgrxFAmElS6rkpdwleHs+8vLpNuo2+f15l2z2moUdZTBETgGNWCDC9ACN6ANOgCDOXgEz+DFSIwn49V4W4yWjGLnEPyC8f4FesyTpg==</latexit>

y(K)

Pseudo Targets

<latexit sha1_base64="kXudInSWoQ0nQFd4EEUGFzN3kAs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSSlft0KXjxWsB/QhrLZbtqlm03cnQgl9E948aCIV/+ON/+N2zSIWh8MPN6bYWaeHwuu0XE+rcLK6tr6RnGztLW9s7tX3j9o6yhRlLVoJCLV9YlmgkvWQo6CdWPFSOgL1vEn13O/88CU5pG8w2nMvJCMJA84JWikbjDo45ghGZQrTtXJYC8TNycVyNEclD/6w4gmIZNIBdG65zoxeilRyKlgs1I/0SwmdEJGrGeoJCHTXprdO7NPjDK0g0iZkmhn6s+JlIRaT0PfdIYEx/qvNxf/83oJBpdeymWcIJN0sShIhI2RPX/eHnLFKIqpIYQqbm616ZgoQtFEVMpCuJrj7PvlZdKuVd3zav22XmnU8jiKcATHcAouXEADbqAJLaAg4BGe4cW6t56sV+tt0Vqw8plD+AXr/QsyXZAr</latexit>

f✓

Stop gradientLoss

Loss

Loss

<latexit sha1_base64="cOyRfoi5AvcHBnCJbF38nmKZcYA=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiSl9bEruHFZwT6wDWUynbRDJ5MwMxFL6F+4caGIW//GnX/jJA2i1gMDh3PuZc49XsSZ0rb9aRVWVtfWN4qbpa3tnd298v5BR4WxJLRNQh7KnocV5UzQtmaa014kKQ48Trve9Cr1u/dUKhaKWz2LqBvgsWA+I1gb6W4QYD3x/ORhPixX7KqdAS0TJycVyNEalj8Go5DEARWacKxU37Ej7SZYakY4nZcGsaIRJlM8pn1DBQ6ocpMs8RydGGWE/FCaJzTK1J8bCQ6UmgWemUwTqr9eKv7n9WPtX7gJE1GsqSCLj/yYIx2i9Hw0YpISzWeGYCKZyYrIBEtMtCmplJVwmaLxffIy6dSqzlm1flOvNGt5HUU4gmM4BQfOoQnX0II2EBDwCM/wYinryXq13hajBSvfOYRfsN6/ABIakUY=</latexit>x

Stop gradient

Stop gradient

<latexit sha1_base64="ZyvMGTyu3ByOStJBSPDaxnx2Y+Y=">AAAB83icbVDLSsNAFJ3UV62vqks3g0Wom5KU+toV3LisYB/QxDKZTpqhk8kwMxFK6G+4caGIW3/GnX/jJA2i1gMXDufcy733+IJRpW370yqtrK6tb5Q3K1vbO7t71f2DnooTiUkXxyyWAx8pwignXU01IwMhCYp8Rvr+9Drz+w9EKhrzOz0TxIvQhNOAYqSN5IYjV4T0Pq07p/NRtWY37BxwmTgFqYECnVH1wx3HOIkI15ghpYaOLbSXIqkpZmRecRNFBMJTNCFDQzmKiPLS/OY5PDHKGAaxNMU1zNWfEymKlJpFvumMkA7VXy8T//OGiQ4uvZRykWjC8WJRkDCoY5gFAMdUEqzZzBCEJTW3QhwiibA2MVXyEK4ynH2/vEx6zYZz3mjdtmrtZhFHGRyBY1AHDrgAbXADOqALMBDgETyDFyuxnqxX623RWrKKmUPwC9b7F1/KkVg=</latexit>

h
(1)
�

<latexit sha1_base64="KPU0HZvu7t20sHDG4J7PnaE8cRw=">AAAB83icbVDLSsNAFJ3UV62vqks3g0Wom5KU+toV3LisYB/QxDKZTpqhk8kwMxFK6G+4caGIW3/GnX/jJA2i1gMXDufcy733+IJRpW370yqtrK6tb5Q3K1vbO7t71f2DnooTiUkXxyyWAx8pwignXU01IwMhCYp8Rvr+9Drz+w9EKhrzOz0TxIvQhNOAYqSN5IYjV4T0Pq03T+ejas1u2DngMnEKUgMFOqPqhzuOcRIRrjFDSg0dW2gvRVJTzMi84iaKCISnaEKGhnIUEeWl+c1zeGKUMQxiaYprmKs/J1IUKTWLfNMZIR2qv14m/ucNEx1ceinlItGE48WiIGFQxzALAI6pJFizmSEIS2puhThEEmFtYqrkIVxlOPt+eZn0mg3nvNG6bdXazSKOMjgCx6AOHHAB2uAGdEAXYCDAI3gGL1ZiPVmv1tuitWQVM4fgF6z3L2FQkVk=</latexit>

h
(2)
�

<latexit sha1_base64="+kKAeRc4qAj9YCzbao23Sud+z8Y=">AAAB83icbVDLSsNAFJ3UV62vqks3g0Wom5KU+toV3AhuKlhbaGKZTCfN0MlkmJkIJfQ33LhQxK0/486/cZIGUeuBC4dz7uXee3zBqNK2/WmVlpZXVtfK65WNza3tneru3p2KE4lJF8csln0fKcIoJ11NNSN9IQmKfEZ6/uQy83sPRCoa81s9FcSL0JjTgGKkjeSGQ1eE9D6tXx/PhtWa3bBzwEXiFKQGCnSG1Q93FOMkIlxjhpQaOLbQXoqkppiRWcVNFBEIT9CYDAzlKCLKS/ObZ/DIKCMYxNIU1zBXf06kKFJqGvmmM0I6VH+9TPzPGyQ6OPdSykWiCcfzRUHCoI5hFgAcUUmwZlNDEJbU3ApxiCTC2sRUyUO4yHDy/fIiuWs2nNNG66ZVazeLOMrgAByCOnDAGWiDK9ABXYCBAI/gGbxYifVkvVpv89aSVczsg1+w3r8Ah2aRcg==</latexit>

h
(K)
�

Predictor
<latexit sha1_base64="UXsZVeFT1K2hts/GKqpTKuXivTI=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKewGn7eAlxwjmAckS5idzCZjZmeWmVkhhPyDFw+KePV/vPk3zm4WUWNBQ1HVTXdXEHOmjet+OoWV1bX1jeJmaWt7Z3evvH/Q1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmN6nfeaBKMynuzDSmfoRHgoWMYGOldmPQb47ZoFxxq24GtEy8nFQgR3NQ/ugPJUkiKgzhWOue58bGn2FlGOF0XuonmsaYTPCI9iwVOKLan2XXztGJVYYolMqWMChTf07McKT1NApsZ4TNWP/1UvE/r5eY8MqfMREnhgqyWBQmHBmJ0tfRkClKDJ9agoli9lZExlhhYmxApSyE6xTn3y8vk3at6l1Uz27PKvVaHkcRjuAYTsGDS6hDA5rQAgL38AjP8OJI58l5dd4WrQUnnzmEX3DevwBBf48E</latexit>

H�
<latexit sha1_base64="CQETY6XvttXzXtEQq5e1kI9dabI=">AAAB6HicbVDLSsNAFJ3UV62vqks3g0VwVZJSX7uCG5ct2Ie0oUymN+3YySTMTIQS+gVuXCji1k9y5984SYOo9cCFwzn3cu89XsSZ0rb9aRVWVtfWN4qbpa3tnd298v5BR4WxpNCmIQ9lzyMKOBPQ1kxz6EUSSOBx6HrT69TvPoBULBS3ehaBG5CxYD6jRBupdTcsV+yqnQEvEycnFZSjOSx/DEYhjQMQmnKiVN+xI+0mRGpGOcxLg1hBROiUjKFvqCABKDfJDp3jE6OMsB9KU0LjTP05kZBAqVngmc6A6In666Xif14/1v6lmzARxRoEXSzyY451iNOv8YhJoJrPDCFUMnMrphMiCdUmm1IWwlWKs++Xl0mnVnXOq/VWvdKo5XEU0RE6RqfIQReogW5QE7URRYAe0TN6se6tJ+vVelu0Fqx85hD9gvX+BcwPjQc=</latexit>

Y
<latexit sha1_base64="kPyKNEUrn6tiyTEzmSSqQcN8yeU=">AAAB6HicbVDLSsNAFJ3UV62vqks3g0VwVZJSX7uCC122YB/QhjKZ3rRjJ5MwMxFK6Be4caGIWz/JnX/jJA2i1gMXDufcy733eBFnStv2p1VYWV1b3yhulra2d3b3yvsHHRXGkkKbhjyUPY8o4ExAWzPNoRdJIIHHoetNr1O/+wBSsVDc6VkEbkDGgvmMEm2k1s2wXLGrdga8TJycVFCO5rD8MRiFNA5AaMqJUn3HjrSbEKkZ5TAvDWIFEaFTMoa+oYIEoNwkO3SOT4wywn4oTQmNM/XnREICpWaBZzoDoifqr5eK/3n9WPuXbsJEFGsQdLHIjznWIU6/xiMmgWo+M4RQycytmE6IJFSbbEpZCFcpzr5fXiadWtU5r9Zb9UqjlsdRREfoGJ0iB12gBrpFTdRGFAF6RM/oxbq3nqxX623RWrDymUP0C9b7F7DHjPU=</latexit>

G

Figure 2: Our proposed architecture for learning from randomness. An input x is encoded by fθ into
a useful representation z, while also being fed to random projection functions g(k). Simple, learnable
predictor functions h(k)

ϕ try to match the outputs y(k) from the projectors g(k), which is only possible
when z contains rich information about the input.

simple predictors HΦ = {· · ·h(k)
ϕ (Z) · · · } that aim to predict the outcome of each random projection

function respectively. Formally, we propose optimizing the high-level objective:

argmin
θ,Φ

∑
xi∈X

∑
k

D
[
g(k)(xi), h

(k)
ϕ (fθ(xi))

]
+ λ1Ω1(θ) + λ2Ω2(Φ), (1)

where D[·, ·] is a divergence metric measuring the similarity between its inputs, the Ω(·)’s denote
regularization terms, and the λ’s are the corresponding weights. To make this a non-trivial task,
the predictors h

(k)
ϕ should have limited capacity, such as being linear functions, or simple neural

networks with a few layers. This objective aligns with existing SSRL methods that use predictors
(Grill et al., 2020; Chen & He, 2021).

Objective (1) is essentially a lower-bound of the maximum likelihood estimation (MLE) objective; we
aim to maximize the probability of observing data projections y(k)

i = g(k)(xi) given all datapoints,∑
i

log p (Yi | xi) =
∑
i

∑
k

log

∫
zi

p
(
y
(k)
i

∣∣∣ zi) p (zi | xi) dzi

≥
∑
i

∑
k

∫
zi

p (zi | xi) log p
(
y
(k)
i

∣∣∣ zi) dzi =
∑
i

∑
k

log p
(
y
(k)
i

∣∣∣ zi = fθ(xi)
)
,

(2)

where p (zi | xi) is a Dirac delta distribution since the representation model is a deterministic function.
As an example of the connection between Objectives (1) and (2), when the p

(
y
(k)
i | zi

)
are assumed

to be Gaussian distributions, the corresponding D in Objective (1) is the Euclidean distance. We
discuss other options for D below.

A straightforward training strategy for Objective (1) is joint training where we treat the representation
model fθ and predictors HΦ as a multi-objective autoencoder, updating all parameters in the same
backpropagation pass. However, in preliminary experiments this naı̈ve training strategy showed
fluctuating progress which prevented the model from converging to satisfactory solutions.

We tackle the training instability issue by adopting the classic Expectation-Maximization (EM)
method. Considering the MLE lower-bound (Objective (2)), optimizing the representation model
fθ is an E-step that repositions the posterior distribution of data p(Z|X ) given fixed log-likelihood
estimation modules log p

(
y
(k)
i | zi

)
. For the M-step, the representation distribution is fixed and we

optimize the predictor heads HΦ. Details of the derivation can be found in Appendix G. Hence, in
this work we train the proposed SSRL model by alternating steps:

E-step: Optimize the representation model parameters θ for one iteration

argmin
θ

∑
i

∑
k

D
[
g(k)(xi), h

(k)
ϕ (fθ(xi))

]
+ λ1Ω1(θ), (3)

M-step: Optimize the predictor model parameters Φ for M iterations

argmin
Φ

∑
i

∑
k

D
[
g(k)(xi), h

(k)
ϕ (fθ(xi))

]
+ λ2Ω2(Φ). (4)
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Optimizing the predictor model for more iterations than the representation model brings the predictor
closer to its optimal performance with the latest representation model fθ. Previous studies have
shown that optimizing the predictor to achieve optimality leads to improved performance (Chen &
He, 2021; Grill et al., 2020; Tian et al., 2021).

3.2 DIVERGENCE MEASURE: BATCH-WISE BARLOW TWINS

Now we return to options for the divergence D in Objective (1). While there are several common
choices of divergence used in machine learning such as Mean Squared Error (MSE), Cross En-
tropy (CE), or the Contrastive (Chopra et al., 2005) and Triplet (Schroff et al., 2015) losses, they
are often inadequate for enforcing identifications between subtly different points as is crucial for
representation learning tasks; MSE downweights the importance of small errors, CE is ill suited for
regression tasks, while the Contrastive and Triplet losses introduce significant stochasticity.

The Barlow Twins loss (Zbontar et al., 2021) has garnered much interest in the SSRL literature as
it disentangles learned representations through redundancy reduction. We also note its ability to
scale to very high-dimensional vectors (Zbontar et al., 2021). Thus, we introduce Batch-wise Barlow
Twins (BBT), a variant that measures representation differences between data instances from two
sources, the random projector g(k) and the predictor h(k)

ϕ , rather than disentangling the representation
encoding. We define the BBT loss as

LBBT =
∑
k

∑
i

(1− c
(k)
ii

)2

+ λ
∑
j ̸=i

c
(k)
ij

2

 , (5)

where the cij are the entries of a cosine similarity matrix,

c
(k)
ij =

y
(k)
i

⊤
ŷ
(k)
j∥∥∥y(k)

i

∥∥∥
2

∥∥∥ŷ(k)
j

∥∥∥
2

, y
(k)
i = g(k)(xi), ŷ

(k)
i = h

(k)
ϕ (fθ(xi)) , (6)

and y
(k)
i , ŷ

(k)
i ∈ Rd(k)

. Compared to the loss in (Zbontar et al., 2021), Equation (5) has an extra
summation over the ensemble k. The main difference comes from the definition of the cosine
similarity matrix; our cosine similarity is an m×m matrix with m the batch size, whereas in Barlow
Twins it is a d(k) × d(k) matrix.

3.3 DIVERSITY ENCOURAGEMENT ON RANDOM DATA PROJECTORS

Learning from randomness aims to extract useful representations from random projection functions
g(k)(X ) ∈ G which mimic arbitrary downstream tasks. In practice we create multiple data projections
by randomly initializing neural networks that reuse the architecture design of fθ, but scaled down,
which avoids the need to make domain-specific choices about the projectors. Functions generated this
way can often capture similar information to each other when diversity is not specifically encouraged,
which limits the generalization capabilities of the representations learned by fθ. While increasing the
number of random projection functions could mitigate the diversity problem by brute force, such an
approach is computationally wasteful because it would maintain many similar projectors.

We propose a solution that picks K diverse projectors from N ≫ K randomly generated candidates.
The underlying hypothesis is that one sufficiently large batch of data can reveal the behavioral
differences between candidate random projectors. Presuming there is a batch of data X ∈ Rm×d, for
each of the N randomly generated projectors g(k)(X ) ∈ G we produce the normalized outputs

Y (k) = g(k)(X)/∥g(k)(X)∥2, Y (k) ∈ Rm×d(k)

. (7)

We then compute the cosine similarity over the batch of outputs for each projector as

A(k) = Y (k)(Y (k))⊤, A(k) ∈ Rm×m. (8)

By flattening the matrix A(k) and again normalizing, we obtain a vector a(k) ∈ Rm2×1, which acts as
the signature of the k’th projector with respect to the batch. Finally, to select K target models from
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the N candidates, we search for a subset that maximizes the following binary constraint optimization
problem involving matrices Ã made from K stacked vectors a(k),

argmax
s

|det(B)| s.t. B = ÃÃ⊤, Ã =
[
a(k)

∣∣∣ k ∈ [0, N ], sk = 1,
∑
k′

sk′ = K
]
, (9)

where the 1’s in the binary vector s ∈ {0, 1}N indicate the chosen projectors. While this problem is
known to be NP-hard, approximate methods such as the Fast Determinantal Point Process (Chen et al.,
2018) can find good solutions in reasonable time. It is worth noting that our diversity encouragement
solution does not involve gradient computations, and can be run once as a pre-processing step without
occupying computation resources during the SSRL training phase. In addition, we also explored
other diversity encouraging techniques through initialization in our experiments and provide analysis
of the impact on performance in Section 4.5. We summarize the full LFR algorithm in Appendix B.

4 EXPERIMENTS AND EVALUATION

4.1 DATASETS

We consider diverse data types to show the wide-ranging applicability of learning from randomness.

Time series: We utilized two standard time-series datasets, Human Activity Recognition (HAR) (An-
guita et al., 2013) and Epileptic Seizure Recognition (Epilepsy) (Andrzejak et al., 2001). Both
datasets were pre-processed using the same methods as in TS-TCC (Eldele et al., 2021). As a larger
scale test we also include the MIMIC-III dataset, a standard in the medical domain for tasks involving
electronic health record data. We utilized the pre-processed version of the MIMIC-III Benchmark
dataset (Harutyunyan et al., 2019), and focused on the length-of-stay task (Yèche et al., 2021) which
is framed as a 10-class classification problem, where each class represents a different duration of stay.

Tabular: We used three tabular UCI datasets in our experiments: Adult Income (Income) (Kohavi,
1996), First Order Theorem Proving (Theorem) (Bridge et al., 2014), and HEPMASS (Baldi et al.,
2016). For Income, a binary classification problem, we followed the data preprocessing steps in (Ucar
et al., 2021). The Theorem dataset is framed a a 6-class classification problem. The much larger
HEPMASS dataset is another binary classification task which includes 7 million training and 3.5
million testing events, each with 27 features.

Computer vision: We tested on Kvasir (Pogorelov et al., 2017), a medical image dataset consisting
of 8,000 images of the gastrointestinal tract. There are eight balanced classes including seven disease
types as well as healthy images. We followed (Kalra et al., 2023) to resize all images to 100×80
pixels and split the data into 6,000 images for training and 2,000 for testing. We provide further
results on CIFAR10 in Appendix D.6.

4.2 IMPLEMENTATIONS

Evaluation: All the downstream tasks in our study are treated as classification problems. To evaluate
the quality of the pre-trained representations, we employed supervised classifiers that are specific to
each dataset. For the MIMIC-III dataset we utilized a MLP classifier (Yèche et al., 2021). For tabular
datasets, we used logistic regression, similar to the approach in STab (Hajiramezanali et al., 2022).
For the remaining datasets, a linear classifier was employed. The classifiers were trained on the frozen
representations of the training set and evaluated on the test set, which is the most commonly used
protocol. We also include finetuning results in Appendix D.4 and transfer learning results on Time
Series in Appendix D.1. Accuracy is our primary evaluation metric, except for MIMIC-III where we
adopted linearly weighted Cohen’s Kappa as in (Yèche et al., 2021), with higher values indicating
better agreement. To ensure the robustness of our results, we conducted multiple random runs and
report the mean and standard deviation, using 5 runs for tabular datasets and 3 runs for others.

Model architectures: Regarding the model architectures, we adopted similar backbone encoders
as previous works. For the HAR and Epilepsy datasets, we utilized the same 3-block convolutional
layers as TS-TCC (Wang et al., 2017). For the MIMIC-III dataset, we employed the Temporal
Convolutional Network used by NCL (Yèche et al., 2021). For the Tabular datasets, we used 4-layer
MLPs, following the approach in SCARF (Bahri et al., 2022). For Kvasir, we employed the ResNet18
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Table 1: Baseline methods
Category Method Description

Domain-agnostic
Autoencoder (Rumelhart et al., 1986) Encoder/decoder with low dimensional latents trained via the reconstruction loss.
DACL (Verma et al., 2021) Self-supervised learning method that uses mix-up as data augmentation across modalities.
DIET (Balestriero, 2023) Self-supervised learning method that predicts the datum index as a pretext task.

Domain-specific
augmentations

SimCLR (Chen et al., 2020) Contrastive learning method with both positive and negative pairs.
SimSiam (Chen & He, 2021) Self-supervised learning with Siamese networks and only positive pairs.

Time series TS-TCC (Eldele et al., 2021) Contrastive learning method that uses a correlation-based similarity to capture temporal
relationships, and time-series augmentations to generate positive and negative views.

Tabular SCARF (Bahri et al., 2022) Adaptation of SimCLR to tabular domains, using random corruption for dual views.
STab (Hajiramezanali et al., 2022) An augmentation-free framework for tabular self-supervised learning akin to SimSiam.

Positive pairs are created by different regularizations in the forward pass.

Supervised LogReg Supervised training with logistic regression.
Supervised Supervised training with a classification layer added to the encoder used in other methods.

Ablation Random Init As an ablation baseline we report the accuracy using a randomly initialized encoder (Eldele
et al., 2021).

architecture (He et al., 2016). To avoid domain-specific projector design, in each case the random
projectors reuse the encoder architecture, but are scaled down. Complete details are in Appendix C.

Baseline methods: Table 1 summarizes all baselines used in our experiments. It is worth noting that
while our proposed framework LFR is domain-agnostic, popular SSRL methods such as SimCLR
and SimSiam require domain-specific augmentations to achieve optimal performance. Specifically,
the default augmentations used for view creation in SimCLR and SimSiam are designed for natural
image classification, and may not be suitable for other modalities. In our experiments with tabular
datasets, we compare our approach to SCARF (Bahri et al., 2022), which is a version of SimCLR
adapted to tabular data that uses random corruptions as augmentations. For more detailed information
on the implementations and augmentations, please refer to Appendix C.

4.3 PERFORMANCE ACROSS DATA MODALITIES

The performance of LFR and baselines across multiple modalities is shown in Table 2. Our ex-
periments show that for modalities where there are no standardized augmentation pipelines such
as medical images, time series, and tabular data, LFR had the strongest performance among the
SSRL methods, outperforming other self-supervised learning methods in most cases including the
domain-agnostic ones such as DACL. For instance, on the HAR and Epilepsy datasets, LFR was
the best performing method, beating the time-series specific self-supervised learning method TS-
TCC. Similarly, for the Income and Theorem datasets, LFR outperformed the tabular data specific
self-supervised learning baselines SCARF and STab. Although on the HEPMASS dataset LFR was
not the best, it still performed well, comparable to the autoencoder and SCARF. Interestingly, for
the Income dataset, LFR even outperformed supervised training. For time series and tabular data,
augmentation-based methods like SimSiam tend to underperform. For example, SimSiam was worse
than a randomly initialized encoder in HAR and Income.

This experimental result reflects our hypothesis – it is feasible to learn high-quality data representa-
tions across all modalities tested by predicting random data projections. LFR shows comparatively
good performance on domains where semantic-preserving augmentations are difficult to create.

4.4 PERFORMANCE ON MEDICAL APPLICATIONS

To evaluate the performance of LFR on specific application domains, we conducted a performance
comparison on two medical datasets: Kvasir for medical images and MIMIC-III for medical time
series (see shaded columns in Table 2). Our findings show that LFR performed the best on Kvasir
and was highly comparable to other well-performing baselines on MIMIC-III.

It is worth noting that the standard image augmentation pipeline used in other self-supervised methods
is heavily tailored towards natural images and does not lead to superior performance on medical
images (Kvasir).1 Similarly, the standard augmentations proposed for time series do not capture the

1Some images in the Kvasir dataset have unnatural green annotation boxes in the bottom left corner which
illustrate the configuration of the endoscope as it captured the image (Pogorelov et al., 2017), which may conflict
with standard image augmentations. It would require domain knowledge to craft suitable augmentations.
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Table 2: Performance comparison across various data modalities and application domains. Results of
the best self-supervised learning methods are in bold. Shaded columns denote medical applications.

Time series Tabular Image

HAR Epilepsy MIMIC-III Income Theorem HEPMASS Kvasir
Log Reg 57.5±N/A 80.9±N/A 47.8±N/A 84.8±N/A 45.3±N/A 90.7±N/A -
Supervised 96.0±0.6 98.3±0.1 48.8±0.0 81.5±0.2 53.8±0.5 91.5±0.0 83.2±0.2

Se
lf

-s
up

er
vi

se
d

Random Init 80.7±2.3 89.1±0.1 42.4±1.1 83.1±0.2 44.9±0.8 84.3±1.3 28.9±5.7

Autoencoder 77.2±0.7 90.8±1.3 44.9±0.5 85.0±0.1 50.0±0.4 90.7±0.0 72.4±0.6

DIET 88.6±1.3 96.8±0.3 33.8±5.2 82.2±0.4 47.1±0.5 - 71.3±0.9

SimSiam 65.1±0.8 97.4±0.0 41.0±1.9 79.2±1.9 40.9±0.9 85.3±3.1 72.6±1.4

SimCLR 87.8±0.4 97.4±0.2 44.1±0.1 - - - 72.1±0.3

SCARF - - - 84.2±0.1 48.5±1.0 90.1±0.1 -
STab - - - 84.2±0.3 50.7±0.7 83.6±1.7 -
TS-TCC 91.2±0.8 97.6±0.2 38.5±1.3 - - - -
DACL 90.7±0.4 97.5±1.5 40.9±0.6 79.8±0.7 47.6±1.0 88.7±0.8 72.0±0.1

LFR (Ours) 93.1±0.5 97.9±0.2 46.6±0.3 85.2±0.1 51.6±0.7 90.1±0.2 74.9±0.6

unique characteristics of online monitoring data. In contrast, LFR does not require augmentations,
making it a promising approach for application-specific datasets and tasks. Overall, our results
suggest that LFR is an effective method for learning meaningful representations, even for specific
applications that would otherwise require domain knowledge.

4.5 IMPACT OF RANDOM DATA PROJECTOR DIVERSITY

In this section, we analyze the impact of the diversity of random data projectors on LFR using the
Kvasir dataset. Projector diversity can be influenced at two stages: initialization and selection. For
projector selection, we used the Determinantal Point Process illustrated in Section 3.3. Regarding
projector initialization, we employ two techniques: Beta initialization and weight dropout.

None Selection Initialization Both
Diversity Encouragement

70
71
72
73
74
75
76

Ac
cu

ra
cy

Figure 3: Effect of target diversity

Beta initialization: We drew inspiration from the Pre-
witt operator (Prewitt, 1970) and initialized the weights
of 2D convolutional layers to create diverse targets that
emphasize various edge features. To achieve this, we used
a scaled version of the Beta distribution with parameters
α = 0.5 and β = 0.5 to initialize the convolutional layer
weights to be close to -1 and 1.

Weight dropout: We utilized DropConnect (Wan et al.,
2013) to initialize the target networks. This involved ran-
domly setting a fraction of weights to zero with a corrup-
tion rate of 0.4. Unlike standard DropConnect used for network regularization, we froze the weights
after initialization to enhance diversity in the target representations.

Results: We compared the effectiveness of diversity encouragement at both the initialization and
selection stages through an ablation on Kvasir. Our results, shown in Figure 3, demonstrate that
promoting diversity in the projector set at both initialization and selection helps with the downstream
performance. These findings underscore the importance of diversity in the projector set and highlight
the effectiveness of our proposed methods for promoting diversity in LFR.

4.6 ABLATION STUDY

In this section, we investigate the impact of hyperparameters on the model’s performance. To provide
a more focused analysis of the trends observed in our ablation study, we present the results for Kvasir,
which is representative of the other datasets. While we have observed similar trends in other datasets,
the significance may vary depending on the specific characteristics of each.

Number of projectors: We evaluated the impact of the number of random projectors K on linear
evaluation accuracy using Kvasir data. We plotted the mean accuracy and standard deviation across
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Figure 4: Test accuracy with different hyperparameters on Kvasir. Left: Number of random projectors.
Middle: Batch size. Right: Predictor training setting.

3 runs for K = 2, 4, 6 and 8 in Figure 4. The results indicate that the learned representation has
a higher linear probing accuracy as the number of projectors increases until it reaches 6. Beyond
K = 6, there is the possibility of reoccurring representations generated by the projectors, which
can introduce bias into the encoder’s training process. This could happen as the gradient descent
optimization process might excessively favor redundant features, potentially leading to decreased
performance. Based on these findings, we used K = 6 for our experiments on Kvasir.

Batch size: Because the selection of diverse projectors in LFR relies on one representative batch of
data, we examine the sensitivity of LFR to training batch sizes. We plotted the linear accuracy with
batch sizes of 64, 128, 256, and 512, and reported the mean accuracy and standard deviation across 3
runs in Figure 4. Our results indicate that LFR has relatively stable accuracies across batch sizes,
with no significant difference between them. However, the best performing batch size on the Kvasir
dataset was 256, and thus we used this batch size for our subsequent experiments.

Predictor training epochs: Another option in LFR is how the encoder fθ and predictors HΦ are
trained. We tested joint training, where all models are updated together, and alternating training with
various numbers of epochs for the predictors between each encoder epoch. From Figure 4, our findings
on Kvasir indicate that updating the predictors for several epochs can improve performance compared
to joint training, suggesting that more optimal predictors provide better learned representations.
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Figure 5: Test accuracy with differ-
ent embedding dimensions.

Embedding dimension: We conducted an analysis on the
effect of latent dimension on accuracy. Figure 5 demonstrates
that as the latent dimension increases, there is a corresponding
improvement in performance accuracy. However, when the
latent dimension is more than 2048, the performance increase
is minimal. Therefore, we used 2048 for our experiments.

Additional experimental results are provided in Appendix D.

5 CONCLUSION

This paper presents a novel self-supervised representation learning framework that is both modality-
agnostic and application-agnostic. Our proposed framework utilizes random projectors to learn
representations from unlabelled data, demonstrating excellent performance across various modalities
and applications, particularly in situations where robust augmentation pipelines are not yet established.

The LFR technique is best suited to situations where the data cannot be reasonably augmented (due
to the lack of domain knowledge). Although surprising, this situation occurs frequently in critical
application domains, such as healthcare as we have highlighted. For general applications, however, if
one knows the application domain well with adequate intuition around sensible data augmentations,
using contrastive-learning-based SSRL is still likely to outperform random projectors. Overall, we
treat LFR as a great complement to SSRL literature to fill the gap of data augmentation-free SSRL
that satisfies the needs of many crucial applications.

While LFR encourages the use of SSRL across modalities and domains without the need for expert
knowledge to craft augmentations, the limited human input to the learning process may increase the
risk of sensitive features being misused, leading to privacy or fairness concerns. We recommend
human oversight of self-supervised methods to monitor for appropriate use of data.
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Reproducibility Statement Towards the goal of reproducibility, we have provided our anonymized
code repository as supplemantary material with this submission. The codebase includes instructions
on how build the required environment, and how to run our proposed method as well as baseline
methods. We also provide instructions for how to access the datasets, and run our pre-processing code.
All relevant descriptions of the model architectures and hyperparameters are described in Section 4.2
and Appendix C. Additionally, an algorithmic description of our proposed method in pseudocode is
provided in Appendix B. A statement on the computational resources spent is given in Appendix E.
Additional notes on reproducibility are detailed in Appendix C.4.
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A EXTENDED RELATED WORKS

Continuing our discussion of contrastive-learning based pretext tasks, we summarize the most
common augmentation techniques used in contrastive learning and compare them across domains.

Pretext tasks for contrastive learning

Contrastive learning methods rely heavily on augmentation to generate positive views – semantically
similar examples which are optimized to have the same representation as the original datapoint. To
ensure the quality of learned representations, augmentations should be semantic-preserving (Tian
et al., 2020; Balestriero et al., 2023). However, finding suitable augmentations for different application
domains can be a challenging task, and researchers have invested considerable effort into this area to
enhance downstream performance.

Computer vision Image datasets benefit from a wide range of semantically similar augmentations,
including random cropping and resizing, horizontal flipping, color jittering, converting to grayscale,
and Gaussian blurring (He et al., 2020; Chen et al., 2020; Chen & He, 2021). However, the best
performing augmentations are often dataset-specific (Ericsson et al., 2022) and require domain
knowledge to determine. For instance, enforcing color invariance by grayscale conversion may not
be beneficial for flower datasets (Zhang & Ma, 2022), but it can improve performance for ImageNet
data (Chen et al., 2020). Furthermore, augmentations designed for natural images may not be suitable
for medical domains (Elgendi et al., 2021). For instance, MoCo-CXR (Sowrirajan et al., 2021) focuses
on chest X-ray images and uses random rotation and horizontal flipping instead of random crops,
Gaussian blur, and random grayscale, as the latter may alter disease labels or are not meaningful
for grayscale X-ray images. In another study, the authors proposed specific color space transforms
for pathology images (Kang et al., 2023), as naı̈ve color-jittering may produce unrealistic resulting
images (Shen et al., 2022). Finally, the choice of augmentations can even be task-specific (Xiao et al.,
2021). As an example, aggressive cropping may be suitable for image classification, but may not be
optimal for image recognition tasks (Purushwalkam & Gupta, 2020).

Time series Time series data often contains underlying patterns that are not easily identifiable
by humans, unlike images with recognizable features (Luo et al., 2023). Consequently, designing
effective data augmentation methods for time series data poses significant challenges and often
requires domain knowledge. For example, augmentations for wearable sensor signals include rotation
to simulate different sensor placements and jittering to simulate sensor noise (Um et al., 2017). Other
researchers have focused on bio-signals and introduced channel augmentations that preserve the
semantic information in the context (Mohsenvand et al., 2020; Cheng et al., 2020). Neighbourhood
contrastive learning (Yèche et al., 2021) proposed leveraging patient identity information in online pa-
tient monitoring and using near-in-time data sequences of the same patient as semantically equivalent
pairs. However, these augmentations are often specifically designed for the dataset and downstream
task (Zhang & Ma, 2022), and their performance may deteriorate when applied to other time series
data (Eldele et al., 2021). Therefore, identifying the optimal augmentation pipeline for each dataset
and task requires extensive analysis (Iwana & Uchida, 2021).

Tabular SSRL methods are understudied in the tabular domain as designing effective semantic-
preserving augmentations is particularly challenging for structured data (Yoon et al., 2020). Like
for time-series, it is often difficult for a human to determine if two views should be considered
semantically equivalent, and unlike computer vision small changes to individual features can drasti-
cally change the content. SubTab (Ucar et al., 2021) proposed to generate positive views through
different feature subsets. More recently, SCARF (Bahri et al., 2022) proposed to augment each record
by corrupting a random subset of features. Finally, STab (Hajiramezanali et al., 2022) creates the
contrastive views by imposing different regularization on the encoder for the same input.
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B ALGORITHM

We summarize the LFR algorithm in Algorithm 1 which uses the subroutine in Algorithm 2.

Algorithm 1 LFR: Learning From Randomness
Require: Dataset D = (xi)

n
i=1, number of random projectors K

Ensure: Encoder fθ
1: Initialize encoder fθ
2: Initialize 10 ·K different random projectors and select K diverse projectors g1, ..., gK using

DPP as introduced in Section 3.3
3: Initialize K predictors h1

ϕ, ..., h
K
ϕ , one for each projector.

4: for epochall in training epochs do
5: for each mini-batch B do ▷ Train encoder
6: Train-Network(B, fθ, hk

ϕ, gk)
7: Update parameters of fθ with gradient descent using LBBT as introduced in Section 3.2
8: end for
9: for epochp in predictor epochs do

10: for each mini-batch B do ▷ Train predictor
11: Train-Network(B, fθ, hk

ϕ, gk)
12: Update parameters of all hk

ϕ with gradient descent using LBBT

13: end for
14: end for
15: end for

Algorithm 2 Train-Network subroutine
1: procedure TRAIN-NETWORK(B, fθ, hk

ϕ, gk)
2: Compute representations: Z = fθ(B)
3: for k = 1 to K do
4: Compute output representations: hk

ϕ(Z)

5: Compute representation from projector k: gk(Z)
6: Compute loss LBBT

7: end for
8: end procedure

C IMPLEMENTATION DETAILS

C.1 DATASET SUMMARY

Table 3 provides a summary of all datasets used in our experiments, along with the corresponding
downstream tasks and evaluation metrics.

Table 3: Dataset description.
Dataset Modality Data Domain Train Size Test Size Downstream Task Metric
HAR Time series Mobile sensors 7352 2947 Multi-class classification (6) Accuracy
Epilepsy Time series Brain EEG 9200 2300 Binary classification Accuracy
MIMIC-III Time series Patient Online Monitoring 2,568,619 563,742 Multi-class classification (10) Cohen’s Kappa
Fault Diagnosis (App. D.1) Time series Motor current signals 8184 2728 Multi-class classification (3) Accuracy
Income Tabular Census 30162 15060 Binary classification Accuracy
Theorem Tabular Logic Reasoning 3059 1530 Multi-class classification (6) Accuracy
HEPMASS Tabular Particle Physics 7,000,000 3,500,000 Multi-class classification (2) Accuracy
Kvasir Image Medical Images 6000 2000 Multi-class classification Accuracy
CIFAR10 (App. D.6) Image Natural Images 50000 10000 Multi-class classification (10) Accuracy
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Table 4: Details on LFR architectural parameters
Dataset Projectors Projector Initialization Encoder Architecture Projector Architecture
HAR/Epilepsy/Fault Diagnosis (App D.1) 6 Pytorch Default Three-block CNN Two-block CNN
Income/Theorem 6 Pytorch Default Four-layer MLP Two-layer MLP
HEPMASS 6 Pytorch Default Four-layer MLP Two-layer MLP
MIMIC-III 10 Pytorch Default Five-block TCN Three-block TCN
Kvasir 6 β Initializtion + Weight Dropout ResNet18 Four-layer CNN
CIFAR10 (App D.6) 40 β Initializtion + Weight Dropout ResNet18 Four-layer CNN

C.2 NEURAL NETWORK ARCHITECTURES

HAR/Epilepsy/Fault Diagnosis: For LFR, we used a three-block convolutional network
from (Wang et al., 2017; Eldele et al., 2021) as the representation model fθ. For the predictors
h
(k)
ϕ , we used a single linear layer. For the random projectors g(k), we adopted a similar architecture

to the representation model but with slightly decreased complexity, a two-block convolutional network
with 16 and 32 channels, followed by two sequential linear layers with a hidden dimension of 256.
For all other self-supervised methods, we used the same representation model for a fair comparison.
For SimCLR (Chen et al., 2020) and SimSiam (Chen et al., 2020), we used the same predictors as
LFR, and a 3-layer ReLU network of hidden dimension 512 as a projector. The first two linear layers
are followed by a batchnorm layer. To create the contrastive view for SimCLR (Chen et al., 2020) and
SimSiam (Chen et al., 2020), we adopted the same augmentations as designed in TS-TCC (Eldele
et al., 2021).

MIMIC-III: For all methods, we followed the encoder structure from (Yèche et al., 2021) as
the representaion model/encoder, with the exception that we used flattened temporal convolutional
network (TCN) features followed by a linear layer, which produced the embedding size of 64. We
also disabled the L2 normalization in the encoder. For the random projectors in LFR, we adopted a
three-block TCN with kernel size of 2, followed by a linear layer with output channel size of 64 for
each layer. The two-layer ReLU predictor is shared in LFR, SimCLR and SimSiam with a hidden
dimension of 256. We used the same projector and augmentation as in HAR/Epilepsy for SimCLR
and SimSiam.

Income/Theorem: For LFR, we followed the setup in (Hajiramezanali et al., 2022; Bahri et al.,
2022) and used a 4-layer ReLU network with a hidden dimension of 256 as the representation model,
with a single linear layer predictor. The random projector networks had a similar architecture but
were less complex, using a 2-layer ReLU network with a hidden dimension of 256. For the contrastive
baselines, we employed the same encoder and predictor for a fair comparison, and followed (Bahri
et al., 2022) by using a 2-layer ReLU network with a hidden dimension of 256 as projectors. To
generate the contrastive views, we used the SCARF (Bahri et al., 2022) augmentation technique to
randomly corrupt features with values sampled from their empirical distribution, ensuring that our
SimCLR baseline was identical to SCARF.

HEPMASS: For the HEPMASS dataset, we used the same network architecture as for the In-
come/Theorem datasets but with the output latent dimension of the encoder set to 16.

Kvasir/CIFAR10: For LFR, we used ResNet18 (He et al., 2016) as the representation model, with
an output dimension of 2048 for all datasets. For CIFAR10 we followed SimSiam (Chen et al.,
2020) to use the CIFAR variant of ResNet18. The predictors are 4-layer ReLU networks with a
hidden dimension of 256. For the random projector networks, we adopted a 4-layer CNN of channels
[3, 8, 16, 32], each layer is followed by a ReLU, and every two layers are followed by max-pooling. A
linear layer is used to map the output to 2048 dimensions. For the contrastive baselines, we adopted the
same representation model for a fair comparison and used 3-layer ReLU networks with hidden dimen-
sion 256 as projectors. To create the contrastive views, we employed the augmentation set adopted by
SimSiam Chen et al. (2020) for CIFAR (RandomResizedCrop, RandomHorizontalFlip,
ColorJitter, RandomGrayscale) and added GaussianBlur for Kvasir. We applied the
same set of augmentations to the implementation of DIET (Balestriero, 2023). All other settings are
the same as with the ResNet18 model.
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All supervised baselines use the same representation model as the SSL methods, with the final layer
being a linear classification layer.

We summarize all architectural related settings of LFR in Table 4

C.3 DETAILS OF TRAINING SETTINGS

LFR training settings: Table 5 summarizes all the training settings used for LFR, while Table 6
outlines the evaluation settings used for downstream tasks. We used a Logistic Regression classifier
for all tabular datasets including Income, Theorem, and HEPMASS, while for MIMIC-III we used a
MLP network to predict the length of stay following (Yèche et al., 2021). For the remaining datasets,
we followed prior works such as TS-TCC (Eldele et al., 2021), SimSiam (Chen et al., 2020), and
BYOL (Grill et al., 2020) by using a linear classifier for classification tasks.

Table 5: Details on LFR Training Settings
Dataset Optimizer Batch Size Learning Rate Optimizer Parameters Epochs
HAR/Epilepsy/Fault Diagnosis (App D.1) Adam 128 3e-4 β=(0.9, 0.999), wd=3e-4 Train epochs = 200, Predictor epochs = 5
Income/Theorem Adam 128 1e-3 β=(0.9, 0.999), wd=0 Train epochs = 100, Predictor epochs = 1
HEPMASS Adam 512 1e-6 β=(0.9, 0.999), wd=0 Train epochs = 20, Predictor epochs = 1
MIMIC-III Adam 4096 1e-3 β=(0.9, 0.999), wd=5e-4 Train steps = 600, Predictor steps = 5
Kvasir SGD 256 1e-4, cosine decay momentum=0.9, wd=5e-4 Train epochs = 400, Predictor epochs = 5
CIFAR10 (App D.6) SGD 512 3e-2, cosine decay momentum=0.9, wd=5e-4 Train epochs = 400, Predictor epochs = 5

Table 6: Details on Linear Evaluation Settings of SSL methods

Dataset Optimizer Batch size Learning Rate Optimizer Parameters Epochs
HAR/Epilepsy Adam 128 3e-4 β=(0.9, 0.999), wd=3e-4 100
MIMIC-III Adam 4096 1e-4 β=(0.9, 0.999), wd=5e-4 300
Kvasir SGD 256 1e-3, cosine decay momentum=0.9, wd=0 100
CIFAR10 (App D.6) SGD 512 0.2, cosine decay momentum=0.9, wd=0 100

Baseline training settings: All self-supervised baselines adopt the same training setting as LFR
unless stated otherwise. For DIET with CIFAR10, we followed the original paper to train 5000
epochs with 10 linear warmup epochs and then cosine decay. For DIET with MIMIC-III, we used
batch size 512 and trained for 2000 steps with 10 warmup epochs. We reserved 5000 epochs for
training the autoencoder on MIMIC-III with 500 warmup epochs. For other self-supervised methods
with MIMIC-III, we also added 60 warmup epochs. We summarize the training settings of supervised
baselines in Table 7.

Table 7: Details on Supervised Training Settings
Dataset Optimizer Batch size Learning Rate Optimizer Parameters Epochs Augmentations
HAR/Epilepsy/Fault Diagnosis (App D.1) Adam 128 3e-4 β=(0.9, 0.999), wd=3e-4 500 None
Income/Theorem Adam 128 1e-3 β=(0.9, 0.999), wd=0 100 None
MIMIC-III Adam 4096 5e-6 β=(0.9, 0.999), wd=5e-4 10 Same as SimCLR and SimSiam
Kvasir SGD 256 1e-2, cosine decay momentum=0.9, wd=0 600 Same as SimCLR and SimSiam
CIFAR10 (App D.6) SGD 512 3e-2, cosine decay momentum=0.9, wd=5e-4 800 Same as SimCLR and SimSiam

C.4 REPRODUCIBILITY NOTES

TS-TCC: Our results for TS-TCC on the HAR and Epilepsy datasets had several discrepancies with
the values reported in the original TS-TCC paper (Eldele et al., 2021). We discovered that in the
official implementation of TS-TCC, the input data was augmented once and then kept the same
throughout training, rather than being randomly augmented in each forward pass. We fixed this bug
and were able to achieve better results. Additionally, we increased the number of training epochs
for our supervised baseline, which also led to improved performance. Lastly, we noticed that in the
original TS-TCC implementation, the random initialization ablation was evaluated using a randomly
initialized linear classification head that was not trained, whereas we evaluated with a trained linear
classification layer and saw a significant increase in accuracy for this ablation.

18



Published as a conference paper at ICLR 2024

0.2 0.4 0.6 0.8
Dropout Rate

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

Income
latent dimension

16
32
256

0.2 0.4 0.6 0.8
Dropout Rate

0.45

0.50

0.55

Ac
cu

ra
cy

Theorem
latent dimension

16
32
256

Figure 6: STab accuracy as a function of dropout rate

STab: The original STab paper (Hajiramezanali et al., 2022) did not provide information about the
random DropConnect ratio or training hyperparameters used in their experiments. In our implementa-
tion, we used the same training hyperparameters as other SSL methods and tested DropConnect ratios
of 0.1, 0.2, 0.4, 0.6, and 0.8, with the results shown in Figure 6. We selected the best-performing
ratio for each experiment and reported the corresponding results. We ended up selecting 0.1 for
Income and 0.8 for Theorem.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 TRANSFER LEARNING EXPERIMENTS

We follow the settings in prior work (Eldele et al., 2021) and perform transfer learning experiments
on a set of four real-world Fault Diagnosis datasets (Ragab et al., 2020). Each dataset was collected
under a different working condition and can be considered as a separate domain with different
characteristics. As shown in Table 8, LFR is able to learn features on the source task that transfer
well to related tasks, outperforming the supervised approach (with the same model architecture) on
10 out of 12 dataset pairs, TS-TCC on 8 pairs, and is significantly better than all other approaches in
terms of average performance. Hence, we see that LFR is able to transfer representations in a tabular
setting, at least when there is some similarity in the domain of the datasets used.

Table 8: Transfer learning experiments
Method (Encoder Arch.) A→B A→C A→D B→A B→C B→D C→A C→B C→D D→A D→B D→C AVG

Supervised (Transf.) 34.28 44.94 34.57 52.93 63.67 99.82 52.93 84.02 83.54 53.15 99.56 62.43 63.83
Supervised (CNN) 42.96 46.33 46.99 43.55 70.53 94.94 48.50 78.34 74.34 52.71 99.05 70.20 64.04
Rand Init (CNN) 79.55 68.80 79.95 78.96 58.39 81.34 70.60 84.93 80.02 80.10 80.13 57.77 75.05
TS-TCC (Transf.) 43.15 51.50 42.74 47.89 70.38 99.30 38.89 98.31 99.38 51.91 99.96 70.31 67.83

LFR (CNN) 90.51 81.63 93.40 75.99 75.48 88.64 69.32 80.54 88.34 78.92 87.90 75.26 82.16

D.2 EMBEDDING DIMENSIONS
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Figure 7: Effect of embedding dimension on LFR
and self-supervised learning baselines with the
Theorem dataset.

As we discussed in Section 4.6, the dimension-
ality of embeddings may have a strong effect
on the richness of learned representations. To
complement the image-based results on Kvasir
presented in the main text, we also used the
Theorem dataset to evaluate the performance
of LFR and baseline SSRL approaches across
latent dimension sizes. Figure 7 shows that in-
creasing the latent dimension improved the ac-
curacy of each approach up to about 256. LFR
consistently outperformed all the other baselines
across all the latent dimension settings.
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Table 9: Effect of sample size during random projector selection
Sample size 64 128 256 512

Accuracy 74.1 ± 0.4 74.0 ± 0.4 74.9 ± 0.6 74.1 ± 0.4

D.3 SAMPLE SIZE FOR PROJECTOR SELECTION

As illustrated in Section 4.5, we use a sufficiently large set of data to select a diverse set of random
projectors. In this section, we investigated the effect of the sample size for random projector selection
with the Kvasir dataset. As shown in Table 9, the sample size does not heavily affect the accuracy
(the fluctuation is less than 1.0%). Therefore, for the ease of implementation, we use the same size of
the batch size in training, i.e. 256 for Kvasir.

D.4 FINE-TUNING PERFORMANCE

In Section 4 we evaluated SSRL methods on downstream tasks using linear evaluation. SSRL methods
are sometimes finetuned to a downstream task, so below we compare LFR’s finetuning performance
to benchmark methods.

During the finetuning phase, we employed a linear layer combined with labeled data to enhance the
performance of the encoder. The architecture setup was consistent with that detailed in the main
paper. However, recognizing the significant volume of data in larger datasets such as MIMIC-III
and HEPMASS, we chose a semi-supervised learning approach in those cases. In this strategy,
we randomly selected 10% of labeled data from these datasets to facilitate the fine-tuning process.
This decision was driven by the computational resources required when dealing with extensive data.
Conversely, for smaller datasets, we conducted fine-tuning using the complete set of available labeled
data, enabling us to evaluate the model’s performance across the entirety of the datasets.

As shown in Table 10, through the fine-tuning process all methods exhibit more comparable perfor-
mance across the datasets. LFR still achieved the best performance on a majority of the datasets we
used, although with overlapping error bars to other methods in those cases.

Table 10: Performance comparison among the SSRL methods with finetuning.

Time series Tabular Image

HAR Epilepsy MIMIC-III Income Theorem HEPMASS Kvasir
Supervised 96.0 ± 0.6 98.3 ± 0.1 48.8 ± 0.0 81.5 ± 0.2 53.8 ± 0.5 91.5 ± 0.0 83.2 ± 0.2

Autoencoder 93.9 ± 1.3 95.1 ± 2.0 49.2 ± 0.6 85.2 ± 0.1 53.9 ± 0.5 90.8 ± 0.0 75.0 ± 0.8

DIET 95.6 ± 0.5 97.8 ± 0.1 48.4 ± 0.1 85.2 ± 0.1 52.4 ± 0.9 - 74.4 ± 0.3

SimSiam 93.4 ± 0.6 97.9 ± 0.2 49.4 ± 0.3 85.2 ± 0.1 52.5 ± 0.8 90.7 ± 0.0 74.5 ± 0.6

SimCLR 93.7 ± 1.1 97.8 ± 0.2 48.6 ± 0.8 - - - 74.5 ± 0.6

SCARF - - - 85.1 ± 0.2 53.8 ± 0.8 90.9 ± 0.0 -
STab - - - 85.3 ± 0.2 53.0 ± 0.7 91.1 ± 0.0 -
LFR 94.7 ± 1.4 98.2 ± 0.2 49.6 ± 0.1 85.3 ± 0.1 54.3 ± 0.4 90.8 ± 0.0 75.5 ± 0.7

D.5 LOSS FUNCTION ABLATIONS

In the main paper, we used the batch-wise Barlow Twins loss as a divergence measure, however this
specific choice of loss function is not required for our method, and many other choices of contrastive
loss could also work. As an ablation, we also ran LFR with the InfoNCE loss on the Kvasir dataset and
observed a slight decrease compared to the Barlow Twins loss (72.6± 0.4 compared with 74.9± 0.6).

D.6 PERFORMANCE ON CIFAR10

The primary focus of LFR is domain-agnostic representation learning, mainly in cases where it is not
clear how to usefully augment the data. As a result, we focused on tabular, time-series, and medical
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Table 11: Performance on CIFAR10
Method Supervised Random Init Autoencoder DIET SimSiam SimCLR DACL LFR

Accuracy 94.4± 0.2 34.7± 0.3 37.4± 0.3 69.3± 1.2 89.2± 0.1 86.7± 0.5 42.4± 2.7 64.3± 0.1

imaging applications in the main paper. Here, we explore the effectiveness of LFR on natural images
with CIFAR10 data. As shown in Table 11, as one might expect, SimSiam and SimCLR achieve
the best performance out of our baselines thanks to their extensively engineered pipeline of image
augmentations. Two domain-agnostic approaches that do not use image augmentations, DIET and our
LFR, fall into a second tier, outpacing the third tier of DACL, Autoencoder, and Random Init. This
result is in stark contrast to what we found on Kvasir, where all methods ended up in a tight range,
with LFR at the top. This suggests that the heavy augmentations of SimSiam and SimCLR really are
specialized for natural images, and are not suitable for other domains within the image modality.

D.7 RANDOM PROJECTORS VISUALIZATION

To illustrate the behaviour of individual random projections, and the role of diversity selection,
we trained LFR on a small image-based dataset, CIFAR102, and examined the nearest-neighbour
representations for different projectors. First we selected a query image at random, then for each of
100 randomly initialized projectors, we encoded all training images, and found the nearest encoded
representations to the query. Distances in embedding space are measured by cosine similarity. We
then visually compared the nearest neighbours that were selected by pairs of projectors which were
deemed most diverse or similar according to the DPP criterion from Equation (9). The pairs with the
highest diversity (Diverse 1 and Diverse 2) and the highest similarity (Similar 1 and Similar 2) are
shown in Figure 8.

The results in Figure 8 show that our similarity measure is effective at selecting projectors that focus
on diverse features. For example, in Figure 8 on the frog query (top left) we see that the projector in
the first row represented a white “edge” feature, since the nearest neighbours all share that feature
from the query but are otherwise semantically different. The projector in the second row appears to
focus on shape, and its nearest neighbours are very different from the first projector. On the other
hand, looking at the bottom right set of images, the most similar projector pair selects very similar
nearest neighbors with 2 out of 5 nearest neighbors being identical. This qualitative study suggests
that promoting diversity in the projectors can lead to the capture of a broader range of features. Then,
diverse features will be available to the representation model during training, potentially resulting in
a richer set of semantic knowledge and ultimately better performance on downstream tasks. This
interpretation is supported by the evidence in Section 4.6 that encouraging projector diversity results
in better performance on linear evaluation accuracy.

E COMPUTATIONAL RESOURCES AND TIME SPENT

The time series experiments with HAR and Epilepsy were conducted on a Tesla V100 GPU with 32
GB of memory, except for TS-TCC which was conducted on a TITAN V with 12 GB of memory.
The experiments took a total of 102 GPU hours, including all baseline experiments. The MIMIC-III
experiments were conducted with an NVIDIA A100 GPU with 40GB of memory, except for TS-TCC
which was again conducted on a TITAN V with 12 GB of memory, and cost 608 GPU hours, including
all baseline experiments. The Kvasir experiments were conducted using a Tesla V100 GPU with 32
GB of memory, and they took a total of 1095 GPU hours, including all baseline experiments. The
tabular dataset experiments with Income, Theorem, and HEPMASS were conducted on an NVIDIA
TITAN V GPU with 12 GB of memory. The experiments took a total of 70 GPU hours, including all
baseline experiments. The CIFAR experiments were conducted on a cluster with a single NVIDIA
P100 GPU with 12 GB of memory per experiment, and they took a total of 3020 GPU hours, including
all baseline experiments.

2CIFAR10 was chosen for this qualitative study rather than the other datasets we used because it has
human-interpretable features and visualizations.
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Figure 8: Nearest neighbors identified by randomly initialized projector models. Each row shows the
query image (left) and its five nearest neighbours identified by a projector. The top two rows display
the most dissimilar projectors, while the bottom two rows give the most similar projectors.

F NOTE ON COMPUTATIONAL EFFICIENCY OF LFR

Our experiments across diverse datasets consistently reveal that LFR’s training time is often compara-
ble to, or even notably shorter than the contrastive SSRL methods. For example, on Kvasir training
SimCLR took around 9 hours, while LFR completed in just 2 hours on the same machine. This
assessment of training time considers both CPU and GPU usage.

The efficiency in LFR’s training time can be attributed to two primary factors. First, existing SSRL
methods rely on extensive augmentations that are performed on CPU and can lead to data loading
bottlenecks. LFR has no such issue. CPU-based image augmentations account for a significant
amount of SimCLR’s 9 hour training time on Kvasir. For datasets with less computationally intensive
augmentations, training times tend to align more closely - on the HAR dataset, LFR concluded
training in approximately 3 hours while SCARF required around 3.3 hours.

Second, multiple passes through predictor heads in LFR is not overly burdensome. Unlike contrastive
frameworks that use double augmentation and encoder passes, LFR requires fewer expensive oper-
ations: one pass through each random projector before training, and one pass through the encoder
followed by one pass through each small predictor during training. Given that the encoder is the
largest network by far, LFR’s training time often proves less than SimCLR which uses multiple
encoder passes.

Compared to the cost of training an encoder, the diversity selection procedure using the Fast Deter-
minantal Point Process (Chen et al. 2018) is an almost negligible contribution to the total training
time. To recap, to select K diverse projectors we initialize N small neural networks and for each we
run one forward pass on a batch of training data of size m. Then, DPP is applied over matrices of
size m2 ×K constructed from the network outputs. As a concrete example, on the Income dataset
training LFR for 100 epochs took 849 s on our machine, while the DPP selection took 3 s.

G MATHEMATICAL DERIVATION

Here we provide more details on the derivation of Equations 2 through 4.
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Consider the MLE objective in Equation 2. As the variable zi’s distribution could be intractable, we
represent it in a general form by the distribution q(zi) such that
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Using Jensen’s inequality, the lower bound of the objective is therefore
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Hence, to maximize the variational lower-bound of the above equation with respect to the proposed
distribution q(zi), the optimal solution is simply to let equality hold (as in the classic EM algorithm),
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which, in turn, requires the following equation to hold,
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where C is a constant. Thus, the optimal solution for q(zi) is
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As both p
(
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i

∣∣ zi
)

and p
(
y
(k)
i

∣∣ xi

)
are delta distributions with probability 1 conditioned on

deterministic functions modelled by g(k) and h
(k)
ϕ respectively, the optimal solution of q(zi) is

simply p(zi
∣∣ xi) given the conditions are satisfied. In other words, we need p(zi

∣∣ xi) that can let
y
(k)
i = h

(k)
ϕ (zi) for all k. Thus, the optimization is essentially an EM algorithm where we optimize

θ and ϕ alternatively to gradually increase the conditional likelihood of Equation 2.
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