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Abstract

In text-video retrieval, the objective is to learn a cross-
modal similarity function between a text and a video that
ranks relevant text-video pairs higher than irrelevant pairs.
However, videos inherently express a much wider gamut of
information than texts. Instead, texts often capture sub-
regions of entire videos and are most semantically similar to
certain frames within videos. Therefore, for a given text, a
retrieval model should focus on the text’s most semantically
similar video sub-regions to make a more relevant compar-
ison. Yet, most existing works aggregate entire videos with-
out directly considering text. Common text-agnostic ag-
gregations schemes include mean-pooling or self-attention
over the frames, but these are likely to encode misleading vi-
sual information not described in the given text. To address
this, we propose a cross-modal attention model called X-
Pool that reasons between a text and the frames of a video.
Our core mechanism is a scaled dot product attention for a
text to attend to its most semantically similar frames. We
then generate an aggregated video representation condi-
tioned on the text’s attention weights over the frames. We
evaluate our method on three benchmark datasets of MSR-
VIT, MSVD and LSMDC, achieving new state-of-the-art re-
sults by up to 12% in relative improvement in Recall@].
Our findings thereby highlight the importance of joint text-
video reasoning to extract important visual cues according
to text. Full code and demo can be found at: layer6ai-
labs.github.io/xpool/.

1. Introduction

The advent of video content platforms like TikTok,
YouTube and Netflix have enabled the mass outreach of
videos around the world. The ability to retrieve videos
that are most semantically similar to a provided text-based
search query allows us to quickly find relevant information
and to make sense of massive amounts of video data.
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A pope traveling on open
body vehicle and blessing
the peoples.

Man in black suit is
having meeting with
group of people.

A female reporter gives
updates on foreign
relations and tragedies. ‘ A bus is going on the road and it is fallen in the big dig. ‘

Figure 1. Illustration of the joint text and visual representations
for a single video and its captions taken verbatim from the MSR-
VTT dataset. Since the video is capturing more content than each
individual text, aggregating the entire video regardless of the input
text can be misleading.

The task of text-video retrieval is an approach to solve
this problem wherein the objective is for a model to learn a
similarity function between texts and videos. To compute
the similarity between both modalities, a common tech-
nique is to first embed a text and a video into a joint latent
space and then apply a distance metric such as the cosine
similarity between the text and video embeddings [5,13,25].

However, there is an important discrepancy between
both modalities that makes such a direct comparison chal-
lenging. Videos inherently express a much wider gamut of
information than texts, so a text generally cannot fully cap-
ture the entire contents of a video. Instead, texts are most
semantically similar to sub-regions of videos, represented
as a subset of frames. Depending on the given text, the
frames that are the most semantically similar would differ,
so multiple equally valid texts can match a particular video.
For example, in Figure 1, we show frames of a sample video
from the MSR-VTT dataset [44]. The frames depict various
scenes from international news and express different visual
content. Moreover, we show multiple captions associated
with this video, and observe that each caption best matches
a different video frame but can seem irrelevant to others.
In this example, we would expect the same video to be re-
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trieved for any of these queries, even though the relevant
content is limited to sub-regions of the video.

Based on this observation, we want a retrieval model
to focus on the video sub-regions that are most relevant
to the given text during retrieval. A model should there-
fore directly reason between texts and the frames of videos
to extract the most relevant information as described in
each text. However, most existing works do not apply di-
rect cross-modal reasoning, and instead utilize the entire
contents of a video such as through mean-pooling or self-
attention [5, 13,29,34]. By encoding a video independently
from a given text, a model is likely to encode superfluous or
even distracting visual information that is not described in
the text, which can reduce retrieval performance.

To address this gap, we design a cross-modal attention
model that we call X-Pool to allow for joint reasoning be-
tween a text and a video’s frames. Unlike previous works
that pool the entire frames of a video, our model provides
flexibility for a text to attend to its most semantically similar
frames and then generates an aggregated video representa-
tion conditioned on those frames.

Our main contributions can be summarized as follows:
(i) We show empirically through a proof of concept that tex-
t-conditioned video pooling allows a model to reason about
the most relevant video frames to a given text, which outper-
forms baselines that use text-agnostic video pooling; (ii) We
propose a cross-modal attention model that extends our
proof of concept with parametric capacity for a text to attend
to its most semantically similar video frames for aggrega-
tion which we call X-Pool. X-Pool obtains state-of-the-art
results across the popular benchmark datasets of MSR-VTT
[44], MSVD [8] and LSMDC [38]; (iii)) We demonstrate
the robustness of X-Pool to videos with increasing amounts
of content diversity, such as videos with many scene tran-
sitions. We show how text-agnostic pooling methods are
much more sensitive to such videos compared to our text—
conditioned X-Pool model.

2. Related Work

Joint Language-Image Understanding.

Joint language-image models are a form of multimodal
learning [6] that aim to understand and relate the text and
image modalities. Methods in text-image understanding
such as [9,14,19-21,28,37,41] are pre-trained to jointly rea-
son about language and image semantics which make them
suitable for downstream cross-modal tasks like visual ques-
tion answering (VQA) [3], image captioning [45] and text-
image retrieval [16]. Most recently, methods such as CLIP
[37], ALIGN [14], DeCLIP [22] and ALBEF [19] employ
unimodal encoders to learn a joint latent space that matches
relevant text-image pairs via a contrastive loss. Our goal is
to bootstrap from a pre-trained joint text-image model and
extend it towards a joint text-video model for the task of

text-video retrieval.

Text-Video Retrieval. The prototypical approach to
text-video retrieval has been through a pre-trained language
expert and often a combination of video experts pre-trained
for various tasks and modalities, after which the language
and vision streams are consolidated through late fusion.
MOoEE [33], CE [25], MMT [13] MDMMT [12], and Teach-
Text [11] are all such works. The motivation for using
pre-trained experts stems from the small-scale nature of the
datasets used in text-video retrieval.

Some works have also benefited from pre-training their
own models on either large-scale text-video datasets [5, 34,

] or through text-image pre-training [17, 33]. Among
them, ActBERT [50] and ClipBERT [!7] are both single
stream models that jointly embed text-video pairs through
BERT-like architectures for early cross-modal fusion. How-
ever, these works do not allow for direct reasoning about the
most semantically similar video sub-regions to a given text.

Recently, the works of CLIP4Clip [29] and Straight-
CLIP [36] use the joint language-vision model of CLIP [37]
pre-trained on a large-scale text-image dataset as a back-
bone. Even the trivial use of CLIP in a zero-shot manner
outperforms most of the above recent works [36], highlight-
ing how the rich joint text-image understanding of CLIP
can be expanded towards videos. CLIP4Clip [29] proposes
several video aggregation schemes including mean-pooling,
self-attention and a multimodal transformer, yet none al-
low for direct matching of a text with its most relevant
video sub-regions which motivates our cross-modal atten-
tion model. Cross-modal attention has been explored in
previous related work such as [9, 17, 19-21,28,31,41,42,

,49,50]. We design a cross-modal attention mechanism
for the task of text-video retrieval that shows significant im-
provement over previous methods.

3. Problem Statement

In text-video retrieval, the objective is for a model to
learn a scalar similarity function s(t,v) between a text ¢
and a video v. We want to assign higher similarity to rel-
evant text-video pairs and assign lower similarity to irrele-
vant pairs. We define two retrieval tasks, text-to-video re-
trieval denoted as ¢2v and video-to-text retrieval denoted as
v2t. In t2v, we are given a query text ¢ and a video index set
V. The goal is to rank all videos v € V according to their
similarities with the query text. Analogously, in v2t, we are
given a query video v and a text index set 7. The goal is
to rank all texts ¢ € 7 according to their similarities with
the query video. In both of these tasks, we are under the
assumption that only the index set is known ahead of time.

The inputs to our problem are a video v and a text t. We
define a video v € RF*3*HXW a4 3 sequence of F' sampled
image frames in time. Thatis, v = [v!, 22, -+ 0|7 where
vf is the f image frame of resolution H x W. We define



atext t as a sequence of tokenized words.

4. Methodology

In this section, we incrementally introduce the insights
and methodologies that motivate our final model X-Pool.
We first describe in Section 4.1 how the use of a pre-trained
joint text-image model is an essential component of our
model to match texts and images which we extend to match
texts and videos. We then explain the drawbacks of aggre-
gating a video into a text-agnostic embedding in Section
4.2, and present an alternative framework that aggregates
frames conditioned on a given text in Section 4.3. We then
introduce our X-Pool model in Section 4.4, a cross-modal
attention model that enables joint reasoning between a text
and the frames of a video. Our model learns to aggregate
videos using the most semantically similar frames to a given
text.

4.1. Expanding Joint Text-Image Models

Bootstrapping From Joint Text-Image Models.
Jointly pre-trained text-image models have demonstrated
the ability to match semantically similar texts and im-
ages [9, 14,19,22,28,37]. We can leverage the existing
text-image reasoning of such models to bootstrap a joint
text-video model. This allows us to learn language-video
interactions with substantially less video data and offers
a more compute efficient solution during training, while
benefiting from the rich cross-modal understanding of
pre-trained joint text-image models. In general, the idea
of bootstrapping video models from image models stems
from the importance of first understanding images in order
to understand videos, as shown in [7].

CLIP as a Backbone. We bootstrap from CLIP [37] due
to its strong downstream performance, its simplicity, and to
more objectively compare with recent works that also lever-
age CLIP as a backbone [29,36], although other pre-trained
text-image models may be suitable backbone candidates. To
bootstrap from CLIP for text-video retrieval, we first embed
a text and individual video frames into its joint latent space
and then pool the frame embeddings to obtain a video em-
bedding [36]. Since the existing information extracted from
a pre-trained CLIP model contains rich text-image seman-
tics, we use CLIP as a backbone to learn a new joint latent
space to match texts and videos instead of just images.

More precisely, given a text ¢ a video frame v/ as in-
put, CLIP outputs a text embedding c; € R” and a frame
embedding ¢/ € RP in a joint latent space:

¢ = () (1)
cf = (o)) )

where ¢ is CLIP’s text encoder and ¢ is CLIP’s image
encoder. By computing equation (2) for each frame in a

video v, we obtain a sequence of frame embeddings C, =
[cl, 2, kT e REFXD,

Computing Text and Video Embeddings. As men-
tioned, we want to embed our given text and video into a
joint space to compute similarity. That is, we want to com-
pute a text embedding z; € RP and a video embedding
z, € RP. The text embedding is directly taken as the out-
put from CLIP. On the other hand, we compute the video
embedding by aggregating the frame embeddings in C, us-
ing a temporal aggregation function p:

Zy = C¢ 3)
Zy = p(Cv) (4)

4.2. Gap: Text-Agnostic Pooling

In most existing works, the aggregation function p does
not directly consider the input text and is purely a function
of the frames of the videos such as through mean-pooling,
self-attention or an LSTM [ 1,5, 13,29,32, 34, 36].

While defining the temporal aggregation function as ag-
nostic to text forms a simple baseline, there are important
drawbacks with this approach. Videos are inherently much
more expressive than texts, so the information captured in
text generally cannot fully capture that of an entire video.
Instead, texts are most semantically similar to certain sub-
regions of videos which we define as subsets of frames, as
shown in Figure 1. As such, common text-agnostic aggre-
gation schemes that pool entire videos like mean-pooling
and self-attention might encode spurious information that is
not described in the input text.

We note that this effect is exacerbated when we consider
videos that exhibit significant diversity in their visual con-
tent [23] which we refer to as content diversity. To elabo-
rate, it is natural to find videos with scene transitions such
as when the actor moves from an indoor setting to an out-
door setting, abrupt scene cuts like in movies, occlusions of
key subjects or noise in the form of distractors for exam-
ple. Since this is an intrinsic property of many videos “in
the wild” [18,39], we want a retrieval model to be robust to
such content diversity by focusing its attention to the most
relevant video sub-regions described in a given text. Intu-
itively, any text-agnostic pooling method will fail under this
setting since it aggregates information from all scenes of the
video, disregarding the input text for retrieval, as we empir-
ically show in Section 5.3.

4.3. Key Insight: Text-Conditioned Pooling

We note that it is therefore important to match texts not
with the entire contents of a video, but with those video
frames that are most semantically similar to a given text.
Depending on the given text, the frames that are most se-
mantically similar would differ, so there could be multiple
equally valid texts that match a particular video. As such,
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Figure 2. Diagram of X-Pool. For the given text ¢, we embed it with the text encoder ¢ and then apply a query projection to obtain @, .
We similarly embed the frames of the given video v; with the image encoder ¢ and then apply a key projection to obtain K, . We compute
the dot product attention between them as illustrated by the horizontal bar plot in the middle of the figure. Our attention mechanism allows
X-Pool to focus on the most relevant frames given an input text. We aggregate a separate set of value-projected frame embeddings that
we weight by the previously computed dot product attention scores to obtain an aggregated video embedding that we then pass through a
fully connected layer (FC) with a residual connection to obtain z,, ¢, . We compute the similarity score s(t1,v1) as the cosine similarity
between z,,|;, and z;; = ¢(t1). Finally, we compute a cross entropy loss after obtaining s(;, v;) as just described for each pair (¢:, v;)

within a batch of size B.

our temporal aggregation function should directly reason
between a given text and the frames of a video.

To that end, we formulate a new temporal aggregation
function 7 that allows us to aggregate the video frames that
are most semantically similar to a given text ¢. By condi-
tioning 7 on ¢, we can extract from a video v the most rel-
evant information as described in ¢ while suppressing noisy
and misleading visual cues. We denote the resulting ag-
gregated video embedding as z,,; and define our similarity
function s(t, v) as

Zy = (Cy | 1) (5)

Zt - Zy|t

12 [[|Zoe

s(t,v) = (6)

To demonstrate the efficacy of our idea, we first propose
a top-k aggregation function 7. (Cy | t) as:

Z c! (7)

felc

7Ttop—k( v | t

where the set K is defined as:

f
arg max Z S (8)
KS(r) fok el

|Kl=
and the selected frames are those with the highest cosine
similarity. Here, we directly select only the frames with
the highest cosine similarity to a given text as a proxy for
semantic similarity. Only the top-k most semantically sim-
ilar frames to a given text are pooled while lower similarity
frames are completely ignored.

We observe that even by just applying top-k pooling,
there is already a significant improvement over baselines
where the temporal aggregation function is text-agnostic.
Detailed experiments can be found in Section 5.3.

4.4. Our Model: X-Pool

Towards Parametric Text-Conditioned Pooling. How-
ever, there are still drawbacks with the top-k method.
Firstly, the tuning of the k hyperparameter can be task
and instance specific as we show in Section 5.3. Sec-
ondly, deciding which frames to aggregate from can re-
quire more complex reasoning than simple cosine simi-
larity. Lastly, completely suppressing frames with lower

IC:



similarity may be too restrictive. As such, we propose a
parametric approach to address these additional considera-
tions while incorporating our insights from applying text-
conditioned pooling.

Cross-Modal Language-Video Attention. Our idea is
to design a learned frame aggregation function with para-
metric capacity for cross-modal reasoning about a text’s
most semantically similar frames in a video, which we call
X-Pool. The core mechanism is our adaptation of a scaled
dot product attention [43] between a text and the frames of
a video. Conditioned on these frames, we generate a video
embedding that learns to capture the most semantically sim-
ilar video sub-regions as described in a given text. Since the
frames with highest semantic similarity can differ depend-
ing on the text, our scaled dot product attention mechanism
can learn to highlight relevant frames to a given text while
suppressing frames not described in said text. Our model’s
capacity to selectively pick frames based on relevance to
a given text is motivated by the same text-conditioning
insights as outlined in the previously described top-k ap-
proach. However, unlike the top-k approach, our proposed
model learns the optimal amount of information to extract
for a text-video pair, thereby removing the need to man-
ually specify a k value. Furthermore, our cross-attention
module handles both high and low relevancy frames rather
than adopting a hard selection of relevant frames as in the
top-k approach.

To elaborate, in our cross-modal attention module, we
first project a text embedding ¢; € RP into a single query
Q; € R P» and a video’s frame embeddings C,, € RF'*P
into key K, € R"*Pr and value V,, € RF"*Pr matrices,
where D is the size of our model’s latent dimension and D),
is the size of the projection dimension. The projections are
defined as:

Q: = LN(c])Wq 9)
K, = LN(C,)Wxk (10)
V, = LN(C,) Wy (11)

where LN is a Layer Normalization layer [4] and W¢, Wk
and Wy, are projection matrices in RP*Pr _ In order to learn
flexible conditioning between the given text and the frames,
we then adapt scaled dot product attention from the query-
projected text embedding to the key-projected frame em-
beddings. The dot product attention gives relevancy weights
from a text to each frame which we leverage to aggregate
the value-projected frame embeddings:

T
Attention(Q;, K, V,,) = softmax <QtK” ) V., (12)

Dy

As such, the @, K, and V,, matrices can be interpreted
akin to those in the original scaled dot product attention pro-
posed in [43] except with cross-modal interactions. That is,

the query-projected text embedding is used to seek from the
key-projected frame embeddings to attend to frames with
highest relevance. The value-projected embeddings repre-
sent the video’s context from which we want to aggregate
only certain sub-regions depending on the text.

To embed a video into a joint space with a text, we
project the aggregated video representation from the atten-
tion module back into R” by applying a weight Wy €
RP»*D to obtain:

rv|t = LN(Attention(Qt, Kqu %)WO) (13)

where the resulting output ry |, is an aggregated video em-
bedding conditioned on the text t. We can thereby learn this
embedding such that a text can attend to its most seman-
tically similar frames through parametric reasoning in the
dot product attention. Our final text-conditioned pooling is
defined as:

Txpool (Cy | £) = LN(FC(ry 1)) +10)"  (14)

where FC is a fully connected network which together
with the residual connection provides additional capacity
for more complex reasoning in our aggregation function.

Figure 2 shows a diagram of our model. We show how
X-Pool performs text-conditioned video aggregation over
frames by allowing a text to learn to attend to its most se-
mantically similar frames for pooling. In the top example,
the input text ¢; is most relevant to the first few frames dis-
played of video v; of a man yelling at and punching a sink,
whereas the final displayed frames of a man near a car do
not capture what is described in the text and instead act as
misleading visual distractors. We show how our model can
reason about semantic similarity by assigning higher atten-
tion weights to the text’s most relevant frames for aggrega-
tion. We emphasize that any text-agnostic pooling method
such as mean-pooling would have aggregated the contents
from this entire video. The resulting aggregation would
thereby capture noisy distractors not described in the input
text which could hamper the similarity score for retrieval. In
the bottom example, we show a similar behaviour wherein
X-Pool can attend to the most relevant frames of two guys
jumping in an elevator as described in the text, whereas text-
agnostic methods would capture non-relevant content from
this video.

Loss. We train models using a dataset D consisting of N
text and video pairs {(t;,v;)} ;. In each pair, the text t; is
a matching text description of the corresponding video v;.
We employ the cross entropy loss from [48] by considering
matching text-video pairs as positives and by considering
all other pairwise text-video combinations in the batch as
negatives. Specifically, we jointly minimize the symmetric
text-to-video and video-to-text losses:

s(t Vi) A

Lizo = Zlog (15)

€S(t“UJ) A
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where s(t;,v;) is the cosine similarity between the text ¢;
and the video v;, B is the batch size and X is a learn-
able scaling parameter. By bootstrapping from a pre-trained
CLIP model and through our cross-modal attention mecha-
nism, training with this loss enables our model to learn to
match a text with its most semantically similar sub-regions
of the ground-truth video.

5. Experiments

We perform experiments on the commonly used bench-
mark text-video retrieval datasets of MSR-VTT [44],
MSVD [&] and LSMDC [38] and evaluate our performance
following existing literature [5, 13,25, 33,47] by reporting
Recall@] (R@1), Recall@5 (R@5), Recall@10 (R@10),
Median Rank (MdR), and Mean Rank (MnR).

5.1. Datasets

MSR-VTT is comprised of 10,000 videos, each paired
with about 20 human-labeled captions. We note that the
multiple captions for each video in MSR-VTT often de-
scribe different video sub-regions, which supports our mo-
tivation for matching a given text with its most relevant
frames in a video. The lengths of videos in this dataset
range from 10 to 32 seconds, and we use two training splits
which we call 7k-Train and 9k-Train to effectively compare
with previous works. 7k-Train is a subset of roughly 7k
videos as defined in [34], while 9k-Train consists of ap-
proximately 9k videos following the split in [13]. Unless
otherwise stated, we use the 9k-Train split for training. To
evaluate our models, we use the /K-A test set from [47] con-
sisting of 1,000 selected caption-video pairs.

MSYVD contains about 120k captions that each describe
one of 1,970 videos ranging in length from 1 to 62 seconds.
Again, videos are paired with multiple captions and each
may describe different sub-regions of the same video. In
MSVD, the training, validation and test splits are comprised
of 1,200, 100 and 670 videos respectively. Our final results
are evaluated on the test split that has a varying number of
captions per video. To that end, we follow recent meth-
ods for evaluation by treating all the provided caption-video
pairs as separate instances for evaluation [29,36].

LSMDC is a movie clip dataset containing 118,081
videos each paired with a single caption description. The
lengths of videos range from 2 to 30 seconds. 101,079
videos are used for training while 7,408 and 1,000 videos
are used for validation and testing respectively. We report
all results on the test set.

5.2. Implementation Details

We use CLIP’s ViT-B/32 image encoder as ¢ and CLIP’s
transformer base text encoder as 1, and initialize all en-
coder parameters from CLIP’s pre-trained weights. We
set the query, key and value projection dimension size as
D, = 512 to match CLIP’s output dimension and initial-
ize our logit scaling paramter A\ with that from a pre-trained
CLIP model. We apply a linear layer with D = 512 output
units and dropout [40] of 0.3 as our FC. Finally, we initialize
all new projection weight matrices with identity and all new
biases with zeros to bootstrap our entire model from the ex-
isting text-image semantic reasoning of a pre-trained CLIP.
Our models are fine-tuned end-to-end on each dataset. To
that end, we set our batch size to 32 for all experiments and
set the learning rate for CLIP-initialized weights to 1e-6 and
for all other parameters to le-5. We optimize our model for
5 epochs using the AdamW optimizer [27] with weight de-
cay set to 0.2 and decay the learning rate using a cosine
schedule [26] following CLIP [37]. For all experiments, we
uniformly sample 12 frames from every video and resize
each frame to 224x224 following previous works [5,25,29].

5.3. Results

To evaluate our method, we compare its performance
with recent works from the literature. We tabulate the ¢2v
retrieval performance of our model trained on the MSR-
VTT 9k-Train and 7k-Train splits in Table 1 and Table 2
respectively. Tables 3 and 4 similarly compare the per-
formance of X-Pool on the MSVD and LSMDC datasets
respectively. We note that on all datasets and across all
metrics, our text-conditioned X-Pool model outperforms all
other works that use text-agnostic pooling [5,29,36] includ-

Methods R@1 1T R@51 R@101T MdR | MnR |
CE [25] 209 48.8 62.4 6.0 28.2
MMT [13] 26.6 57.1 69.6 4.0 24.0
Straight-CLIP [36] 312 537 64.2 4.0 -
Support Set [35] 30.1 58.5 69.3 3.0 -
MDMMT [12] 38.9  69.0 79.7 2.0 16.5
Frozen [5] 31.0 595 70.5 3.0 -
TeachText-CE+ [11] 296 61.6 74.2 3.0

CLIP4Clip-meanP [29] 43.1 70.4 80.8 2.0 16.2
CLIP4Clip-seqTransf [29] 44.5 714 81.6 2.0 15.3
X-Pool (ours) 469 72.8 82.2 2.0 14.3

Table 1. ¢2v results on the MSR-VTT-9K dataset.

Methods R@IT R@5T R@I0T MdR | MnRJ
HowTol00M [34] 149 402 528 9.0 -
ActBERT [50] 86 234 331 360
NoiseE [2] 174 416 536 80
ClipBERT [17] 220 468 599 6.0

CLIP4Clip-meanP [29] 42.1 719 81.4 2.0 15.7
CLIP4Clip-seqTransf [29] 42.0  68.6 78.7 2.0 16.2
X-Pool (ours) 439 725 82.3 2.0 14.6

Table 2. ¢2v results on the MSR-VTT-7K dataset.




Methods R@1 1T R@51 R@101T MdR | MnR |
CE [25] 19.8  49.0 63.8 6.0 23.1
Support Set [35] 284  60.0 72.9 4.0 -
NoiseE [2] 20.3  49.0 63.3 6.0 -
Straight-CLIP [36] 37.0  64.1 73.8 3.0 -
Frozen [5] 337  64.7 76.3 3.0 -
TeachText-CE+ [1 1] 254  56.9 713 4.0

CLIP4Clip-meanP [29] 462 76.1 84.6 2.0 10.0
CLIP4Clip-seqTransf [29] 452 755 84.3 2.0 10.3
X-Pool (ours) 472 774 86.0 2.0 93

Table 3. ¢2v results on the MSVD dataset.

Methods R@I T R@5T R@I0T MdR ] MnR |
CE 5] 1.2 269 348 253 -
MMT [13] 129 299 401 193 750
NoiseE [2] 64 198 284 390 -
Straight-CLIP [36] 113 227 292 565 -
MDMMT [12] 188 385 479 123 580
Frozen [5] 150 308 398 200 -
TeachText-CE+ [11] 172 365 463 137

CLIP4Clip-meanP [29] 20.7 389 472 13.0 653
CLIP4Clip-seqTranst [29] 22.6  41.0 49.1 11.0 610
X-Pool (ours) 25.2 437 53.5 8.0 53.2

Table 4. ¢2v results on the LSMDC dataset.

ing those using video experts in multiple video modalities
[1,13,32]. Most notably, our model outperforms the hitherto
state-of-the-art methods CLIP4Clip-meanP and CLIP4Clip-
seqTransf [29] which are the most directly comparable to X-
Pool since they also use CLIP as a backbone. Therefore, we
can directly attribute the performance gains of our model
to the fact that we use text-conditioned pooling compared
to the text-agnostic pooling schemes of CLIP4Clip-meanP
and CLIP4Clip-seqTransf.

More precisely, on the MSR-VTT dataset, we observe
a relative improvement of 5% in Recall@1 compared to
CLIP4Clip-seqTransf. For the MSVD dataset, we outper-
form CLIP4Clip-meanP by over 2% in relative improve-
ment in Recall@1. In the case of the LSMDC dataset, the
retrieval problem is more challenging since the movie scene
text descriptions are much more ambiguous, which can be
observed by the overall lower retrieval scores of all previous
methods. Yet, our method notably outperforms CLIP4Clip-
seqTransf by 12% in relative improvement in Recall@1.
Our results thereby highlight the importance of our model’s
text-conditioned aggregation that can learn to match a text
with its most relevant frames while suppressing distracting
visual cues from other video sub-regions.

Top-k Experiments. To better understand the merits
and intuition for our X-Pool model, we first revisit our top-
k temporal aggregation function defined in equation (7) that
we introduce as a proof of concept for our proposed idea
of text-conditioned video pooling. To validate this idea,
we compare top-k pooling with a mean-pooling baseline
as in [29, 36] across two settings: first we apply a pre-
trained CLIP model in a zero-shot manner similar to [36]

Aggr. R@11 R@51 R@I0T MAR | MiR| 4
Zero-Shot CLIP

Mean 315 528 636 50 429

Topk 336 540 643 40 425
Fine-Tuned CLIP

Mean 421 698 807 20 157 0357011

Topk 446 709 824 20 149 N

(@ (b)

200

# of Pairs

Figure 3. Top-k analysis on MSR-VTT. (a) ¢{2v retrieval perfor-
mance comparing mean-pooling with top-k text-conditioned pool-
ing. (b) Histogram showing the k& value where each ground truth
text-video pair in the MSR-VTT test set achieves the highest co-
sine similarity when using top-k pooling.

—e— X-Pool
—m— Mean-Pooling

40

20

Median Rank

Number of Transitions

Figure 4. Robustness to content diversity. We show the t2v Me-
dian Rank results on MSR-VTT for different amounts of content
diversity measured by the number of scene transitions. Our X-
Pool approach remains robust whereas mean-pooling significantly
deteriorates as we increase the content diversity.

to compare mean-pooling and top-k aggregation, and sec-
ond we fine-tune a pre-trained CLIP model on the MSR-
VTT dataset and then measure retrieval performance for
mean-pooling and top-k pooling. In both settings, we set
k=3 which empirically yields the best overall performance.
We compare the ¢2v results in Table 3a and observe that
even by using cosine similarity in top-k pooling as a proxy
for semantic similarity between a text and frames, we can
outperform mean-pooling across all listed metrics by up to
6% of relative improvement in Recall@1 through our text-
conditioned pooling scheme.

Yet, the top-k aggregation function still presents some
drawbacks as mentioned in Section 4.2, most notably relat-
ing to the tuning of the k hyperparameter. To analyze this
shortcoming, we run an experiment wherein for a zero-shot
pre-trained CLIP, we find the optimal k of each individual
text-video pair in the MSR-VTT test set and report the re-
sults in a histogram in Figure 3b. Here, we define optimal
as the the k value that yields the highest similarity score be-
tween a ground-truth text-video pair as defined in equation
(6). We observe that the optimal choice of k varies widely
between text-video pairs, which makes & difficult to select
in general. Our proposed X-Pool model therefore addresses
the drawbacks of top-k pooling while being motivated by
our derived insights of text-conditioned pooling.

Robustness to Content Diversity in Videos. We now
analyze the robustness of our model to content diversity as



we described in Section 4.2. As explained, many videos
inherently exhibit diverse visual content such as scene tran-
sitions or changes in object appearance for example. While
current datasets such as MSR-VTT, LSMDC and MSVD
already display these traits to an extent, they are curated
by choosing only small video clip segments extracted from
larger videos. Therefore, in order to more effectively test
the robustness of text-video retrieval methods to content di-
versity, one way is to introduce additional diversity in vi-
sual content with more scene transitions. That is, we aug-
ment a video’s visual content by randomly injecting another
video from the dataset to simulate an abrupt scene transi-
tion. By performing retrieval on such augmented videos and
their original text captions, we can better evaluate a retrieval
model’s ability to handle diverse videos in the wild.

To that end, we construct augmented versions of the
MSR-VTT test set by adding scene transitions from each
video to other videos in the test set. The number of tran-
sitions is defined as the number of random videos that are
added to the original video at a random location. We com-
pare the {2v retrieval performance of our X-Pool model to
the baseline of mean-pooling, and plot the results in Figure
4. Here, we measure performance using the metric of Me-
dian Rank. We can clearly observe that as the number of
video transitions increases and we add video content diver-
sity, there is a sharp performance decline in mean-pooling
as the Median Rank increases from 2 to 46, whereas our
X-Pool model is significantly more robust to content diver-
sity as Median rank only increases from 2 to 9. The perfor-
mance gap is because any text-agnostic pooling method like
mean-pooling aggregates content from all scenes of a video
regardless of their relevance to an input text. Therefore, the
more diverse a video is in terms of scene transitions, the
more possibly noisy distractors are being aggregated. Con-
versely, X-Pool can extract only the most relevant visual
cues as described in a text through text-conditioned pool-
ing.

Qualitative Results. In Figure 4, we show qualitative
examples of our X-Pool model. For each example, we show
four sampled frames from a video along with a bar plot rep-
resenting the associated attention weights of X-Pool from
the given text to each frame. In the top example, we can
see that our model outputs a higher attention weight for the
middle frames when the input text describes a brain ani-
mation and lower attention weights everywhere else. On
the other hand, when the input text instead describes a fic-
tional character looking at a machine, the attention weight
correspondingly activates for the last frame where the text
is most relevant. The second example in the middle shows
a singing competition. Here, the text of “a judge hearing
the voice of competitors” describes an event that requires
reasoning over all of the frames. Indeed, we observe that
X-Pool attends to the entire video, indicating the flexibility

Attention Weights

. = ® I

Frame 1 Frame 2 Frame 3 Frame 4

[ an animation of a brain

[J animation where fictional characters look at a complicated machine

Attention Weights
Frame 1 Frame 2 Frame 3 Frame 4

[ three kids sing together on the voice

[J ajudge hearing the voice of competitors

]
Frame 4

Frame 3
[ man is crossing the street with big lion and friend

[J two women and a female lion lay down in a street while music plays

Figure 5. Qualitative results of X-Pool from the MSR-VTT
dataset. For each displayed frame above, the bar plot shows its
attention weights in our model given a particular text.

of our approach. Finally, in the bottom example, we ob-
serve that our model correspondingly activates on the most
relevant frames to each text despite the more subtle nuances
in the language and video semantics of this lion example.

6. Conclusion

In this work, we highlight the drawbacks of text-agnostic
video pooling and present an alternative framework for text-
conditioned pooling for text-video retrieval. We then extend
our idea and derived insights to design a parametric model
for cross-modal attention between a text and video frames
called X-Pool. We show how X-Pool can learn to attend
to the most relevant frames to a given a text, which also
makes our model substantially more robust to video content
diversity such as in the form of scene transitions, a property
that is common in videos in the wild. As part of future work,
we plan on applying text-conditioned video pooling to other
cross-modal tasks like video question answering.
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Appendices

A. Video-to-Text Retrieval Results

Methods R@11 R@51 R@101 MdR | MnR |
CE [25] 20.6  50.3 64.0 5.3 25.1
MMT [13] 27.0 575 69.7 3.7 21.3
Straight-CLIP [36] 272 517 62.6 5.0 -
Support Set [35] 28.5 58.6 71.6 3.0 -
TeachText-CE+ [11] 321 627 75.0 3.0 -
CLIP4Clip-meanP [29] 43.1  70.5 81.2 2.0 124
CLIPAClip-seqTransf [29] 42.7  70.9 80.6 2.0 11.6
X-Pool (ours) 444 733 84.0 2.0 9.0

Table Al. v2t results on the MSR-VTT-9K dataset.

Methods R@11 R@51 R@101T MdR | MnR |
Straight-CLIP [36] 599 852 90.7 1.0 -
TeachText-CE+ [ 1] 27.1 55.3 67.1 4.0 -
CLIP4Clip-meanP [29] 56.6  79.7 84.3 1.0 7.6
CLIPAClip-seqTransf [29] 62.0  87.3 92.6 1.0 43
X-Pool (ours) 66.4  90.0 94.2 1.0 33

Table A2. v2t results on the MSVD dataset.

Methods R@I1T R@5+ R@I10T MdR | MnR J
JSFusion [47] 123 286 389 200 -
Straight-CLIP [36] 68 164 221 730 -
TeachText-CE+ [1 1] 175 360 450 143 -
CLIPAClip-meanP [29]  20.6 394 475 130 567
CLIP4Clip-seqTransf [29] 20.8  39.0  48.6 120 542
X-Pool (ours) 227 426 512 100 474

Table A3. v2t results on the LSMDC dataset.

B. Number of Frames Experiment

Our experiments use 12 sampled frames by default fol-
lowing recent text-video retrieval literature [29], and we
run additional experiments on the MSR-VTT-9K dataset by
varying the number of sampled frames for both training and
inference as shown in Figure B1. We observe worse per-
formance for 6 frames likely due to important information
being missing at this scale. As we increase the number of
frames', we observe performance saturation which is con-
sistent with findings in [29]. However, we note that the op-
timal number of sampled frames remains a dataset specific
hyperparameter.

C. Online Inference in a Large-Scale Produc-
tion System

Since our model computes an aggregated video embed-
ding conditioned on a given text, the embeddings from a

1 All” indicates inference with all frames at inference time after train-
ing on 12 sampled frames.
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Figure B1. t2v Recall@1 results on the MSR-VTT-9K dataset
when varying the number of frames. “All” indicates inference with
all frames.
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video index set in t2v cannot be entirely pre-computed be-
cause query texts are not a priori known during online in-
ference. Instead, we can only pre-compute the frame em-
beddings of each index video, so fast nearest neighbour re-
trieval techniques [15, 24] cannot be readily applied. To
address this in a production system with large-scale index
sets, one commonly used approach is to use a high recall
method to obtain a set of top retrieval candidates using using
a nearest-neighbour search, and then use another method
yielding high precision to re-rank the candidates [ 10, 30].

In our case, we can first mean-pool the pre-computed
frame embeddings coming from X-Pool and then very ef-
ficiently obtain a set of P most similar candidates from
the index set given a retrieval query. We can then run X-
Pool’s text-conditioned attention mechanism only on said
candidates and then re-rank them for retrieval. That way,
given T text queries and V index videos in t2v, instead
of an O(TV) complexity, we can achieve an O(TP + V)
complexity where P << V while maintaining good perfor-
mance. In fact, we evaluated the performance of our model
on the MSR-VTT dataset using the top-100 candidates from
mean-pooling (i.e. P = 100) and obtained the same perfor-
mance in Recall@1, Recall@5 and Recall@10 as listed in
our main results.
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