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Abstract

Deep Belief Networks (DBN’s) are generative
models that contain many layers of hidden vari-
ables. Efficient greedy algorithms for learning
and approximate inference have allowed these
models to be applied successfully in many ap-
plication domains. The main building block of
a DBN is a bipartite undirected graphical model
called a restricted Boltzmann machine (RBM).
Due to the presence of the partition function,
model selection, complexity control, and exact
maximum likelihood learning in RBM’s are in-
tractable. We show that Annealed Importance
Sampling (AIS) can be used to efficiently es-
timate the partition function of an RBM, and
we present a novel AIS scheme for comparing
RBM’s with different architectures. We further
show how an AIS estimator, along with approx-
imate inference, can be used to estimate a lower
bound on the log-probability that a DBN model
with multiple hidden layers assigns to thest
data This is, to our knowledge, the first step
towards obtaining quantitative results that would
allow us to directly assess the performance of
Deep Belief Networks as generative models of
data.

the latent variables in the deepest layer easy to infer.&'hes
deep generative models have been successfully applied in
many application domains (Hinton & Salakhutdinov, 2006;
Bengio & LeCun, 2007).

The main building block of a DBN is a bipartite undirected
graphical model called the Restricted Boltzmann Machine
(RBM). RBM’s, and their generalizations to exponential
family models, have been successfully applied in collab-
orative filtering (Salakhutdinov et al., 2007), informatio
and image retrieval (Gehler et al., 2006), and time series
modeling (Taylor et al., 2006). A key feature of RBM’s
is that inference in these models is easy. An unfortunate
limitation is that the probability of data under the model is
known only up to a computationally intractable normaliz-
ing constant, known as the partition function. A good es-
timate of the partition function would be extremely helpful
for model selection and for controlling model complexity,
which are important for making RBM'’s generalize well.

There has been extensive research on obtaining determin-
istic approximations (Yedidia et al., 2005) or determin-
istic upper bounds (Wainwright et al., 2005) on the log-
partition function of arbitrary discrete Markov random
fields (MRF’s). These variational methods rely critically
on an ability to approximate the entropy of the undirected
graphical model. However, for densely connected MRF's,
such as RBM’s, these methods are unlikely to perform

well. There have also been many developments in the
. use of Monte Carlo methods for estimating the partition
1. Introduction function, including Annealed Importance Sampling (AlS)
Deep Belief Networks (DBN'’s), recently introduced by (Neal, 2001), Nested Sampling (Skilling, 2004), and many
Hinton et al. (2006) are probabilistic generative modeds th others (see e.g. Neal (1993)). In this paper we show how
contain many layers of hidden variables, in which eachone such method, AlS, by taking advantage of the bipartite
layer captures strong high-order correlations between thetructure of an RBM, can be used to efficiently estimate
activities of hidden features in the layer below. The mainjts partition function. We further show that this estimator
breakthrough introduced by Hinton et al. was a greedyalong with approximate inference, can be used to estimate a
layer-by-layer unsupervised learning algorithm thatao  |ower bound on the log-probability that a DBN model with
efficient training of these deep, hierarchical models. Themultiple hidden layers assigns to training or test datas Thi
learning procedure also provides an efficient way of perresult allows us to assess the performance of DBN'’s as gen-
forming approximate inference, which makes the values okrative models and to compare them to other probabilistic

—_—— . n . models, such as plain mixture models.
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2. Restricted Boltzmann Machines 64 andfp. Suppose that each RBM has different num-

A Restricted Boltzmann Machine is a particular type of ber of hidden units and was trained using different learning
MRF that has a two-layer architecture in which the visi- rates and different numbers of CD steps. On the validation
ble, binary stochastic unite € {0,1}” are connected to set, we are interested in calculating the ratio:

. ) : Iy
hidden binary stochastic units€ {0, 1}*. The energy of p(vi0a)  p*(vifa) Z(6p)

the stat hlis: = ,
elv.h} p(Vi0p)  p(vifp) Z(0a)
D M D

M
E(v,h;0) = _Z Z Wijih, _Z bm—z ajhj, (1) which requires knowing the ratio of partition functions.
j=1

i=1 j=1 i=1

where§ = {IV, b, a} are the model parametef’,; repre- 3. Estimating Ratios of Partition Functions

sents the symmetric interaction term between visible uinit syppose we have two distributions defined on some space
and hidden unig; bi anda; are b_ias terms. The probability > with probability density functionspa(v) = p% (v)/Za
that the model assigns to a visible vectais: andpp(v) = py(v)/Zp. One way to estimate the ra-
* (1 tio of normalizing constants is to use a simple importance
pr(vi0) 1 .
p(v;0) = = ZGXP (=E(v,h;0)), (2)  sampling (IS) method. Suppose that(v) # 0 whenever
70205 ps(v) 0

Zo B0 [55(0, pay —, [P20)]

wherep* denotes unnormalized probability, af@4) is the Za Za Pa(v) Pa(v)

partition function or normalizing constant. The condin  Assuming we can draw independent samples framthe
distributions over hidden units and visible vectow are  npiased estimate of the ratio of partition functions can be
given by logistic functions: obtained by using a simple Monte Carlo approximation:

p(hlv) = || p(h;|v), p(vlh) = |]p(vilh)  (4) M M
1;[ ’ 1:[ ZB ~ inB(V(.)) EiZw(i) =13, (8)
Za M= pa(v) — M=

Z(0)=>_> exp(~E(v,h;0)), (3)
v h

plhy =1v) =a(>_ Wijvi +a;)  (5)
i wherev(® ~ p4. If py andpp are not close enough,
p(v; =1|h) = U(Z Wiih; +b;), (6)  the estimatoris will be very poor. In high-dimensional
j spaces, the variance 6fs will be very large (or possibly
whereo(z) = 1/(1+exp(—=x)). The derivative of the log-  infinite), unles 4 is a near-perfect approximation pg.
likelihood with respect to the model paramel&rcan be

obtained from Eq. 2: 3.1. Annealed Importance Sampling (AIS)
alnp.(.V) — Epuihy] — Epynn [vihs] Suppose that we can .define a sequence of intermediate
OW; probability distributions:pq, ..., px, With pg = p4 andpg

where B[] denotes an expectation with respect to the” 72’ which satisfy the following conditions:

data distribution and E,, ., [-] is an expectation with re- C1 py(v) # 0 whenevepy1(v) # 0.

spect _to the distribution defined by the model_. The ex- C2 We must be able to easily evaluate the unnormalized
pectation E:;MO.del [.]- cannot be comp.uted analytlca_lly. .In probabilitypt (v), ¥v € V, k = 0, ..., K.
practice learning is done by following an approximation

to the gradient of a different objective function, callee th C3 For eachk = 0,.., K'—1, we must be able to draw

“Contrastive Divergence” (CD) (Hinton, 2002): a samplev’ givenv using a Markov chain transition
operatofl (v’; v) that leave9y (v) invariant:
AWi; = e(Ep, [vihj] — Epp[vihy]). @)

The expectation k. [-] represents a distribution of samples /Tk (Vi v)pe(v)dv = pi(v'). ©)
from running the Gibbs sampler (Egs. 5, 6), initialized at

the data, forT" full steps. Settingl" = oo recovers maxi- C4 We must be able to draw (preferably independent)
mum likelihood learning, although is typically set to one. samples fronp 4.

Even though CD learning may work well in practice, the The transition operatofg, (v’; v) represent the probability
problem of model selection and complexity control still re- density of transitioning from state to v/. Constructing a
mains. Suppose we have two RBM’s with parameter valuesuitable sequence of intermediate probability distritmsi
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will depend on the problem. One general way to define thisvhere the energy function is given by:

sequence is to set:

1-PB B

pp(v)7F,

< Bk = 1 chosen by the user.

P(v) o pi(v) (10)

with0 = Gy < 61 < ...

Ep(v,h) = (1 = Bp)E(v,h*;04) + B E(v,h?Z;05), (14)

with0 = Gy < 61 < ... < B = 1. Fori = 0, we have
Bo = 0 and sopg = pa. Similarly, fori = K, we have

Once the sequence of intermediate distributions has beehx = pp. For the intermediate values bf we will have

defined we have:

Annealed Importance Sampling (AIS) run:
1. Generatery, va, ..., vk as follows:

Samplev; frompa = po
Samplev; givenv; using7i

Samplevk givenvg_1 usingTx —1
2. Set

(va2) Pi—1(VK-1) Pk (Vi)
(v2) " px_o(VK-1) PR 1 (V)

w®

*
2
*
1

Note that there is no need to compute the normalizing con-

stants of any intermediate distributions. After perforgin
M runs of AlS, the importance weighis™” can be substi-
tuted into Eq. 8 to obtain an estimate of the ratio of pantitio
functions:

Zs L iw(i) =7 (11)
7 M 2 AIS-

Neal (2005) shows that for sufficiently large number of in-
termediate distributiong(, the variance offx1s will be
proportional tol /M K. ProvidedK is kept large, the total

amount of computation can be splitin any way between the

number of intermediate distributiorfs and the number of
annealing rund/ without adversely affecting the accuracy
of the estimator. If samples drawn fropy are indepen-

dent, the number of AIS runs can be used to control the

variance in the estimate 6f;s:

! Var(w®) e
N ~ — =0
M M ’

Var(fAIs)

(12)

some interpolation between, andpp.

Let us now define a Markov chain transition operator
Tr(v';v) that leavegy (v) invariant. Using Egs. 13, 14,
it is straightforward to derive a block Gibbs sampler. The
conditional distributions are given by logistic functions

0 = 1) = o= B Wi +a)) 5)
p(h? =1|v) = a<ﬂk(z W3 +af)> (16)
ot = 1) = o (1= I WiH + )
:
+ ﬁk(z wEn? +bf’)). (17)

Givenv, Egs. 15, 16 are used to stochastically activate hid-
den unitsh* andh?. Eq. 17 is then used to draw a new
samplev’ as shown in Fig. 1 (left panel). Due to the special
structure of RBM's, the cost of summing olutis linear in

the number of hidden units. We can therefore easily evalu-
ate:

Z (1=Br)E(v.h:0.4)+Bx BE(v,hP05)

hA hB

Pi(v)
A Ma A A
e(l_ﬁk)zibi i H(l + e(l_ﬁk)(zi Wiivita; ))
j=1

Mp
% eﬁkzib?mH(Heﬁk(Zi Wivita?)y

j=1

We will assume that the parameter values of each RBM

wheres? is estimated simply from the sample variance ofSatisfy 0] < oo, in which casep(v) > 0 forallv € V.

the importance weights.

3.2. Ratios of Partition Functions of two RBM’s

Suppose we have two RBM'’s with parameter valdgs=
{WA b4 a} anddp = {WE b aP} that define prob-
ability distributionsp4 andpp overV € {0,1}”. Each
RBM can have a different number of hidden uriit§ <
{0,1}M4 andh? € {0,1}M=. The generic AIS interme-

This will ensure that condition C1 of the AIS procedure is
always satisfied. We have already shown that conditions
C2 and C3 are satisfied. For condition C4, we can run
a blocked Gibbs sampler (Egs. 5, 6) to generate samples
from p 4. These sample points will not be independent, but
the AIS estimator will still converge to the correct value,
provided our Markov chain is ergodic (Neal, 2001). How-
ever, assessing the accuracy of this estimator can be diffi-
cult, as it depends on both the variance of the importance

diate distributions (Eq. 10) would be harder to sample fron\Neights and on autocorrelations in the Gibbs sampler.
than an RBM. Instead we introduce the following sequence

of distributions fork = 0, ..., K:

Pr(V)

_ piv)

7 :Zikzexp(_Ek(v,h)), (13)
h

3.3. Estimating Partition Functions of RBM'’s

The partition function of an RBM can be found by finding
the ratio to the normalizer fats = {0,b4,a}, an RBM
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Figure 1. Left: The Gibbs transition operat@¥, (v'; v) leavespy (v) invariant when estimating the ratio of partition functiois /Z 4.
Middle: Recursive greedy learning consists of learning a stack dﬂREnght Two-layer DBN as a generative model.

with a zero weight matrix. From Eq. 3, we know: Inp(vih, Wh] + H(Q(h'|v)), (19)
Zy =2Ma H(l + ). (18)  whereH(-) is the entropy functional. We sé)(h!|v) =
M i p(ht|v, W) defined by the RBM (Eq. 5). Initially, when
oreover, W2=w'", Qisthe DBN’s true factorial posterior over
= [[pat) =1/ +e"), h', and the bound is tight. Therefore, any increase in the

i bound will lead to an increase in the true likelihood of the
so we can draw exact independent samples from this “bas@rodel. Maximizing the bound of Eq. 19 with froz&h! is

rate” RBM. AIS in this case allows us to obtain anbi-  equivalent to maximizing:
asedestimate of the partition functiods. This approach 1 1ier2
closely resembles simulated annealing, since the interme- Z Q(h[v) Inp(h’|W7). (20)

diate distributions of Eqg. 13 take form: h!

_ This is equivalent to training the second layer RBM with
exp((1—0k)v'b 1
pr(v) = p(( Zﬁ:) ) S exp(~GhE(v,hB; ). Vectors drawn fron@)(h'|v) as data.

hB This scheme can be extended by training a third RBM on
We gradually change,, (or inverse temperature) from 0 h? vectors drawn from the second RBM. If we initialize
to 1, annealing from a simple “base-rate” model to the final"V’ W3=1W?2", we are guaranteed to improve the lower bound
complex model. The importance weight$) ensure that ©n the log- Ilkellhood though the log-likelihood itselfrca
AIS produces correct estimates. fall (Hinton et al., 2006). Repeating this greedy, layet-by
layer training several times results in a deep, hierarthica
model.

4. Deep Belief Networks (DBN'’Ss)

In this section we briefly review a greedy learning algo- : 5
rithm for training Deep Belief Networks. We then show | 1. FitparametersV” of a 1-layer RBM to data.
how to obtain an estimate of the lower bound on the I0g- | 5 Freeze the parameter vectér and use samples fror

probability that the DBN assigns to the data. p(h'|v, W) as the data for training the next layer pf
binary features with an RBM.

Recursive Greedy Learning Procedure for the DBN.

=)

4.1. Greedy Learning of DBN'’s 3

Consider learning a DBN with two layers of hidden fea-
tures as shown in Fig. 1 (right panel). The greedy strategyn practice, when adding a new layigmwe typically do not
developed by Hinton et al. (2006) uses a stack of RBM'sinitialize W' = W'~! ", so the number of hidden units of
(Fig. 1, middle panel). We first train the bottom RBM with the new RBM does not need to be the same as the number
parameter$l’!, as described in section 2. of the visible units of the lower-level RBM.

. Proceed recursively for as many layers as desired.

A key observation is that the RBM's joint distribution
p(v,h![W1) is identical to that of a DBN with second- 4-2: Estimating Lower Bounds for DBN's

layer weights tied t6V 2 = W', We now consider untying Consider the same DBN model with two layers of hidden
and refiningl¥2, improving the fit to the training data. features shown in Fig. 1. The model’s joint distribution is:
For any approximating distributio(h'|v), the DBN’s p(v,h', h?) = p(v|/h!) p(h? h'), (21)
log-likelihood has the following variational lower bound: wherep(v|h!) is defined by Eq. 6), ang(h!, h?) is the
Inp(v|WLWw?) > Z Q(h1|v)[lnp(h1|W2) + joint distribution defined by the second layer RBM. Note

o thatp(v|h!) is normalized.
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By explicitly summing outh?, we can easily evaluate an handwritten digits (0 to 9), with 2828 pixels. The dataset
unnormalized probability*(v,h!)= Zp(v, h'). Usingthe  was binarized: each pixel value was stochastically set to 1
approximating factorial distributiop, which we get as a in proportion to its pixel intensity. Samples from the train
byproduct of the greedy learning procedure, and the variaing set are shown in Fig. 2 (top left panel). Annealed im-

tional lower bound of Eq. 19, we obtain: portance sampling requires titg that define a sequence
of intermediate distributions. In all of our experimentsth
In ZP(Va h') > Z Q(h'v) Inp*(v,h') sequence was chosen by quickly running a few preliminary
h! h! experiments and picking the spacing@f so as to mini-

— InZ +H(Q(h'|v)) = B(v). (22)  mize the log variance of the final importance weights. The
biasesb” of a base-rate model (see Eq. 18) were set by

The entropy tern(-) can be computed analytically, since maximum likelihood, then smoothed to ensure th(at) >
@ is factorial. The partition functio® is estimated by run- () vy < V. Code that can be used to reproduce experimen-

ning AIS on the top-level RBM. And the expectation term 5 results is available at www.cs.toronto.esalakhu.
can be estimated by a simple Monte Carlo approximation:

o 5.1. Estimating partition functions of RBM’s
ZQ(h1|V) Inp*(v,h') ~ 1 Zlnp*(v,hl(i)), (23) In our first experiment we trained three RBM's on the
o M~ MNIST digits. The first two RBM's had 25 hidden units
and were learned using CD (section 2) witk1 and7'=3

whereh!(® ~ Q(h'|v). The variance of this Monte Carlo respectively. We call these models CD1(25) and CD3(25).
estimator will be proportional td /M provided the vari-  The third RBM had 20 hidden units and was learned using
ance ofln p*(v, h'(®) is finite. In general, we will be in-  CD with T=1. For all three models we can calculate the ex-
terested in calculating the lower bound averaged over thact value of the partition function simply by summing out

test set containingV; samples, so the 784 visible units for each configuration of the hiddens.
N N " For all three models we used 50f spaced uniformly from
I I —[1 ¢ ; 0 to 0.5, 4,0003, spaced uniformly from 0.5 to 0.9, and
e B m ~ — JE— 1 * n hl(Z) 1 ’ k p y ’
Ny nz_:l ") Ny nz::l LV[ ; npt (v )+ 10,0008, spaced uniformly from 0.9 to 1.0, with a total of

14,500 intermediate distributions.

11,n 7 A 7 A
H(Qh v ))] ~InZ=7p=InZ=7sound- (24)  qapie 1 shows that for all three models, using only 10 AIS

) ] ) ) runs, we were able to obtain good estimates of partition
In this case the variance of the estimator induced by the,nctions in just 20 seconds on a Pentium Xeon 3.00GHz

Monte Carlo approximat_ion will asymptotically scale as machine. For model CD1(25), however, the variance of
1/(N:M). We will show in the experimental results sec- {he estimator was high, even with 100 AIS runs. However,
tion that the value of\/ can be small provided; is large.  figure 3 (top row) reveals that as the number of annealing
The error of the overall estimatop,unq in EQ. 24 will be  runs is increased, AIS can almost exactly recover the true
mostly dominated by the error in the estimateloZ. In  Vvalue of the partition function across all three models.

our experiments, we obtained unbiased estimatésafd  \ye also estimated the ratio of normalizing constants of

its stantjardAdeviatioﬁ using Egs. 11, 12. We repdit Z 1o RBM's that have different numbers of hidden units:
andln (Z + 5). CD1(20) and CD1(25). This estimator could be used to

Estimating this lower bound for Deep Belief Networks with do complexity control. In detail, using 100 AIS runs with
more layers is now straightforward. Consider a DBN with Uniform spacing of 10,0005;, we obtainedinars =
L hidden layers. The model’s joint distribution and its ap-1n (Zcpi(20)/Zcpi(2s)) = —24.49 with an error estimate

proximate posterior distributio are given by: In (Fars £36) = (—24.19,-24.93). Each sample from
CD1(25) was generated by starting a Markov chain at the

plv, bl hE) = p(vih!)..p(hE 2 hl pht =t ht)  previous sample and running it for 10,000 steps. Com-
Q(h',....h'v) = Q(h'[v)Q(h2|h!)..Q(hE ht—1). pared to the true value 6f24.18, this result suggests that

our estimates may have a small systematic error due to the
The bound can now be obtained by using Eq. 22. NoteMarkov chain failing to visit some modes.

that most of the computation resources will be spent onO d . isted of traini
estimating the partition functio# of the top level RBM. ur secon experiment consisted of training two more re-
alistic models: CD1(500) and CD3(500). We used exactly

. the same spacing @f, as before and exactly the same base-
5. Experimental Results rate model. Results are shown in table 1 (bottom row). For

In our experiments we used the MNIST digit dataset, whicheach model we were able to get what appears to be a rather
contains 60,000 training and 10,000 test images of ten
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The course of AlSrun for model CD25(500)
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Figure 2. Top row: Firsttwo panels show random samples from the training skaamixture of Bernoullis model with 100 components.
The last 4 panels display the course of 16 AIS runs for CD2B)Bodel by starting from a simple base-rate model and aimge@l the
final complex modelBottom row: Random samples generated from three RBM'’s and corresppiitiee DBN’s models.
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Table 1. Results of estimating partition functions of RBM'’s alonglwihe estimates of the average training and test log-piltitied
For all models we used 14,500 intermediate distributions.

AlS True A i Estimates i Time Avg. Test log-prob.  Avg. Train log-prob.
Runs InZ InZz In(Z +6) In(Z +36) (mins)  true estimate true estimate
100 CD1(25) 255.41 256.52 255.00,257.10 0.0000,257.73 3.3 —151.57 —152.68 —152.35 —153.46
CD3(25) 307.47 307.63 307.44,307.79 306.91,308.05 3.3 —143.03 —143.20 —143.94 —144.11
CD1(20) 279.59 279.57 279.43,279.68 279.12,279.87 3.1 —164.52 —164.50 —164.89 —164.87
100 CD1(500) — 350.15 350.04, 350.25 349.77,350.42 10.4 — —125.53 — —122.86
CD3(500) — 280.09 279.99,280.17 279.76,280.33 10.4 — —105.50 — —102.81
CD25(500) — 451.28 451.19,451.37 450.97,451.52 10.4 — —86.34 — —83.10

accurate estimate ¢f. Of course, we are relying on an em- ated by CD25(500) look much more like the real handwrit-
pirical estimate of AlS’s accuracy, which could potengiall ten digits, than either CD1(500) or CD3(500).

be misleading. Nonetheless, Fig. 3 (bottom row) shows th
as we increase the number of annealing runs, the value
the estimator does not oscillate drastically.

e also obtained an estimate of the log ratio of two parti-
Rion functionsrars = In Zcpas500)/Zcps(s00) = 169.96,
using 10,0003; and 100 annealing runs. The estimates of
While performing these tests, we observed that contrastivehe individual log-partition functions weie ZCD25(500) =
divergence learning witti'=3 results in considerably better 451.98 andIn 201)3(500) — 280.09, in which case the log
generative model than CD learning wiffr1: the differ-  ratio is451.28 —280.09=171.19. This is in agreement (to

ence of 20 nats is striking! Clearly, the widely used prac-within three standard deviations) with the direct estinudte
tice of CD learning with7'=1 is a rather poor “substitute” the ratio,’ s = 169.96.

for maximum likelihood learning. Inspired by this result, ) ) ) )
we trained a model by starting witi=1, and gradually For a simple comparison we also trained several mixture of

increasingT” to 25 during the course of CD training, as Bernoullis models (see Fig. 2, top left panel) with 10, 100,

suggested by (Carreira-Perpinan & Hinton, 2005). We calf"d 500 components. The corresponding average test log-
this model CD25(500). Training this model was computa-Probabilities were-168.95, —142.63, and—137.64. The
tionally much more demanding. However, the estimate ofiata generated from the mlxt.ulre model looks be'Fte_r than
the average test log-probability for this model was aboufCP3(500), although our quantitive results reveal this i du
—86, which is 39 and 19 nats better than the CD1(500) ando over-fitting. The RBM’'s make much better predictions.
CD3(500) models respectively. Fig. 2 (bottom row) shows

samples generated from all three models by randomly iniS-2- Estimating lower bounds for DBN's

tializing binary states of the visible units and runninggelt We greedily trained three DBN models with two hidden
nating Gibbs for 100,000 steps. Certainly, samples genetayers. The first model, called DBN-CD1, was greedily
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Figure 3. Estimates of the log-partition functiols Z as we increase the number of annealing runs. The error banslﬂmZ +36).

learned by freezing the parameter vector of the CD1(500Yable 2. Results of estimating lower boundg.una (EQ. 24) on
model and learning thegnd layer RBM with 2000 hidden the average training and test log-probabilities for DBNDs av-
units using CD withl'=1. Similarly, the other two models, €rage, the total error of the estimator is ab&2 nats.

DBN-CD3 and DBN-CD25, added 2000 hidden units on Avg. AlIS error
top of CD3(500) and CD25(500), using CD wilh=3 and bound  Eroris  In(Z + 36)
T'=25 respectively. Training the DBN's took roughly three Model log-prob  +3std _InZ
times longer than the RBM's. Test DBN-CD1 —100.64 +0.77 —1.43,+0.57
Table 2 shows the results. We used 15,000 intermediate DBN-CD3 ~ —98.29  £0.75  —0.91,+0.31

distributions and 500 annealing runs to estimate the parti- DBN-CD25 —86.22 +0.67 —0.84,+0.65
tion function of the2d layer RBM. This took 2.3 hours. ~ Train DBN-CD1 ~ —97.67 ~ +£0.30  —1.43,+0.57
Further sampling was required for the simple Monte Carlo BEHEB%S :gg'ig ig'ég :82}17 ig'gé
approximation of Eq. 23. We usetl/=5 samples from i i -

the approximating distributio(h|v) for each data vec-  The result of our experiments for DBN-CD25, however,
tor v. SettingA/=100 did not make much difference. Ta- \as very different. For this model, on the test data we ob-
ble 2 also reports the empirical error in the estimate of thefainedfgound = —86.22. This is comparable to the esti-
lower boundgoung- From Eq. 24, we have Vefsound) = mate of—86.34 for the average test log-probability of the
Var(fp) + Var(In Z), both of which are shown in table 2. cp25(500) model. Clearly, we cannot confidently assert
Note that models DBN-CD1 and DBN-CD3 significantly that DBN-CD25 is a better generative model compared to
outperform their single layer counterparts: CD1(500) andhe carefully trained single layer RBM. This peculiar résul
CD3(500). Adding a second layer for those two models im-5so supports previous claims that if the first level RBM al-
proves model performance by at least 25 and 7 nats. Th'ﬁaady models data well, adding extra layers will not help
corresponds to a dramatic improvement in the quality Of(LeRoux & Bengio, 2008; Hinton et al., 2006). As an ad-
samples generated from the models (Fig. 2, bottom row). gitional test, instead of randomly initializing parametef

Observe that greedy learning of DBN's does not appear téhe 2™ layer RBM, we initialized it by using the same pa-
suffer severely from overfitting. For single layer models, fameters as the®* layer RBM but with hidden and visible
the difference between the estimates of training and teddnits switched (see Fig. 1). This initialization ensurest th
log-probabilities was about 3 nats. For DBN's, the corre-the distribution over the visible unitsdefined by the two-
sponding difference in the estimates of the lower bound4yer DBN isexactly the samas the distribution ovey
was about 4 nats, even though adding a second layer intrélefined by thel** layer RBM. Therefore, after learning

. i d
duced over twice as many (or one million) new parametersparameters of the"® layer RBM, the lower bound on the
training data log-likelihood can only improve. After care-
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6. Discussions

The original paper of Hinton et al. (2006) showed that forREferemCG"S

DBN’s, each additional layer increases a lower bound (se@engio, Y., & LeCun, Y. (2007). Scaling learning algorithios
Eq. 19) on the log-probability of th&aining data, pro- wards Al. Large-Scale Kernel MachineMIT Press.

vided the number of hidden units per layer does not decarreira-Perpinan, M., & Hinton, G. (2005). On contrastiie
crease. However, assessing generalization performance ofvergence learnindlOth Int. Workshop on Artificial Intelligence
these generative models is quite difficult, since it require  and Statistics (AISTATS'2005)

enumeration over an exponential number of terms. In thigsenler, P., Holub, A., & Welling, M. (2006). The Rate Adapt-
paper we developed an annealed importance sampling pro- ing Poisson (RAP) model for information retrieval and objec
cedure that takes advantage of the bipartite structureeof th recognition.Proceedings of the 23rd International Conference
RBM. This can provide a good estimate of the partiton " Machine Learning

function in a reasonable amount of computer time. FurtherHinton, & Salakhutdinov (2006). Reducing the dimensicyadf
more, we showed that this estimator, along with approx- data with neural networksScience313 504 — 507.

imate inference, can be used to obtain an estimate of thginton, G. E. (2002). Training products of experts by mirzing
lower bound on the log-probability of thestdata, thus al- contrastive divergenceNeural Computationl4, 1711-1800.
Iowmg us to obtain some quantitative eve}luauon. ofthe 98NYinton, G. E., Osindero, S., & Teh, Y. W, (2006). A fast leagi
eralization performance of these deep hierarchical models  5igorithm for deep belief netdleural Computationl8, 1527—

There are some disadvantages to using AlS. There is a 1554.

need to specify thed, that define a sequence of interme- LeRoux, N., & Bengio, Y. (2008). Representational power of
diate distributions. The number and the spacingofvill restricted Boltzmann machines and deep belief networlis.
be problem dependent and will affect the variance of the appear in Neural Computation

estimator. We also have to rely on the empirical estimate oNeal, R. M. (1993).Probabilistic inference using Markov chain
AIS accuracy, which could potentially be very misleading Monte Carlo methodgTechnical Report CRG-TR-93-1). De-
(Neal, 2001; Neal, 2005). Even though AIS provides an partment of Computer Science, University of Toronto.
unbiased estimator df, it occasionally gives large overes- Neal, R. M. (2001). Annealed importance samplirtatistics
timates and usually gives small underestimates, so in prac- and Computingl1, 125-139.

tice, it is more likely to underestimate of the true value of Neal, R. M. (2005). Estimating ratios of normalizing constants
the partition function, which will result in an overestireat using linked importance samplin@echnical Report 0511).
of the log-probability. But these drawbacks should not re- Department of Statistics, University of Toronto.

sult in disfavoring the use of AIS for RBM's and DBN'’s: Osindero, S., & Hinton, G. (2008). Modeling image patchethwi
it is much better to have a slightly unreliable estimate than a directed hierarchy of Markov random field¢lPS 20 Cam-
no estimate at all, or an extremely indirect estimate, such bridge, MA: MIT Press.

as discriminative performance (Hinton et al., 2006). Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restridte

Boltzmann machines for collaborative filterindg?roceedings

We find AIS and other stochastic methods attractive as they ¢ e Twenty-fourth International Conference (ICML 2004)

can just as easily be applied to undirected graphical models , o

that generalize RBM’s and DBN's to exponential family SKiling. J. (2004). Nested samplingBayesian inference and
e L - maximum entropy methods in science and engineering, AlP

distributions. This will allow future application to mod-  ~gnference Proceeedingg35 395-405.

els of real-valued data, such as image patches (Osindero &

Hinton, 2008), or count data (Gehler et al., 2006) Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2006). Model-
’ ’ " ) ing human motion using binary latent variablesdvances in

Another alternative would be to employ deterministic ap- Neural Information Processing SystenhdiT Press.
proximations (Yedidia et al., 2005) or deterministic upperwainwright, M. J., Jaakkola, T., & Willsky, A. S. (2005). A
bounds (Wainwright et al., 2005) on the log-partition func- new class of upper bounds on the log partition functiltEE
tion. However, for densely connected MRF’s, we would Transactions on Information Theqr§l, 2313-2335.

not expect these methods to work well. Indeed, preliminaryedidia, J. S., Freeman, W. T., & Weiss, Y. (2005). Construct
results suggest that these methods provide quite inaecurat ing free-energy approximations and generalized beliep@ro
estimates of (or very loose upper bounds on) the partition gation algorithmsIEEE Transactions on Information Theory
function, even for small RBM'’s whetmained on real data 51, 2282-2312.



