
SPECIAL REPORT

Increasingly, studies report imaging artificial intelligence 
(AI) algorithms achieving human performance (1–3). 

However, clinicians who understand the complexity of 
model development are hesitant to adopt these algorithms 
in the clinical setting due to questions of reliability, gen-
eralizability, model bias, and cognitive biases that may af-
fect safety and robustness in deployment (4), which have 
all been explored previously (5). In this article, we use the 
chest radiograph classification task to explore two addi-
tional reasons for this hesitancy that have not been well 
described in the literature but are critical for clinicians to 
understand to ensure reliable AI model deployment: (a) 
variation in schema definitions and (b) noise in the label-
ing process. Our work describes how these underreported 
problems, which result from design decisions at the earliest 
stages of model development but have critical cascading 
effects on perceived model performance and local deploy-
ment (4), can be mitigated. We frame this work from the 
perspective of a practice looking to deploy an already devel-
oped chest radiograph classifier for the task of triage and/or 
assisted diagnosis. Thus, we focus on the effects of schema 
and label noise during testing and evaluation and their im-
pact on our understanding of model performance rather 
than how label noise in training sets affects model training.

Defining Gold Label
Depending on the field of study, the synonymous terms 
gold labels, gold standard, reference standard, or ground 

truth are used interchangeably. In this article, we pur-
posefully use the term “gold” label for two reasons: (a) 
including label, which is omitted from other terms, is 
critical to convey the fact that the labeling process is 
only an approximation of the “truth” or true standard, 
and (b) the term gold is used in quotations to stylisti-
cally highlight that label quality might be lower than 
expected.

Schema Noise
One major diagnostic task of a radiologist interpreting 
a chest radiograph is to identify one of more than 200 
findings that may be present at imaging (6). However, 
schemas are almost universally limited to about 12 
classes (7,8), understandably because of impracticality 
of annotating hundreds of findings. As a result, binary 
classification models that are trained on such schemas 
exclude serious but uncommon findings, such as pneu-
momediastinum or bone metastases (9), which may re-
sult in potentially high-risk, false-negative results.

Schema noise is introduced when different models 
use different schemas for what users expect to be the 
same clinical task (ie, chest radiograph abnormality 
detection). This noise leads to evaluation and deploy-
ment challenges, as it is not possible to directly compare 
the real-world performance of two algorithms that do 
not have the same set of classes and do not define their 
classes in the same way.
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Label Noise Demonstration

Label-Level Agreement
To demonstrate the level of noise visible in trusted gold la-
bels, we simulated the creation of different gold label sets 
using CheXpert test annotations provided by the authors 
of the CheXpert article, which includes further details for 
this dataset (eg, information about annotators) (12). No 
human research was performed; therefore, this study was 
exempt from institutional review board review. Originally, 
the creators of CheXpert had eight annotators label 500 im-
ages for the 14 different classes and defined the gold label 
as the majority vote of five annotators chosen randomly 
from the eight. The remaining three radiologists were used 
to establish a performance baseline for the AI models. To 
demonstrate how reliant the gold label set—and therefore 
the performance evaluations—would be from the five an-
notators chosen, we created all possible annotation panels 
of five radiologists by sampling (without replacement) from 
the set of annotations from the eight radiologists (Fig 2), 

resulting in 
8

56
5
=  possible gold label sets for each label. Each 

of these sets of five is a possible gold label set in the real world 
(that could have resulted from the random selection). We then 
calculated the agreement of all pairings of possible gold label 
sets using select statistical measures to measure agreement be-
tween observations.

Median percent agreement.—This common measure of agree-
ment is intuitive as it simply measures the number of concor-
dant observations (between two observers) over the total num-
ber of observations. Because we compare all possible pairwise 
pairings of potential gold label sets, we report the aggregate of 
all these comparisons using the median value, which is more 
robust to outliers.

Median Cohen κ.—This metric is commonly used in the medi-
cal literature for assessing the agreement between two labels 
(or raters). It differs from percent agreement in that Cohen κ 
also corrects for the probability that the agreement could have 
occurred by chance. This is important in radiograph classifica-
tion because most classes are not present in most examinations, 
increasing the likelihood of chance agreement when findings 
are not present. The mathematical definition of Cohen κ is as 
follows:

where 0p  is the observed agreement and ep  is the probability 
of chance agreement. Like above, we opt to report the median 
κ, as the median is more robust to outliers.

Fleiss κ.—Unlike the above two measures, Fleiss κ can compare 
more than two raters. Like Cohen κ, it accounts for chance 
agreement between all raters (13).

Schema Noise Demonstration
We performed a direct comparison of the annotation schemas 
of two publicly available (7,8) and one proprietary chest ra-
diograph classifier. In addition to quantifying the magnitude 
of overlap between these schemas, we also leveraged existing 
radiologic ontologies (6) to highlight (the lack of ) conceptual 
agreement within individual schemas. We define schema over-
lap as the fraction of shared labels between two schemas out of 
the total number of unique labels.

Table S1 demonstrates that the overlap between schemas 
varies greatly: CheXpert and ChestX-ray14 demonstrate 37% 
schema overlap (seven shared labels out of 19 unique labels be-
tween the two schemas); CheXpert and the proprietary classifier 
show 28% schema overlap (five of 18); and ChestX-ray14 and 
the proprietary classifier show 35% schema overlap (six of 17).

Further exploring the schema of these chest radiograph algo-
rithms, we find multiple sources of noise related to inconsistent 
class definition both across models and within each model. Table 
1 presents a noncomprehensive list of sources of schema noise, 
including class overlap (infiltrate vs consolidation), hidden hier-
archy (abscess as a leaf node of cavity), and intermingling obser-
vations and disorders (consolidation vs pneumonia), with impli-
cations on model development and radiologist agreement. For 
example, Figure 1 displays part of the Radiology Gamuts Ontol-
ogy, where labels (outlined in black) belong to both “disorders” 
and “observations caused by disorders,” illustrating inconsistency 
in schema design.

Label Noise
In addition to (and sometimes as the consequence of ) schema 
noise, disagreement between radiologists (ie, high interobserver 
variability) introduces label noise. Radiologists are known to 
disagree when interpreting chest radiographs (10,11). Yet, cur-
rent practice is to train models on binary labels created by a 
panel of radiologists which, often after a voting process, are 
collapsed to a single (often binary) output. We show how fail-
ure to report this uncertainty (hidden by the use of binary or 
categorical classes) negatively affects users who aim to evaluate 
model performance. Specifically, using the CheXpert annota-
tion dataset, we illustrate variations in the gold label depend-
ing on which radiologists are included in the panel, suggesting 
that binarization via majority vote does not sufficiently increase 
reliability.

Abbreviations
ACR = American College of Radiology, AI = artificial intelligence, 
DSI = Data Science Institute

Summary
By exploring chest radiograph classification as a use case, this report 
describes the underreported issues of schema and label noise as-
sociated with gold label annotations in medical imaging artificial 
intelligence.
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Figure 4C shows the extreme case where radiologists are split 
50:50 (four of eight) on one label. In 40% of patients (201 
of 500), half of annotating radiologists disagreed on at least 
one label. In other words, the assigned gold label for at least 
one label in 40% of patients could equivalently be decided 
by a coin flip. This analysis demonstrates the magnitude of 
noise that is hidden in the gold labels by use of collapsed 
binary labels per image. We highlight the importance of de-
scribing this noise and review methods of countering label 
noise in the discussion that follows.

Importance of Identifying Schema and Label 
Noise
Past work has explored noise in the training sets of computer 
vision models resulting from lack of annotator agreement 
(in AI radiology [10,14] and other applications [15,16]), as 
well as the imperfect performance of automated natural lan-
guage processing methods (17). Label noise in training data 
has been demonstrated to have negative effects on machine 
learning performance (17–19), though substantial literature 
demonstrates how this effect can be ameliorated and how 
noisy labels can be used to improve machine learning per-
formance by increasing variance in the data and acting as a 
regularizer (17,20–22). There are also post hoc approaches 
to manage label noise, including label cleaning (17) and 
smoothing (3), changing network architectures (17,23), and 
training strategies and/or pipelines (20,23,24).

However, in the clinically important setting of external 
evaluation (eg, where radiologists are exploring the pos-
sible deployment of third-party models), noise (which can 
translate to errors) in the gold label set can limit user un-
derstanding of true model performance. This hurdle to AI 
deployment is rarely addressed and is the main concern of 
this work.

Our article can be considered as an exploration of “data cas-
cades” (4) in the field of radiology. Data cascades are choices re-
lated to problem definitions, data collection and labeling, model 

We observed different levels of agreement across labels: 
Median agreement was high (0.95) for support devices and 
low (0.65) for labels such as consolidation and pneumonia 
(Fig 3). The statistical methods and complete results are pre-
sented in Table S2.

For a more intuitive understanding of label noise, we 
also present the median percent agreement for positive (ie, 
abnormal) cases between all possible pairings of simulated 
gold label sets for each diagnosis. As most labels are nega-
tive (ie, normal), percent agreement on the entire dataset 
is not informative. As illustrated in Figure 3, for the three 
labels with the lowest agreement (consolidation, fracture, 
and pneumonia), median agreement between different pan-
els of radiologists for positive examples is equivalent to a 
series of coin flips. Fleiss κ values were low to medium and 
showed general discordance between multiple annotators, 
demonstrating that a single annotator is not responsible for 
the noise in the labels.

Patient-Level Agreement (Distribution across Patients)
To better understand the source of label noise, we explored 
how disagreement in gold labels is distributed across pa-
tients by counting the number of labels per patient that 
have at least two (or three or four) radiologists disagreeing. 
This will help determine if disagreement is randomly dis-
tributed among all patients or if most of the label noise (dis-
agreement) originates from a small subset of patients, thus 
directing efforts to explore and address the causes of noise.

We analyzed patient-level disagreements in the CheXpert 
annotation dataset (eight radiologists, 14 classes, 500 pa-
tients) and present the results in Figure 4. Figure 4A shows 
broad annotator disagreement; at least two radiologists dis-
agreed on one or more labels (out of 14) in more than 90% 
(460 of 500) of patients. That is, there was complete agree-
ment among all radiologists on all classes in fewer than 10% 
of cases (40 of 500). For most patients, 25% (two of eight) 
annotator disagreement was present for three or more labels. 

Table 1: Possible Sources of Noise in Schema Design, Both within a Schema and across Different Schemas

Source of Noise Example of Noise Implications

Intraschema
 Class overlap Infiltrate and consolidation are overlapping 

concepts.
A group of radiologist labelers are unlikely to label 

consistently.
 Hidden hierarchy Cavity is a parent node of abscess. A group of radiologist labelers are unlikely to label 

consistently.
 Inclusion of both findings (observa-

tions) and diagnosis (disorders)
Consolidation is a radiographic finding 

that, in the context of an otherwise 
healthy patient with cough and fever, 
may represent the disorder pneumonia 
(Fig 1).

A group of radiologist labelers are unlikely to label 
consistently.

Interschema
 Inconsistent inclusion and exclusion 

of findings
Only one of the algorithms explored is 

trained to detect fractures.
Creates cognitive load and/or uncertainty in the 

minds of busy clinical users: Which abnormalities 
might still be present if the algorithm is negative?
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Anchoring Labels in Ontologies
To address the inconsistency in schema designs, the AI com-
munity can build atop of existing large-scale projects defin-
ing radiologic ontologies and knowledge graphs of medical 
concepts, such as the Radiology Gamuts Ontology (6). These 
knowledge graphs provide a comprehensive list of disorders 
and observations, which are linked by ontological relation-
ships (6). The structure of these knowledge graphs enables 
schema designers to maintain consistency in their schema 
designs (Fig 1). As demonstrated in a recent work (26), we 
believe leveraging ontology-based schemas can help bridge 
the gap to clinical deployment by enabling researchers and 
developers to design better label schemas.

At the same time, reviewers and end users should insist on 
schemas that reflect ontological knowledge and fit real-world 
use cases—applying post hoc fixes or transformations on da-
tasets to enable end-use application is much more expensive 
and time-consuming (a concept termed technical debt in ma-
chine learning [27]).

In addition to individualized efforts via reviewers and us-
ers, informatics societies could increase efforts to define, and 
push the adoption of, standardized annotation schemata. The 
American College of Radiology (ACR) Data Science Institute 

selection, and other machine learning development steps, which 
cause negative downstream effects that compound on each other. 
Many of the technical solutions proposed to reduce or deal with 
noisy training labels are designed for model selection and 
training; these statistical approaches cannot be easily applied 
to evaluation of models (internal or external testing). Other 
work for improving radiologist agreement (eg, advanced an-
notation frameworks [25]) is difficult (if not impossible) to 
apply post hoc to available data. Unlike past work, we focus 
on highlighting critical problems and corresponding solu-
tions related to data cascades that occur earlier (ie, problem 
definition, data labeling) and later (ie, local validation) in the 
machine learning deployment pipeline.

Noise Mitigation Strategies

Reducing Noise
Tables 2 and 3 present a noncomprehensive list of various 
schema and label noise mitigation strategies. Some of the pro-
posed strategies are the responsibility of individual research-
ers or developers (eg, reporting certain metrics or asking cer-
tain questions before data collection), while others require 
community-led efforts (eg, developing consensus schemas).

Figure 1: Visualization of part of the Radiology Gamuts Ontology (6). Red rounded rectangles represent disorders, while green ovals represent 
observations caused by disorders. Labels (either red or green) that are in the CheXpert schema are outlined in thick black. This figure illustrates how 
such a schema will result in researchers and developers designing a model that lacks clarity on prediction classes required for clinical deployment 
use case and intermingles the prediction of both observations and disorders, which makes interpretation of model predictions, and thus translation into 
clinical practice, challenging.

http://radiology-ai.rsna.org
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aiding the efforts of researchers to improve on state-of-the-art 
models, of imaging professionals to evaluate and deploy AI, 
and of third-party vendors trying to instill confidence in their 
products.

Describing Label Noise
To reduce label noise, authors’ and developers’ description of 
their data collection and annotation generation methods should 
include a measurement of noise in the labels (#18 of CLAIM 
checklist [29]). Such evaluation will not only help developers 
understand the performance of models trained on these datas-
ets, but also help clinicians gain trust in the performance of said 
models. Data scientists should also recognize when the majority-

(DSI) has taken steps in this direction by introducing label 
schemas for specific use cases (discussed below).

Standardizing Use Cases—Define AI Use Case Directory via 
ACR DSI
Disagreements in schema design are often the result of differ-
ences in local practice and radiologist or scientist subjectivity. 
Efforts to standardize AI use cases such as that of the ACR 
DSI (28) can help reduce noise and improve generalizability 
in multiple ways. First, adoption of these use cases can result 
in the standardization of schema, preventing the current issues 
with similar yet noninteroperable schemas. This would facili-
tate direct comparison of AI models for the same clinical task, 

Figure 2: Representation of the simulation method measuring variation in the annotation process of a chest radiograph annotation task. We simulated labels created 
by majority vote when labels are provided by a randomly selected group of five radiologists out of the original eight labeling radiologists. We then measured agreement 
between all gold labels resulting from all possible gold label sets (n = 56) in a pairwise fashion. RAD = radiologist.

Figure 3: The median agreement (measured using Cohen κ and percent agreement of positive cases) between all pairwise comparisons of all possible 
gold label sets, sorted in ascending order. We also calculated Fleiss κ—a statistical measure for assessing reliability of agreement between multiple raters at 
once. A table of values can be found in Tables S1 and S2. E = enlarged. 
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vote “hard” labeling methods produce a false sense of certainty 
and noise should instead be represented using “soft” labels (18).

Label noise has already been described as a component of 
datasheets for datasets that can facilitate communication of 
annotation between researchers, developers, and end users. In 
Section 3.2 titled “Composition,” Gebru et al (30) highlight 
questions regarding the composition of a dataset that should be 
answered by the data holders. Among these questions are ones 
regarding sources of noise or errors within the dataset: “Are there 
any errors, sources of noise, or redundancies in the dataset? If so, 
please provide a description.”

Garbin et al (12) applied the datasheets for datasets concept 
to the CheXpert dataset; however, label noise is not explic-
itly quantified or addressed. To address this, we suggest that 

researchers consider these two radiology-specific questions: (a) 
What is the use case or justification behind the schema design? 
and (b) How accurate and reliable are your gold labels? Have you 
quantified both measures? Addressing these questions can reduce 
schema and label noise and enable more informed decisions by 
downstream users of such datasets for model development.

One place to apply this label noise description for great po-
tential impact would be open data science challenges (eg, the 
yearly open tasks hosted by the Radiological Society of North 
America [31]). It would push the field forward if organizers of 
the yearly event reported both the justification of the annotation 
schema and the label noise measures highlighted in this article. 
Publicly describing the schema justification and reporting label 
noise would help expose many researchers to the issues discussed 

Figure 4: A histogram counting the percent of patients in the CheXpert gold label–annotation dataset where at least n = 2,3,4 radiologists disagree from the assigned 
gold label (A–C), binned by number of labels (of 14) demonstrating the disagreement. The first (0) bar, in red, represents the number of patients who have no labels with at 
least n = 2,3,4 radiologist annotator disagreement. For example, in A, only about 10% of patients (40 of 500) had no classes where two radiologists disagreed—indicating 
that only 10% of cases showed complete agreement across classes by all radiologists. The remaining cases all demonstrated noise (disagreement) in assigned labels, which 
is hidden in “ground truth labels.”

Table 2: Various Strategies to Mitigate Schema Noise

Mitigation Strategy Examples and Citations

Design schemas that explicitly fit 
intended use

The American College of Radiology Data Science Institute has proposed the introduction of 
standardization of use cases as a starting point (28). Without such standardization, similar yet 
noninteroperable schema will proliferate, making comparison and analyses of proposed artificial 
intelligence algorithms difficult and disorderly.

New schemas, if more appropriate to develop and/or use for the intended use case, should be explic-
itly justified.

Provide a datasheet for the schema 
and the dataset

Gebru et al’s datasheets for datasets proposes the introduction of a standardized process for docu-
menting dataset (30). See example datasheet for CheXpert dataset datasheet (12). We propose 
including schema design justification and label noise description.

Develop consensus schemas Currently, dataset schemas are created to maximize the usage of available data from any specific 
institution. While this is a reasonable approach, over time this approach will lead the field into a 
variety of competing and noninteroperable standards.

To address this, there should be standardization of schemas. For real-world use cases, researchers 
and practicing radiologists should collaborate to develop a fully specified schema that fulfills the 
clinical requirement for the specific use case.

Incorporate existing knowledge by 
using hierarchical schemas or 
graph schemas for labeling related 
observations and diagnoses

A body of literature describes medical ontologies that should be used to label schema design. For 
example, www.gamuts.net is a knowledge graph linking findings and disorders across the entire 
spectrum of radiology imaging (6), which can be used to design labeling schemata.

http://radiology-ai.rsna.org
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in this article. Moreover, public reporting would help normalize 
the act of measuring and reporting such data. If agreement was 
reported per image, researchers would be able to develop meth-
ods that incorporate this noise during training. This act alone 
would also improve understanding of acceptable ranges for noise 
(eg, what is a reasonable amount of label agreement for different 
tasks?). This reporting can also serve to teach others how noise 
can be reported for different types of data (eg, percent agreement 
or κ for categorical labels and different approaches such as inter-
section over union for bounding box approaches).

Study Limitations
There were limitations to our work that provide opportunity 
for future research efforts. First, our study was limited to the 
test set of CheXpert data (due to availability); findings may 
not generalize to other imaging modalities. We hope that in 
the future, those releasing datasets are more open to sharing 
their annotations with researchers or perform and publish this 
type of analysis on their test set. Second, this work does not 
examine the images underlying the annotations to determine 
the predominant sources of disagreement. For such an analysis, 
we direct readers to the work of Duggan et al (25). Third, our 
formulation of label uncertainty does not actively consider the 
uncertainty of the individual annotators; the dataset did not 
contain such labels. Knowing the uncertainty of individual an-
notators can provide meaningful insight to label adjudication: 
Three radiologists who are 90% confident there is a fracture 
who disagree with two radiologists who are only 50% confi-

dent there is no fracture would be treated differently if all radi-
ologists were only 50% confident of their decision.

Another limitation, stemming from the underlying dataset, 
was the fact that the task at hand was focusing solely on image 
interpretation. In the real world, clinical history and prior im-
ages would be present, possibly leading to lower disagreements. 
However, as most chest radiograph AI models are trained from 
images alone, we felt it was appropriate to use these data for analy-
sis. Finally, we chose to highlight the agreement between multiple 
pairwise comparisons rather than a metric that compares all an-
notators at once (Fleiss κ) as it would allow for a more intuitive 
comparison between pairs of gold label sets. However, we do also 
present group metrics for interested researchers. Regardless of the 
measure used, there is a clear need to understand how uncertainty 
interacts with trained models and its impact on clinical outcomes.

Conclusion
In summary, underreported noise in schema design and gold 
labels are widespread and contribute to mistrust and challenges 
in development, evaluation, and clinical deployment of chest 
radiograph AI models.

Our work (a) describes the concept of schema noise—the 
lack of conceptual clarity regarding the task at hand, manifest-
ing itself as class overlap (infiltrate vs consolidation), hidden 
hierarchy (abscess as a leaf node of cavity), and intermingling 
observations with disorders (consolidation vs pneumonia) and 
(b) characterizes the second-order variation and quantifies the 
magnitude of label noise.

Table 3: Various Strategies to Reduce or Adapt to Label Noise

Strategy Examples and Citations

Report label noise and internal 
consistency

Currently, most gold labels are presented as hard labels without any measure of uncertainty or 
noise. Future work should report statistics about annotation noise and consistency to help devel-
opers and clinicians understand when such labels should be treated as soft labels.

Labeling method should be selected 
to match the intended use case

Currently, the most commonly used labeling method is majority vote. However, depending on the 
intended use case, this may not be the most appropriate:

(a) For example, in a screening use case, it may be worthwhile to explore using another labeling 
method that maximizes sensitivity (eg, positive label if any of the radiologists labeled it as posi-
tive).

(b) Where agreement is desired for the specific use case, we recommend adjudicative labeling meth-
ods to improve agreement (25).

(c) Where the use case requires accurate ordering or ranking of cases in terms of severity, we 
recommend using comparative annotations. Comparative annotations can be used to provide 
an ordinal ranking of images by severity (32). Comparative annotations have been used in the 
labeling of other machine learning datasets (32,33) and provides solutions to issues of traditional 
labeling methods (32,34).

Incorporate more definitive follow-up 
tests to validate labels

Chest radiograph labels produced by radiologists are often noisy and not suitable for the creation 
of a ground truth label. We recommend attempting to incorporate other information to generate 
gold labels. For example, depending on the intended use case, researchers can use CT images ac-
quired contemporaneously at the time of a radiograph as a source of radiograph labels. Alterna-
tively, incorporating laboratory or pathologic results could be used to help determine true labels 
in some clinical scenarios.

Use noise-tolerant training methods A review of methods of adapting architecture, regularization, loss design, and sample selection for 
noise is presented in Song et al (18).
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Our findings emphasize the considerable amount of noise 
in gold labels used to evaluate models, which is critical for end 
users to understand in the context of evaluating the safety and 
robustness of externally developed algorithms for local deploy-
ment. We describe schema and label noise to (a) help clinical 
users answer the question, “How much can I trust a positive 
or negative result from this chest radiograph classifier?” and 
(b) guide developers to recognize and mitigate this noise. Both 
researchers and organizations have a role to play in mitigating 
noise through transparent justification of decision-making and 
reporting of noise to prevent unintended downstream degrada-
tion of AI performance and trust.
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