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Brief Review from Part 1

Matrix Multiplication is a linear tranformation.

Symmetric Matrix:
A = AT

Orthogonal Matrix:

ATA = AAT = I and A−1 = AT

L2 Norm:

||x||2 =

√∑
i

x2i
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Angle Between Vectors

Dot product of two vectors can be written in terms of their L2
norms and the angle θ between them.

aTb = ||a||2||b||2 cos(θ)

Linear Algebra, Part II 2019 3 / 22



Cosine Similarity

Cosine between two vectors is a measure of their similarity:

cos(θ) =
a · b
||a|| ||b||

Orthogonal Vectors: Two vectors a and b are orthogonal to
each other if a · b = 0.
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Vector Projection

Given two vectors a and b, let b̂ = b
||b|| be the unit vector in the

direction of b.

Then a1 = a1 · b̂ is the orthogonal projection of a onto a
straight line parallel to b, where

a1 = ||a|| cos(θ) = a · b̂ = a · b

||b||

Image taken from wikipedia.
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Diagonal Matrix

Diagonal matrix has mostly zeros with non-zero entries only in
the diagonal, e.g. identity matrix.

A square diagonal matrix with diagonal elements given by entries
of vector v is denoted:

diag(v)

Multiplying vector x by a diagonal matrix is efficient:

diag(v)x = v � x

� is the entrywise product.

Inverting a square diagonal matrix is efficient:

diag(v)−1 = diag
(

[
1

v1
, . . . ,

1

vn
]T
)
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Determinant

Determinant of a square matrix is a mapping to a scalar.

det(A) or |A|

Measures how much multiplication by the matrix expands or
contracts the space.

Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

∣∣∣∣a b
c d

∣∣∣∣ = ad − bc
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List of Equivalencies

The following are all equivalent:

Ax = b has a unique solution (for every b with correct
dimension).

Ax = 0 has a unique, trivial solution: x = 0.

Columns of A are linearly independent.

A is invertible, i.e. A−1 exists.

det(A) 6= 0
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Zero Determinant

If det(A) = 0, then:

A is linearly dependent.

Ax = b has no solution or infinitely many solutions.

Ax = 0 has a non-zero solution.
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Matrix Decomposition

We can decompose an integer into its prime factors, e.g.
12 = 2× 2× 3.

Similarly, matrices can be decomposed into factors to learn
universal properties:

A = Vdiag(λ)V−1

Unlike integers, matrix factorization is not unique:[
0 0
0 1

]
×
[

1 1
1 1

]
=

[
1 −2
0 1

]
×
[

2 2
1 1

]
=

[
0 0
1 1

]
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Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v.

Av = λv

The scalar λ is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv.
Moreover, sv still has the same eigenvalue. Thus, we constrain
the eigenvector to be of unit length:

||v|| = 1
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Characteristic Polynomial(1)

Eigenvalue equation of matrix A:

Av = λv

λv − Av = 0

(λI− A)v = 0

If nonzero solution for v exists, then it must be the case that:

det(λI− A) = 0

Unpacking the determinant as a function of λ, we get:

PA(λ) = |λI− A| = 1× λn + cn−1 × λn−1 + . . . + c0

This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

If λ1, λ2, . . . , λn are roots of the characteristic polynomial, they
are eigenvalues of A and we have:

PA(λ) =
n∏

i=1

(λ− λi)

cn−1 = −
∑n

i=1 λi = −tr(A)

c0 = (−1)n
∏n

i=1 λi = (−1)ndet(A)

Roots might be complex. If a root has multiplicity of rj > 1,
then the dimension of eigenspace for that eigenvalue might be
less than rj (or equal but never more). But one eigenvector is
guaranteed.
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Example

Consider the matrix:

A =

[
2 1
1 2

]
The characteristic polynomial is:

det(λI− A) = det

[
λ− 2 −1
−1 λ− 2

]
= 3− 4λ + λ2 = 0

It has roots λ = 1 and λ = 3 which are the two eigenvalues of A.

We can then solve for eigenvectors using Av = λv:

vλ=1 = [1,−1]T and vλ=3 = [1, 1]T
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Eigendecomposition

Suppose that n × n matrix A has n linearly independent
eigenvectors {v(1), . . . , v(n)} with eigenvalues {λ1, . . . , λn}.

Concatenate eigenvectors (as columns) to form matrix V.

Concatenate eigenvalues to form vector λ = [λ1, . . . , λn]T .

The eigendecomposition of A is given by:

AV = Vdiag(λ) =⇒ A = Vdiag(λ)V−1
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Symmetric Matrices

Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
All eigenvalues are real.

Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QΛQT

Q is an orthogonal matrix of the eigenvectors of A, and Λ is a
diagonal matrix of eigenvalues.

We can think of A as scaling space by λi in direction v(i).
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Eigendecomposition is not Unique

Decomposition is not unique when two eigenvalues are the same.

By convention, order entries of Λ in descending order. Then,
eigendecomposition is unique if all eigenvalues are unique.

If any eigenvalue is zero, then the matrix is singular. Because if
v is the corresponding eigenvector we have: Av = 0v = 0.

Linear Algebra, Part II 2019 17 / 22



Positive Definite Matrix

If a symmetric matrix A has the property:

xTAx > 0 for any nonzero vector x

Then A is called positive definite.

If the above inequality is not strict then A is called positive
semidefinite.

For positive (semi)definite matrices all eigenvalues are
positive(non negative).
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

SVD is a decomposition of the form:

A = UDVT

SVD is more general than eigendecomposition.

Every real matrix has a SVD.

Linear Algebra, Part II 2019 19 / 22



SVD Definition (1)

Write A as a product of three matrices: A = UDVT .

If A is m × n, then U is m ×m, D is m × n, and V is n × n.

U and V are orthogonal matrices, and D is a diagonal matrix
(not necessarily square).

Diagonal entries of D are called singular values of A.

Columns of U are the left singular vectors, and columns of V
are the right singular vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AAT .

Right singular vectors of A are the eigenvectors of ATA.

Nonzero singular values of A are square roots of eigenvalues of
ATA and AAT .

Numbers on the diagonal of D are sorted largest to smallest and
are positive (This makes SVD unique)
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SVD Optimality

We can write A = UDVT in this form: A =
∑n

i=1 diuivT
i

Instead of n we can sum up to r: Ar =
∑r

i=1 diuivT
i

This is called a low rank approximation of A.

Ar is the best approximation of rank r by many norms:

When considering vector norm, it is optimal. Which means Ar

is a linear transformation that captures as much energy as
possible.
When considering Frobenius norm, it is optimal which means Ar

is projection of A on the best(closest) r dimensional subspace.
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