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http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/tutorials/tut4_slides.pdf

Brief Review from Part 1

@ Matrix Multiplication is a linear tranformation.

@ Symmetric Matrix:
A=AT

@ Orthogonal Matrix:

A'TA=AA" =1 and A '1=AT

il = \/5
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@ L2 Norm:



Angle Between Vectors

@ Dot product of two vectors can be written in terms of their L2
norms and the angle 6 between them.

a’b = ||al|2||b|> cos(h)
Y dist (A, B)
s
A& oS 0
\
X /
7
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Cosine Similarity

@ Cosine between two vectors is a measure of their similarity:

a-b

os%) = TalrTel

@ Orthogonal Vectors: Two vectors a and b are orthogonal to
each other ifa-b =0.
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Vector Projection

@ Given two vectors a and b, let b= % be the unit vector in the
direction of b.

@ Then a; = a; - b is the orthogonal projection of a onto a
straight line parallel to b, where

o

a =||a||cos(d) =a-b=a - —

Image taken from wikipedia.
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https://en.wikipedia.org/wiki/Vector_projection

Diagonal Matrix

@ Diagonal matrix has mostly zeros with non-zero entries only in
the diagonal, e.g. identity matrix.

@ A square diagonal matrix with diagonal elements given by entries
of vector v is denoted:

diag(v)
@ Multiplying vector x by a diagonal matrix is efficient:
diag(v)x = vOx
® is the entrywise product.

@ Inverting a square diagonal matrix is efficient:

diag(v)™! = diag([i "’vi,,]T)

.
Vi
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@ Determinant of a square matrix is a mapping to a scalar.
det(A) or |A]

@ Measures how much multiplication by the matrix expands or
contracts the space.

@ Determinant of product is the product of determinants:

det(AB) = det(A)det(B)
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List of Equivalencies

The following are all equivalent:

@ Ax = b has a unique solution (for every b with correct
dimension).

@ Ax = 0 has a unique, trivial solution: x = 0.
@ Columns of A are linearly independent.

@ A is invertible, i.e. A~ exists.

o det(A) # 0
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Zero Determinant

If det(A) = 0, then:

@ A is linearly dependent.
@ Ax = b has no solution or infinitely many solutions.

@ Ax = 0 has a non-zero solution.
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Matrix Decomposition

@ We can decompose an integer into its prime factors, e.g.
12=2x2x3.

@ Similarly, matrices can be decomposed into factors to learn
universal properties:

A = VdiagA\)V!
@ Unlike integers, matrix factorization is not unique:
00x11—1_2x22—00
01 1 1 (0 1 1 1 |11
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@ An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v.

Av = )v
@ The scalar A is known as the eigenvalue.

@ If v is an eigenvector of A, so is any rescaled vector sv.
Moreover, sv still has the same eigenvalue. Thus, we constrain
the eigenvector to be of unit length:

[Iv][ =1
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Characteristic Polynomial(1)

@ Eigenvalue equation of matrix A:

Av = v
AwW—Av =0
(M—Awv =0

@ If nonzero solution for v exists, then it must be the case that:
det(Al—A) = 0
@ Unpacking the determinant as a function of )\, we get:
PaA) =M —A] =1x A" +c 1 x A"+

@ This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

@ If \;, Mo, ..., \, are roots of the characteristic polynomial, they
are eigenvalues of A and we have:

n

PA(A) = H()\ - >‘i)

@ Cho1 = — 27:1 A= —tr(A)
0 co = (—1) Ty N = (~1)'det(A)

@ Roots might be complex. If a root has multiplicity of r; > 1,
then the dimension of eigenspace for that eigenvalue might be
less than r; (or equal but never more). But one eigenvector is
guaranteed.
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@ Consider the matrix:
A — 2 1
1 2

@ The characteristic polynomial is:

A—2 -1

det(Al — A) = det { 1 a_»o

}:3—4A+A2:o

@ It has roots A =1 and A\ = 3 which are the two eigenvalues of A.
@ We can then solve for eigenvectors using Av = A\v:

Vy=1 = [1, —1]T and V)y=3 — [1, 1]T
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Eigendecomposition

@ Suppose that n x n matrix A has n linearly independent
eigenvectors {v(}) ... v(M} with eigenvalues {\1,...,\,}.

@ Concatenate eigenvectors (as columns) to form matrix V.
e Concatenate eigenvalues to form vector A = [Ay,..., A\,]".

@ The eigendecomposition of A is given by:

AV = Vdiag()\) = A = Vdiag(A)V!
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Symmetric Matrices

@ Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
All eigenvalues are real.

@ Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:

A = QAQT

@ Q is an orthogonal matrix of the eigenvectors of A, and A is a
diagonal matrix of eigenvalues.

@ We can think of A as scaling space by \; in direction v(),

Plot of unit vectors ueR? Plot of vectors Au
(circle) (ellipse)
Befor

After multiplication

with two variables z, and z, |
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Eigendecomposition is not Unique

@ Decomposition is not unique when two eigenvalues are the same.

@ By convention, order entries of A in descending order. Then,
eigendecomposition is unique if all eigenvalues are unique.

@ If any eigenvalue is zero, then the matrix is singular. Because if
v is the corresponding eigenvector we have: Av = 0v = 0.
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Positive Definite Matrix

@ If a symmetric matrix A has the property:
x"Ax >0 for any nonzero vector x
Then A is called positive definite.

@ If the above inequality is not strict then A is called positive
semidefinite.

@ For positive (semi)definite matrices all eigenvalues are
positive(non negative).
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Singular Value Decomposition (SVD)

@ If A is not square, eigendecomposition is undefined.
@ SVD is a decomposition of the form:

A = UDV’
@ SVD is more general than eigendecomposition.

@ Every real matrix has a SVD.
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SVD Definition (1)

@ Write A as a product of three matrices: A = UDV.
@ IfAismxn,thenUismxm, Dismxn, and Vis n x n.

@ U and V are orthogonal matrices, and D is a diagonal matrix
(not necessarily square).

@ Diagonal entries of D are called singular values of A.

@ Columns of U are the left singular vectors, and columns of V
are the right singular vectors.
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SVD Definition (2)

@ SVD can be interpreted in terms of eigendecompostion.
@ Left singular vectors of A are the eigenvectors of AAT.
@ Right singular vectors of A are the eigenvectors of ATA.

@ Nonzero singular values of A are square roots of eigenvalues of
ATA and AAT.

@ Numbers on the diagonal of D are sorted largest to smallest and
are positive (This makes SVD unique)
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SVD Optimality

e We can write A = UDV7 in this form: A =>"" diuyv/
@ Instead of n we can sumup tor: A, = Zle d,-u,-v,-T
@ This is called a low rank approximation of A.

@ A, is the best approximation of rank r by many norms:

e When considering vector norm, it is optimal. Which means A,
is a linear transformation that captures as much energy as
possible.

e When considering Frobenius norm, it is optimal which means A,
is projection of A on the best(closest) r dimensional subspace.
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