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Final Exam

Thursday, Apr. 25, from 9am–12pm BN3.

Covers all lectures except the final week (Lectures 23 and 24).

Similar difficulty to midterm.

Practice exams will be posted.
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Overview

As ML starts to be applied to critical applications involving humans,
the field is wrestling with the societal impacts

Security: what if an attacker tries to poison the training data, fool the
system with malicious inputs, “steal” the model, etc.?
Privacy: avoid leaking (much) information about the data the system
was trained on (e.g. medical diagnosis)
Fairness: ensure that the system doesn’t somehow disadvantage
particular individuals or groups
Transparency: be able to understand why one decision was made
rather than another
Accountability: an outside auditor should be able to verify that the
system is functioning as intended

If some of these definitions sound vague, that’s because formalizing
them is half the challenge!
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Overview: Fairness

FAIRNESS IN AUTOMATED DECISIONS

paper 

acceptance

Schooling
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Banking
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Care
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aid

Credit: Richard Zemel
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Overview: Fairness

SUBTLER BIAS

Credit: Richard Zemel
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Overview: Fairness

This lecture: algorithmic fairness

Goal: identify and mitigate bias in ML-based decision making, in all
aspects of the pipeline

Sources of bias/discrimination
Data

Imbalanced/impoverished data
Labeled data imbalance
Labeled data incorrect / noisy

Model

ML prediction error imbalanced
Compound injustices (Hellman)

Credit: Richard Zemel
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Overview: Fairness

Notation

X : input to classifier
S : sensitive feature (age, gender, race, etc.)
Z : latent representation
Y : prediction
T : true label

We use capital letters to emphasize that these are random variables.
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Fairness Criteria

Most common way to define fair classification is to require some
invariance with respect to the sensitive attribute

Demographic parity: Y ⊥⊥ S
Equalized odds: Y ⊥⊥ S |T
Equal opportunity: Y ⊥⊥ S |T = t, for some t
Equal (weak) calibration: T ⊥⊥ S |Y
Equal (strong) calibration: T ⊥⊥ S |Y and Y = Pr(T = 1)
Fair subgroup accuracy: 1[T = Y ] ⊥⊥ S

⊥⊥ denotes stochastic independence

Many of these definitions are incompatible!
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Learning Fair Representations

Idea: separate the responsibilities of the (trusted) society and
(untrusted) vendor

Goal: find a representation Z that removes any information about the
sensitive attribute

Then the vendor can do whatever they want!

Image Credit: Richard Zemel

UofT CSC411 2019 Winter Lecture 23 9 / 29



Learning Fair Representations

A näıve attempt: simply don’t use the sensitive feature.

Problem: the algorithm implicitly learn to predict the sensitive feature
from other features (e.g. race from zip code)

Another idea: limit the algorithm to a small set of features you’re
pretty sure are safe and task-relevant

This is the conservative approach, and commonly used for both human
and machine decision making
But removing features hurts the classification accuracy. Maybe we can
make more accurate decisions if we include more features and somehow
enforce fairness algorithmically?

Can we learn fair representations, which can make accurate
classifications without implicitly using the sensitive attribute?
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Learning Fair Representations

Desiderata for the representation:

Retain information about X ⇒ high mutual information between X
and Z

Obfuscate S ⇒ low mutual information between S and Z

Allow high classification accuracy ⇒ high mutual information
between T and Z

UofT CSC411 2019 Winter Lecture 23 11 / 29



Learning Fair Representations

First approach: Zemel et al., 2013, “Learning fair representations”

Let Z be a discrete representation (like K-means)

Determine Z stochastically based on distance to a prototype for the
cluster (like the cluster center in K-means)

Pr(Z = k | x) ∝ exp(−d(x, vk)),

where d is some distance function (e.g. Euclidean distance)

Use the Bayes classifier y = Pr(T = 1 |Z )

Need to fit the prototypes vk
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Learning Fair Representations

Retain information about X : penalize reconstruction error

Lreconst =
1

N

N∑
i=1

‖x(i) − x̃(i)‖2

Predict accurately: cross-entropy loss

Lpred =
1

N

N∑
i=1

−t(i) log y (i) − (1− t(i)) log(1− y (i))

Obfuscate S :

Ldiscrim =
1

K

K∑
k=1

∣∣∣∣∣ 1

N0

∑
i :s(i)=0

Pr(Z = k | x(i))−
1

N1

∑
i :s(i)=1

Pr(Z = k | x(i))

∣∣∣∣∣,
where we assume for simplicity S ∈ {0, 1} and N0 is the count for
s = 0.
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Learning Fair Representations

Obfuscate S :

Ldiscrim =
1

K

K∑
k=1

∣∣∣∣∣ 1

N0

∑
i :s(i)=0

Pr(Z = k | x(i))−
1

N1

∑
i :s(i)=1

Pr(Z = k | x(i))

∣∣∣∣∣,
Is this about individual-level or group-level fairness?

If discrimination loss is 0, we satisfy demographic parity

Pr(Y = 1 | s(i) = 1) =
1

N1

∑
i :s(i)=1

K∑
k=1

Pr(Z = k | x(i))Pr(Y = 1 |Z = k)

=
K∑

k=1

 1

N1

∑
i :s(i)=1

Pr(Z = k | x(i))

Pr(Y = 1 |Z = k)

=
K∑

k=1

 1

N0

∑
i :s(i)=0

Pr(Z = k | x(i))

Pr(Y = 1 |Z = k)

= Pr(Y = 1 | s(i) = 0)
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Learning Fair Representations

Datasets
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Learning Fair Representations

Metrics

Classification accuracy

Discrimination ∣∣∣∣∣
∑N

i :s(i)=1 y
(i)

N1
−
∑N

i :s(i)=0 y
(i)

N0

∣∣∣∣∣

Yellow = unrestricted; Blue = theirs
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Fair VAE

Discrete Z based on prototypes is very limiting. Can we learn a more
flexible representation?

Louizos et al., 2015, “The variational fair autoencoder”

The variational autoencoder (VAE) is a kind of autoencoder that
represents a probabilistic model, and can be trained with a variational
objective similar to the one we used for E-M.

For this lecture, just think of it as an autoencoder.
How can we learn an autoencoder such that the code vector z loses
information about s?
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Fair VAE: Maximum Mean Discrepancy

Our previous non-discrimination criterion only makes sense for
discrete Z .

New criterion: ensure that p(Z | s) is indistinguishable for different
values of s.

Maximum mean discrepancy (MMD) is a quantitative measure of
distance between two distributions. Pick a feature map ψ.

MMD(p; q) =
∥∥Ez∼p[ψ(z)]− Ez∼q[ψ(z)]

∥∥2
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Fair VAE: Maximum Mean Discrepancy

MMD can be kernelized by expressing it in terms of
k(z, z′) = ψ(z)>ψ(z′).

Let {zi}N0
i=1 and {z′i}

N1
i=1 be sets of samples from p and q. The

empirical MMD is given by:

∥∥∥∥∥∥ 1

N0

N0∑
i=1

ψ(zi )−
1

N1

N1∑
i=1

ψ(z′i )

∥∥∥∥∥∥
2

=
1

N2
0

N0∑
i=1

N0∑
j=1

k(zi , zj ) +
1

N2
1

N1∑
i=1

N1∑
j=1

k(z′i , z
′
j )− 2

1

N0N1

N0∑
i=1

N1∑
j=1

k(zi , z
′
j )

You can show that for certain kernels (e.g. RBF), the MMD is 0 iff
p = q. So MMD is a very powerful distance metric.
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Fair VAE

Train a VAE, with the constraint that the MMD between p(z | s = 0) and
p(z | s = 1) is small.
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Fair VAE: tSNE embeddings

tSNE is an unsupervised learning algorithm for visualizing
high-dimensional datasets. It tries to embed points in low dimensions
in a way that preserves distances as accurately as possible.

Here are tSNE embeddings of different distributions, color-coded by
the sensitive feature:

Original inputs VAE latent space

Published as a conference paper at ICLR 2016

(a) Adult dataset

(b) German dataset

(c) Health dataset

Figure 3: Fair classification results. Columns correspond to each evaluation scenario (in order):
Random/RF/LR accuracy on s, Discrimination/Discrimination prob. against s and Random/Model
accuracy on y. Note that the objective of a “fair” encoding is to have low accuracy on S (where LR
is a linear classifier and RF is nonlinear), low discrimination against S and high accuracy on Y.

introducing these independence properties as well as the MMD penalty the nuisance variable groups
become practically indistinguishable.

(a) (b) (c) (d)

Figure 4: t-SNE (van der Maaten, 2013) visualizations from the Adult dataset on: (a): original x ,
(b): latent z1 without s and MMD, (c): latent z1 with s and without MMD, (d): latent z1 with s and
MMD. Blue colour corresponds to males whereas red colour corresponds to females.

3.3.2 DOMAIN ADAPTATION

As for the domain adaptation scenario and the Amazon reviews dataset, the results of our VFAE
model can be seen in Table 1. Our model was successful in factoring out the domain information,
since the accuracy, measured both linearly (LR) and non-linearly (RF), was towards random chance
(which for this dataset is 0.5). We should also mention that, on this dataset at least, completely
removing information about the domain does not guarantee a better performance on y. The same
effect was also observed by Ganin et al. (2015) and Chen et al. (2012). As far as the accuracy on y

7

Fair VAE latent space

Figure Credit: Louizos et al., 2015
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Individual Fairness

The work on fair representations was geared towards group fairness

Another notion of fairness is individual level: ensuring that similar
individuals are treated similarly by the algorithm

This depends heavily on the notion of “similar”.

One way to define similarity is in terms of the “true label” T (e.g.
whether this individual is in fact likely to repay their loan)

Can you think of a problem with this definition?
The label may itself be biased

if based on human judgments
if, e.g., societal biases make it harder for one group to pay off their
loans

We’ll ignore this issue in our analysis. But keep in mind that you’d
need to carefully consider the assumptions when applying one of these
methods!
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Equal Opportunity

Now we’ll turn to Hardt et al., 2016, “Equality of opportunity in
supervised learning”.

Assume we make a binary prediction by computing a real-valued score
R = f (X ,S), and then thresholding this score to obtain the
prediction Y .

As before, assume S ∈ {0, 1}.
Motivating example: predict whether an individual is likely to repay
their loan

Two notions of individual fairness:

Equalized odds: equal true positive and false positive rates

Pr(Y = 1 |S = 0,T = t) = Pr(Y = 1 |S = 1,T = t) for t ∈ {0, 1}

Equal opportunity: equal true positive rates

Pr(Y = 1 |S = 0,T = 1) = Pr(Y = 1 |S = 1,T = 1)
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Equal Opportunity

Consider derived predictors, which are a function of the real-valued
score R and the sensitive feature S .

I.e., we don’t need to check the original input X . This simplifies the
analysis.

Define a loss function L(Y ,T ). Since Y and T are binary, there are
4 values to specify.

They show that:

Without a constraint, the optimal predictor is obtained from
thresholding R.
With an equal opportunity constraints, the optimal predictor is
obtained by thresholding R, but with a different threshold for different
values of S .
Satisfying equalized odds is overconstrained, and may require
randomizing Y .
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Equal Opportunity

Case study: FICO scores

Aim to predict whether an individual has less than an 18% rate of
default (which is the threshold for profitability)

in figures), Hispanic, and black. FICO scores are complicated proprietary classifiers based
on features, like number of bank accounts kept, that could interact with culture—and hence
race—in unfair ways. A credit score cuto↵ of 620 is commonly used for prime-rate loans1,

Figure 7: These two marginals, and the number of people per group, constitute our input data.

which corresponds to an any-account default rate of 18%. Note that this measures default
on any account TransUnion was aware of; it corresponds to a much lower (⇡ 2%) chance of
default on individual new loans. To illustrate the concepts, we use any-account default as our
target Y—a higher positive rate better illustrates the di↵erence between equalized odds and
equal opportunity.

We therefore consider the behavior of a lender who makes money on default rates below
this, i.e., for whom whom false positives (giving loans to people that default on any account)
is 82/18 as expensive as false negatives (not giving a loan to people that don’t default). The
lender thus wants to construct a predictor bY that is optimal with respect to this asymmetric
loss. A typical classifier will pick a threshold per group and set bY = 1 for people with FICO
scores above the threshold for their group. Given the marginal distributions for each group
(Figure 7), we can study the optimal profit-maximizing classifier under five di↵erent constraints
on allowed predictors:

• Max profit has no fairness constraints, and will pick for each group the threshold that
maximizes profit. This is the score at which 82% of people in that group do not default.

• Race blind requires the threshold to be the same for each group. Hence it will pick the
single threshold at which 82% of people do not default overall, shown in Figure 8.

• Demographic parity picks for each group a threshold such that the fraction of group
members that qualify for loans is the same.

• Equal opportunity picks for each group a threshold such that the fraction of non-defaulting
group members that qualify for loans is the same.

1http://www.creditscoring.com/pages/bar.htm (Accessed: 2016-09-20)
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Figure: Hardt et al., 2016
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Equal Opportunity

The “race-blind” solution applies the same threshold for all the
groups.
Problem: non-defaulting black applicants are much less likely to be
approved than non-defaulting white applicants.

Fraction of non-defaulting applicants in each group = fraction of area
under curve which is shaded

Figure: Hardt et al., 2016
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Equal Opportunity

Can obtain equal opportunity, equalized odds, demographic parity by
setting group-specific thresholds (except equalized odds requires
randomizing).

Figure 9: FICO thresholds for various definitions of fairness. The equal odds method does not
give a single threshold, but instead Pr[bY = 1 | R,A] increases over some not uniquely defined
range; we pick the one containing the fewest people. Observe that, within each race, the equal
opportunity threshold and average equal odds threshold lie between the max profit threshold
and equal demography thresholds.

The di↵erence between equal odds and equal opportunity is that under equal opportunity,
the classifier can make use of its better accuracy among whites. Under equal odds this is viewed
as unfair, since it means that white people who wouldn’t pay their loans have a harder time
getting them than minorities who wouldn’t pay their loans. An equal odds classifier must
classify everyone as poorly as the hardest group, which is why it costs over twice as much in
this case. This also leads to more conservative lending, so it is slightly harder for non-defaulters
of all groups to get loans.

The equal opportunity classifier does make it easier for defaulters to get loans if they are
minorities, but the incentives are aligned properly. Under max profit, a small group may not be
worth figuring out how to classify and so be treated poorly, since the classifier can’t identify
the qualified individuals. Under equal opportunity, such poorly-classified groups are instead
treated better than well-classified groups. The cost is thus born by the company using the
classifier, which can decide to invest in better classification, rather than the classified group,
which cannot. Equalized odds gives a similar, but much stronger, incentive since the cost for a
small group is not proportional to its size.

While race blindness achieves high profit, the fairness guarantee is quite weak. As with
max profit, small groups may be classified poorly and so treated poorly, and the company has
little incentive to improve the accuracy. Furthermore, when race is redundantly encoded, race
blindness degenerates into max profit.

8 Conclusions

We proposed a fairness measure that accomplishes two important desiderata. First, it remedies
the main conceptual shortcomings of demographic parity as a fairness notion. Second, it is fully
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Figure: Hardt et al., 2016
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Equal Opportunity

Different notions of fairness often come into conflict. E.g., demographic parity
conflicts with equal opportunity (left).

Some notions of fairness are harder to achieve than others, in terms of lost profit
(right).

Choosing the right criterion requires careful consideration of the causal
relationships between the variables.

Figure: Hardt et al., 2016
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Summary

Fairness is a challenging issue to address

Not something you can just measure on a validation set
Philosophers and lawyers have been trying to define it for thousands of
years
Different notions are incompatible. Need to carefully consider the
particular problem.

individual vs. group

Explosion of interest in ML over the last few years

New conference on Fairness, Accountability, and Transparency (FAT*)

New textbook: https://fairmlbook.org/
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