CSC 411: Introduction to Machine Learning

CSC 411 Lecture 22: Reinforcement Learning Il

Mengye Ren and Matthew MacKay

University of Toronto

Uof T CSC411 2019 Winter Lecture 22 1/21

MDP

@ Markov Decision Problem (MDP): tuple (S, A, P,v) where P is

P(sty1=5",rep1 =r'|se = s,a; = a)

@ Main assumption: Markovian dynamics and reward.
@ Standard MDP problems:

@ Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

0.5

& 1.0
N 2 Fast
05 . _
Warm 43
;Fast 0.5 +2 <

0.5 Overheated
1.0 +2

[Pic: P. Abbeel]
Uof T CSC411 2019 Winter Lecture 22 2/ 21

Basic Problems

@ Markov Decision Problem (MDP): tuple (S, A, P,~) where P is
P(sty1 =5, ry1 =r'|ss =s,a; = a)

@ Standard MDP problems:

@ Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

@ Learning: We don't know which states are good or what the actions
do. We must try out the actions and states to learn what to do

[P. Abbeel]

Uof T CSC411 2019 Winter Lecture 22 3/21

Example of Standard MDP Problem

o]

Ao Ao A

|
\] 100]

.
o

r(s,a) (immediate reward)

© Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

@ Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

Uof T CSC411 2019 Winter Lecture 22 4/21

Example of Standard MDP Problem

-

@ Planning: given complete Markov decision problem as input, compute
policy with optimal expected return

@ Learning: Only have access to experience in the MDP, learn a near-optimal
strategy

We will focus on learning, but discuss planning along the way

Uof T CSC411 2019 Winter Lecture 22 5/21

Exploration vs. Exploitation

@ If we knew how the world works (embodied in P), then the policy should be
deterministic

@ just select optimal action in each state
@ Reinforcement learning is like trial-and-error learning

@ The agent should discover a good policy from its experiences of the
environment

@ Without losing too much reward along the way

@ Since we do not have complete knowledge of the world, taking what appears
to be the optimal action may prevent us from finding better states/actions

@ Interesting trade-off:

e immediate reward (exploitation) vs. gaining knowledge that might
enable higher future reward (exploration)

Uof T CSC411 2019 Winter Lecture 22 6 /21

@ Restaurant Selection

e Exploitation: Go to your favourite restaurant
o Exploration: Try a new restaurant

@ Online Banner Advertisements

o Exploitation: Show the most successful advert
o Exploration: Show a different advert

@ Oil Drilling

e Exploitation: Drill at the best known location
o Exploration: Drill at a new location

@ Game Playing

o Exploitation: Play the move you believe is best
o Exploration: Play an experimental move

[Slide credit: D. Silver]

Uof T CSC411 2019 Winter Lecture 22 7/21

Value function

@ The value function V™ (s) assigns each state the expected reward

V7(s) = Zv ferilsi =s

at yat+/ sSt+i

@ Usually not informative enough to make decisions.

@ The Q-value Q™ (s, a) is the expected reward of taking action a in state s
and then continuing according to .

Q"(s,a) = Z’y revilst =s,a; = a

3z+l sSt+i

Uof T CSC411 2019 Winter Lecture 22 8/21

Bellman equations

@ The foundation of many RL algorithms

V7T(s) = |:Z v rt+,|st = s:|

at, 3r+: Stti

E Y ft+:+1|5t = 5]

=E[rea|se =s] +v E [V”(stﬂ)Ist =]
at St+1

=Y P(als)p(rla,se) - r+~)_ P(als)p(s'|a,se) - V7 (s')

a,r a,s’

:EE[ft+1|5t =s]+7v
t

at, at+: St+i

@ Similar equation holds for Q
Q7 (s,a) = Z’y revilse = s,ar = a]

5t+u$r+: -
:§:Md&&-r+v§:MSMJJ~VWS)

=3 ptlas): S el 075

a’,s’

Uof T CSC411 2019 Winter Lecture 22 9/21

Solving Bellman equations

@ The Bellman equations are a set of linear equations with a unique solution.
@ Can solve fast(er) because the linear mapping is a contractive mapping.

@ This lets you know the quality of each state/action under your policy -
policy evaluation.

@ You can improve by picking 7’(s) = max, Q™ (s, a) - policy improvement.

@ Can show the iterative policy evaluation and improvement converges to the
optimal policy.

@ Are we done? Why isn’t this enough?

o Need to know the model! Usually isn't known.
o Number of states is usually huge (how many unique states does a chess
game have?)

Uof T CSC411 2019 Winter Lecture 22 10 / 21

Optimal Bellman equations

@ First step is understand the Bellman equation for the optimal policy 7*

@ Under this policy V*(s) = max, Q*(s, a)

V*(s) = max {IE [rer1]se = s,ar = a]l + v E [V (se11)|st = s, ac = a]}
a St+1

= max {Z p(rla,se) - r+7 > p(s']a) - V(S)

Q" (s,a) = E[ret1lse = s,a: = a] + v E [mgx Q*(st+1,a)|st = s,ar = a]
t+1 a

=S p(rlas) r 473 p(s'lase) - max Q7 (s,)

@ Set on nonlinear equations.

@ Same issues as before.

Uof T CSC411 2019 Winter Lecture 22 1 /21

Q-learning intuition

@ Q-learning is a simple algorithm to find the optimal policy without knowing
the model.

@ @* is the unique solution to the optimal Bellman equation.

Q*(s,a) =E[riq1|st =s,ar=al + v E [mazllx Q*(st41,d)|s: = s,a: = a

St+1

@ We don't know the model and don't want to update all states
simultaneously.

@ Solution - given sample s;, a;, rri1, Ser1 from the environment update your
Q@-values so they are closer to satisfying the bellman equation.

o off-policy method: Samples don’t have to be from the optimal policy.

@ Samples need to be diverse enough to see everything - exploration.

Uof T CSC411 2019 Winter Lecture 22 12 /21

Exploration vs exploitation

@ Given Q-value the best thing we can do (given our limited knowledge) is to
take a = argmaxy Q(s, a’) - exploitation

@ How do we balance exploration with exploitation?
@ Simplest solution: e-greedy.

o With probability 1 — € pick a = arg maxy Q(s, a’) (i.e. greedy)
o With probability € pick any other action uniformly.

@ Another idea - softmax using Q values

o With probability 1 — € pick a = arg maxy Q(s, a’) (i.e. greedy)
o With probability € pick any other action with probability
x exp(5Q(s, a)).

@ Other fancier solutions exist, many leading methods use simple e-greedy
sampling.

Uof T CSC411 2019 Winter Lecture 22 13 /21

Q-learning algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + a[R + ymax, Q(S',a) — Q(S, A)]
S« 5%

until S is terminal

@ Can prove convergence to the optimal Q@* under mild conditions.

@ Update is equivalent to gradient descent on loss
IR+~ max, Q(S',2) — Q(s, a)l|*.

@ At optimal Q, the loss is 0.

UofT CSC411 2019 Winter Lecture 22 14 /21

Bootstrapping

Another way to think about Q-learning.

Q(s, a) is the expected reward, can use Monte-Carlo estimation.

Problem - you update only after the episode ends, can be very long (or
infinite).

Q-learning solution - take only 1 step forward and estimate the future using
our Q value - bootstrapping.

e "learn a guess from a guess”

Q-learning is just one algorithm in a family of algorithms that use this idea.

UofT CSC411 2019 Winter Lecture 22 15 /21

Function approximation

@ Q-learning still scales badly with large state spaces, how many states does a
chess game have? Need to save the full table!

@ Similar states, e.g. move all chess pieces two steps to the left, at treated as
totally different.

@ Solution: Instead of @ being a S x A table it is a parametrized function.
@ Looking for function Q(s,a;w) ~ Q*(s, a)

o Linear functions Q(s,a;w) = w'¢(s,a).
o Neural network

@ Hopefully can generalize to unseen states.

@ Problem: Each change to parameters changes all states/actions - can lead
to instability.

@ For non-linear Q-learning can diverge.

Uof T CSC411 2019 Winter Lecture 22 16 / 21

Deep Q-learning

@ We have a function approximator Q(s, a;), standard is neural net but
doesn’t have to be.

@ What is the objective that we are optimizing?
@ We want to minimize E,[||R + vy maxy Q(5',a") — Q(s, a)||?]
e p is a distribution over states, depends on 6!

@ Two terms depend on @, don't want to take gradients w.r. to
v max, Q(S, a)
@ We want to correct our previous estimation given the new information.
online Q iteration algorithm:
1. take some action a; and observe (s;, a;,s., r;)
2. yi = r(si,a;) + ymaxa Qg(s;, a;)
3. b — aPe(si,) (Qulsiai) — i)

Figure: Take from:rll.berkeley.edu/deeprlcourse

@ This simple approach doesn't work well as is.

Uof T CSC411 2019 Winter Lecture 22 17 /21

Issues and solutions

@ Problem: data in the minibatch is highly correlated
e Consecutive samples are from the same eposide and probably similar

states.

e Solution: Replay memory.
o You store a large memory buffer of previous (s, a, r,s’) (notice this is all
you need for Q-learning) and sample from it to get diverse minibatch.
@ Problem: The data distribution keeps changing
e Since we aren't optimizing y; its like solving a different (but related)
least squares each iteration.
e We can stabilize by fixing a target network for a few iterations

=W N =

ot

. take some action a; and observe (s;,a;, s}, r;), add it to B
3 ini < N . / o S -
. sample mini-batch {SJ,a],S]-,TJ} from B uniformly

. compute y; =71 + 7y maxg: Q(br(s’jA a’)) using target network Qg

J

dQg
o b —a X, Fes;,a)(Qls)ra;) — u))
. update ¢’: copy ¢ every N steps

Figure: Take from:rll.berkeley.edu/deeprlcourse

CSC411 2019 Winter Lecture 22 18 / 21

Example: DQN on atari

@ Trained a NN from scratch on atari games

32 44 filkers 256 hidden units Fully-connected linear

output layer

4x84x84

[O

Stack of 4 previous

Fully-connected layer

frames ef;m:::::'ﬂm:ﬂ ;;ﬂ:::::l:ﬂ“ of rectified linear units
@ Ablation study
Replay Replay | No replay | No replay
Fixed-Q | Q-learning Fixed-Q | Q-learning
Breakout 316.81 240.73 10.16 3.17
Enduro 1006.3 831.25 141.89 29.1
River Raid 7446.62 4102.81 2867.66 1453.02
Seaquest 2894.4 822.55 1003 275.81
Space Invaders | 1088.94 826.33 373.22 301.99

Uof T CSC411 2019 Winter Lecture 22 19 /21

@ Learning from experience not from labeled examples.
@ Why is RL hard?

Limited feedback.
Delayed rewards.
Your model effect what you see.
Huge state space.

@ Usually solved by learning the value function or optimizing the policy (not
covered)

@ How do you define the rewards? Can be tricky.

e Bad rewards can lead to reward hacking

Uof T CSC411 2019 Winter Lecture 22 20 /21

Q-Learning recap

@ Try to find @ that satisfies the optimal Bellman conditions
@ Off-policy algorithm - Doesn’t have to follow a greedy policy to evaluate it.

@ Model free algorithm - Doesn't have any model for instantaneous reward or
dynamics.

@ Learns a seperate value for each s, a pair - doesn't scale up to huge state
spaces.

@ Can scale using a function approximation

o No more theoretical guarantees.
o Can diverge.
e Some simple tricks help a lot.

Uof T CSC411 2019 Winter Lecture 22 21 /21

