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cement Learning Problem

@ In supervised learning, the problem is to predict an output t given an input x.

@ But often the ultimate goal is not to predict, but to make decisions, i.e.,
take actions.

@ And we need to take a sequence of actions.

@ The actions have long-term consequences.

An agent observes the takes an action and with the goal of
world its states changes achieving long-term
rewards.

Reinforcement Learning Problem: An agent continually interacts with the
environment. How should it choose its actions so that its long-term rewards are

maximized?
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Playing Games: Atari

https://www.youtube.com/watch?v=V1leYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_14U9A
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https://www.youtube.com/watch?v=wfL4L_l4U9A

Making Pancakes!

—

https://www.youtube.com/watch?v=W_gxLKSsSIE
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https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning Resources

@ Reinforcement Learning: An Introduction second edition, Sutton & Barto
Book (2018)

@ Video lectures by David Silver
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https://www.youtube.com/watch?v=2pWv7GOvuf0

Reinforcement Learning

@ Learning algorithms differ in the information available to learner

o Supervised: correct outputs, e.g., class label
e Unsupervised: no feedback, must construct measure of good output

o Reinforcement learning: Reward (or cost)
@ More realistic learning scenario:

o Continuous stream of input information, and actions
o Effects of action depend on state of the world

o Obtain reward that depends on world state and actions

@ You know the reward for your action, not other actions.
o Could be a delay between action and reward.
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Reinforcement Learning

Environment
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Example: Tic Tac Toe, Notation

environment
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Example: Tic Tac Toe, Notation

(current)
state
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Example: Tic Tac Toe, Notation
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Example: Tic Tac Toe, Notation

reward
(here: -1)
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Formalizing Reinforcement Learning Problems

@ Markov Decision Process (MDP) is the mathematical framework to describe

RL problems
@ A discounted MDP is defined by a tuple (S, A4, P,R,7).

e §: State space. Discrete or continuous

o A: Action space. Here we consider finite action space, i.e.,
A= {31,...,8|A‘}.

e P: Transition probability

e R: Immediate reward distribution

e 7: Discount factor (0 <~y < 1)
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Formalizing Reinforcement Learning Problems

@ The agent has a state s € S in the environment, e.g., the location of X and
O in tic-tac-toc, or the location of a robot in a room.

@ At every timestep t =0,1,..., the agent is at state s;.

o Takes an action a;

e Moves into a new state s; 11, according to the dynamics of the
environment and the selected action, i.e., s;11 ~ P(:|st, at)

o Receives some reward ry1 ~ R(:|s¢, ar, St+1)

@ Pl =2si=3.a=1)

@ Plra=ds=3a=1)
® @ Pls=4s=3.a=1)
® ®

O] ®

t t+1
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Formulating Reinforcement Learning

@ The action selection mechanism is described by a policy 7
e Policy 7 is a mapping from states to actions, i.e., a; = 7(s;)
@ The goal is to find a policy m such that long-term rewards of the agent is
maximized.
@ Different notations of long-term reward:

o Average reward:
rt+rt+1+rt+2+...
e Sometimes a future reward is discounted by ’ykil, where k is the
number of time-steps in the future when it is received:

re +yre41 + 'y2rt+2 + ...

o If v close to 1, rewards further in the future count more, and we say
that the agent is “farsighted”

@ v is less than 1 because there is usually a time limit to the sequence of
actions needed to solve a task (we prefer rewards sooner rather than
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Transition Probability (or Dynamics)

@ The transition probability describes the changes in the state of the agent
when it chooses actions

P(str1 =5, rp1=r'|st =s,a;r = a)

@ This model has Markov property: the future depends on the past only
through the current state

Warm L
Fast +2 <

Overheated
+2
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@ A policy is the action selection mechanism of the agent, and describes its
behaviour.

@ Policy can be deterministic or stochastic:

o Deterministic policy: a = 7(s)
o Stochastic policy: A ~ 7(|s)
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Value Function

Value function is the expected future reward, and is used to evaluate the
desirability of states.

State-value function V™ (or simply value function) for policy 7 is a function
defined as

Vi(s) £ Er [ Y V' Re|So=s
t>0

It describes the expected discounted reward if the agent starts from state s
and follows policy 7.

The action-value function Q™ for policy 7 is

Q™ (s,a) £ Er | 'R So=5A =2

>0

It describes the expected discounted reward if the agent starts from state s,
takes action a, and afterwards follows policy 7.

Uof T CSC411 2019 Winter Lecture 21 18 / 28



Value Function

@ Our aim will be to find a policy 7 that maximizes the value function (the
total reward we receive over time): find the policy with the highest expected
reward

@ Optimal value function:

Q*(s,a) =sup Q"(s, a)

@ Given Q*, the optimal policy can be obtained as

7 (s) + argmax Q(s, a)
a

@ The goal of an RL agent is to find a policy 7 that is close to optimal, i.e.,

Q" ~ Q"

Uof T CSC411 2019 Winter Lecture 21 19 / 28



Bellman Equation

The value function satisfies the following recursive relationship:
oo
Q" (s,a)=E lz VR So = 5, Ay = a]
t=0
=E [R(So, Ao) + VZ'Yth+1|So =s,a = a]
t=0
= E[R(S0, Ao) +7Q™(S1,7(51))[S0 = s, Ao = 3]
—r(s.a) 47 [ P15, 2)Q7(s' ()
S

2(T7Q™)(s.2)

This is called the Bellman equation and 77 : B(S x A) — B(S x A) is the
Bellman operator. Similarly, we define the Bellman optimality operator:

(T*Q)(s.3) £ r(s,a) +7 / P(ds']s, a) max Q(s', &)
s a’ceA
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Bellman Equation

@ Key observation:

Qﬂ" — T7TQ7T

@ Value-based approaches try to find a Q such that

N N

Q~TQ
@ The greedy policy of Q is close to the optimal policy:
Q™9 ~ Q*
where the greedy policy is defined as

7(s; Q) + argmax Q(s, a)
acA
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Finding the Optimal Value Function: Value Iteration

@ Assume that we know the model P and R. How can we find the optimal
value function?

@ This is the problem of Planning.

@ We can benefit from the Bellman optimality equation and use a method
called Value lteration

Q1 — THQx

Qus1(s,a) « r(s,a) + *y/ P(ds'|s, a) max Qi(s’, a")
s

a’eA

Quia(s.3) « r(s,a) +7 3 P(s']s, a) max Qu(s', 3')
s’eS a’eA
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Value lteration

@ The Value lteration converges to the optimal value function.

@ This is because of the contraction property of the Bellman (optimality)
operator, i.e., [[T*Qr — T*@af| o <7 @1 — @2l -

= o .
© Q1+ T Qs

Qxi1(s,a) < r(s,a) + *y/ P(ds’|s, a) max Qi(s’, a")
s

a’€eA
Qus1(s,a) < r(s,a) +~ Z P(s'|s,a) max Qu(s, ")
s'eS a’eA
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Maze Example

Start
@ Rewards: —1 per time-step

@ Actions: N, E, S, W
@ States: Agent's location

Goal

[Slide credit: D. Silver]
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Maze Example

@ Arrows represent policy 7 (s)
for each state s

[Slide credit: D. Silver]
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Maze Example

Start

@ Numbers represent value V7 (s)
of each state s

[Slide credit: D. Silver]
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Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

o reward: win/lose/tie the game (+1/ — 1/0) [only at final move in
given game]

e state: positions of X's and O's on the board

e policy: mapping from states to actions

@ based on rules of game: choice of one open position

o value function: prediction of reward in future, based on current state

@ In tic-tac-toe, since state space is tractable, we can use a table to represent
value function
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RL & Tic-Tac-Toe

@ Each board position (taking into account symmetry) has some probability

@ Simple learning process:

o start with all values = 0.5

e policy: choose move with highest
probability of winning given current
legal moves from current state

o update entries in table based on
outcome of each game

o After many games value function will
represent true probability of winning
from each state
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