
CSC 411 Lecture 20: Gaussian Processes

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC 411: 20-Gaussian Processes 1 / 39

Overview

Last lecture: Bayesian linear regression, a parametric model

This lecture: Gaussian processes, a nonparametric model

Define a distribution directly over functions (i.e., a stochastic process)
Derive as a generalization of Bayesian linear regression, with possibly
infinite-dimensional feature mappings
Based on the Kernel Trick, one of the most important ideas in machine
learning
Conceptually cleaner, since we can specify priors directly over functions.
This lets us easily incorporate assumptions like smoothness, periodicity,
etc., which are hard to encode as priors over regression weights.

UofT CSC 411: 20-Gaussian Processes 2 / 39

Towards Gaussian Processes

Gaussian Processes are distributions over functions.

They’re actually a simpler and more intuitive way to think about
regression, once you’re used to them.

— GPML

UofT CSC 411: 20-Gaussian Processes 3 / 39

Towards Gaussian Processes

Linear regression:
y(x) = w>φ(x)

In Bayesian linear regression, w is sampled from the prior N (m,S).
This defines a distribution over functions y

Suppose we observe a dataset D = {(x(n), t(n))}Nn=1

Goal: find the posterior predictive distribution of t(N+1) given a new
datapoint x(N+1)

Last lecture: first find the posterior over the weights, p(w | D), then
marginalize over weights to find p(t(N+1) | x(N+1),D)

We’ll show how this can be done without directly considering the
model parameters w, which will lead us to GPs

UofT CSC 411: 20-Gaussian Processes 4 / 39

Towards Gaussian Processes

Let y = (y (1), . . . , y (N+1))> denote the vector of function values at
(x(1), . . . , x(N+1))>.

Recall:
y (n) = w>φ(x(n)), w ∼ N (m,S)

By the linear transformation rules for Gaussian random variables, the
distribution of y is a Gaussian with

E[y (n)] = m>φ(x(n))

Cov(y (n), y (m)) = φ(x(n))>Sφ(x(m))

In vectorized form, y = Φw. y ∼ N (µy,Σy) with

µy = E[y] = Φm

Σy = Cov(y) = ΦSΦ>

UofT CSC 411: 20-Gaussian Processes 5 / 39

Towards Gaussian Processes

y ∼ N (µy,Σy)

µy = E[y] = Φm

Σy = Cov(y) = ΦSΦ>

What is this saying? This is our prior on function values
y (n) = y(x(n)) before we observe any targets t(n). It comes from our
prior on w

Notice this distribution depends on the inputs x(n)- we need to know
where we’re evaluating the function!

UofT CSC 411: 20-Gaussian Processes 6 / 39

Towards Gaussian Processes

Recall that in Bayesian linear regression, we assume noisy Gaussian
observations of the underlying function.

t(n) ∼ N (y (n), σ2)

In vectorized form, if t = (t(1), . . . , t(N+1))> then

t ∼ N (y, σ2I)

Since y is jointly Gaussian, so are the observations t:

E[t(n)] = E[y (n)]

Cov(t(n), t(m)) =

{
Var(y (n)) + σ2 if n = m

Cov(y (n), y (m)) if n 6= m

In vectorized form, t ∼ N (µt,Σt), with

µt = µy

Σt = Σy + σ2I

UofT CSC 411: 20-Gaussian Processes 7 / 39

Towards Gaussian Processes

In vectorized form, t ∼ N (µt,Σt), with

µt = µy

Σt = Σy + σ2I

What is this saying? This is our prior on observed targets t(n) before
we observe them. It comes from our prior on the function values y

UofT CSC 411: 20-Gaussian Processes 8 / 39

Towards Gaussian Processes

Let tN = (t(1), . . . , t(N))>. We just saw t =

(
tN

t(N+1)

)
is jointly

Gaussian with distribution N (µt,Σt).
We can divide up these parameters into blocks corresponding to the
first N elements and the (N + 1)th element:

µt =

(
µN

µN+1

)
, Σt =

(
ΣN s
s> σN+1

)
Remember our goal: Find the posterior predictive distribution of
t(N+1), given that we’ve observed tN
The predictive distribution is a special case of the conditioning
formula for a multivariate Gaussian:

t(N+1) | tN ∼ N (µpred, σpred)

µpred = µN+1 + s>Σ−1N (tN − µN)

σpred = σN+1 − s>Σ−1N s

UofT CSC 411: 20-Gaussian Processes 9 / 39

Towards Gaussian Processes

The marginal likelihood is just p(D) = p(tN). We can derive this
from the joint p(tN , t

(N+1)) = p(t) = N (µt,Σt).

We have:

µt =

(
µN

µN+1

)
, Σt =

(
ΣN s
s> σN+1

)

Thus, p(tN) is the PDF of a multivariate Gaussian:

p(D) = N (tN ;µN ,ΣN)

=
1

(2π)D/2|ΣN |1/2
exp

(
−1

2
(tN − µN)>Σ−1N (tN − µN)

)

UofT CSC 411: 20-Gaussian Processes 10 / 39

Towards Gaussian Processes

To summarize:
1 We started with a prior on the weights w: N (m,S)
2 This gave us a distribution on the function values y: N (µy,Σy) with

µy = Φm, Σy = ΦSΦ>

3 Targets are noisy, leading to a distribution on targets t: N (µt,Σt)

µt = µy, Σt = Σy + σ2I

4 We conditioned on the observed targets tN to find the posterior
predictive distribution for the new target t(N+1), using the Gaussian
conditioning formula

µy and Σy are functions of the prior’s parameters m,S and inputs x(n)

But after µy and Σy are specified, we can forget about w

What if we ignored weights from the start and let µy and Σy be

arbitrary functions of the inputs x(n)?

UofT CSC 411: 20-Gaussian Processes 11 / 39

Gaussian Processes

y = (y (1), . . . , y (N)) where y (n) = y(x(n))

We need to specify

a mean function µ: E[y (n)] = µ(x(n))
a covariance function k called a kernel function:
k(x(n), x(m)) = Cov(y (n), y (n))

We use these functions to specify a Gaussian prior over the function
values y:

Let KX denote the kernel matrix. This is a matrix whose (i , j) entry is
k(x(i), x(j)), and is called the Gram matrix.
Let µX denote the mean vector, with the i th entry given by µ(x(i))

Then the prior on function values y will be given by:

y ∼ N (µX,KX)

UofT CSC 411: 20-Gaussian Processes 12 / 39

Gaussian Processes

Are there any restrictions necessary on the functions µ, k for this to
be a valid distribution?

If k(x , x) < 0 for some x , this means we’re saying Var(y(x)) < 0,
which can’t happen

It turns out we need that KX be positive semidefinite for any X.
Other than that, k can be arbitrary.

We can use any function µ that we want, but usually we choose it to
be the constant zero function

UofT CSC 411: 20-Gaussian Processes 13 / 39

Gaussian Processes

We’ve just defined a distribution over function values at an arbitrary finite set of
points.

This can be extended to a distribution over functions using a kind of black magic
called the Kolmogorov Extension Theorem. This distribution over functions is
called a Gaussian process (GP).

We only ever need to compute with distributions over function values. The
formulas from a few slides ago are all you need to do regression with GPs.

But distributions over functions are conceptually cleaner.

How do you think these plots were generated?

UofT CSC 411: 20-Gaussian Processes 14 / 39

Kernel Trick

This is an instance of a more general trick called the Kernel Trick.

Many algorithms (e.g. linear regression, logistic regression, SVMs)
can be written in terms of dot products between feature vectors,
φ(x)>φ(x′).

Mercer’s Theorem (informal): For a given kernel function k , if KX

is positive semidefinite for any X then k(x, x′) is given by an inner
product in some (possibly infinite-dimensional) feature space

Whenever an algorithm is given in terms of φ(x)>φ(x′), we can
replace it with k(x, x′) for a valid kernel k! This is called kernelizing
the algorithm

UofT CSC 411: 20-Gaussian Processes 15 / 39

Kernel Trick

A kernel implements an inner product between feature vectors often
much more efficiently than the explicit dot product.

For instance, the following feature vector is quadratic in size:

φ(x) = (1,
√

2x1, ...,
√

2xd ,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd , x
2
1 , ..., x

2
d)

But the quadratic kernel can compute the inner product in linear
time:

k(x, x′) = φ(x)>φ(x′) = 1 +
d∑

i=1

2xix
′
i +

d∑
i ,j=1

xixjx
′
i x
′
j = (1 + x>x′)2

UofT CSC 411: 20-Gaussian Processes 16 / 39

Kernel Trick

We rarely think about the underlying feature space explicitly. Instead,
we build kernels directly.

Useful composition rules for kernels (to be proved in Homework 7):

A constant function k(x, x′) = α is a kernel.
If k1 and k2 are kernels and a, b ≥ 0, then ak1 + bk2 is a kernel.
If k1 and k2 are kernels, then the product k(x, x′) = k1(x, x′)k2(x, x′) is
a kernel. (Interesting and surprising fact!)

Before neural nets took over, kernel SVMs were probably the
best-performing general-purpose classification algorithm.

UofT CSC 411: 20-Gaussian Processes 17 / 39

Kernel Trick: Computational Cost

The kernel trick lets us implicitly use very high-dimensional (even
infinite-dimensional) feature spaces, but this comes at a cost.
Bayesian linear regression:

Computational cost comes from deriving posterior in weight space:
w|D ∼ N (µ,Σ)

µ = σ−2ΣΦ>t

Σ−1 = σ−2Φ>Φ + S−1

Need to compute the inverse of a D × D matrix, which is an O(D3)
operation. (D is the number of features.)

GP regression:

µpred = µN+1 + s>Σ−1N (tN − µN)

σpred = σN+1 − s>Σ−1N s
Need to invert an N × N matrix! (N is the number of training
examples.)

UofT CSC 411: 20-Gaussian Processes 18 / 39

Kernel Trick: Computational Cost

This O(N3) cost is typical of kernel methods. Most exact kernel
methods don’t scale to more than a few thousand data points.

Kernel SVMs can be scaled further, since you can show you only need
to consider the kernel over the support vectors, not the entire training
set. (This is part of why they were so useful.)

Scaling GP methods to large datasets is an active (and fascinating)
research area.

UofT CSC 411: 20-Gaussian Processes 19 / 39

GP Kernels

One way to define a kernel function is to give an explicit feature map
φ and define k(x, x′) = φ(x)>φ(x′)
But we have lots of other options. Here’s a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

kSE(x, x′) = σ2 exp

(
−‖x− x′‖2

2`2

)
More accurately, this is a kernel family with hyperparameters σ
and `.
It gives a distribution over smooth functions:

UofT CSC 411: 20-Gaussian Processes 20 / 39

GP Kernels

kSE(x , x ′) = σ2 exp

(
− (x − x ′)2

2`2

)
The hyperparameters determine key properties of the function.

Varying the output variance σ2:

Varying the lengthscale `:

UofT CSC 411: 20-Gaussian Processes 21 / 39

GP Kernels

The choice of hyperparameters heavily influences the predictions:

In practice, it’s very important to tune the hyperparameters (e.g. by
maximizing the marginal likelihood).

UofT CSC 411: 20-Gaussian Processes 22 / 39

GP Kernels

kSE(x , x ′) = σ2 exp

(
−(x − x ′)2

2`2

)

The squared-exp kernel is stationary because it only depends on
x − x ′. Most kernels we use in practice are stationary.

We can visualize the function k(0, x):

UofT CSC 411: 20-Gaussian Processes 23 / 39

Now for a more interesting use of Bayesian decision theory...

UofT CSC 411: 20-Gaussian Processes 24 / 39

Bayesian Optimization

Black-box optimization: we want to minimize a function y(x), but
we only get to query function values (i.e. no gradients!)

Each query is expensive, so we want to do as few as possible
Canonical example: minimize the validation error of an ML algorithm
with respect to its hyperparameters

Bayesian Optimization: we’re uncertain what the true function y is.
Represent this uncertainty with a probability distribution over
functions p(y) e.g. a GP

After we’ve queried points x(1), . . . , x(N) and built a dataset
D = {(x(n), y (n))}Nn=1, we can infer the posterior p(y |D)

Choose next point x(N+1) to evaluate to balance:
Exploitation: choose a point x we’re relatively certain to improve on
best value we’ve seen so far

e.g. if b is best value so far choose x s.t. p(y(x) < b|D) is large

Exploration: choose a point we’re unsure will improve on best value so
far, but will reduce uncertainty in p(y)

UofT CSC 411: 20-Gaussian Processes 25 / 39

Bayesian Optimization

To choose the next point to query, define an acquisition function
a(x;D), which tells us how promising a candidate x is given our
current dataset D

Then choose next point to maximize a

What’s wrong with the following acquisition functions:

posterior mean: a(x;D) = −E[y(x)|D]
posterior variance: a(x;D) = Var(y(x)|D)

Desiderata:

high for points we expect to be good (exploitation)
high for points we’re uncertain about (exploration)
low for points we’ve already tried

Candidate 1: probability of improvement (PI)

PI(x;D) = Pr(y(x) < b − ε|D),

where b is the best value so far, and ε is small.

UofT CSC 411: 20-Gaussian Processes 26 / 39

Bayesian Optimization

The problem with Probability of Improvement (PI): it queries points it
is highly confident will have a small imporvement

Usually these are right next to ones we’ve already evaluated

A better choice: Expected Improvement (EI)

EI(x;D) = E[max(b − y(x), 0)|D]

The idea: if the new value is much better, we win by a lot; if it’s much
worse, we haven’t lost anything.

UofT CSC 411: 20-Gaussian Processes 27 / 39

UofT CSC 411: 20-Gaussian Processes 28 / 39

UofT CSC 411: 20-Gaussian Processes 29 / 39

UofT CSC 411: 20-Gaussian Processes 30 / 39

UofT CSC 411: 20-Gaussian Processes 31 / 39

Bayesian Optimization

I showed one-dimensional visualizations, but the higher-dimensional
case is conceptually no different.

Maximize the acquisition function using gradient descent
Use lots of random restarts, since it is riddled with local maxima
BayesOpt can be used to optimize tens of hyperparameters.

In practice, it’s typically done with Gaussian processes

But Bayesian linear regression is actually useful, since it scales better to
large numbers of queries.

One variation: some configurations can be much more expensive than
others

Use another Bayesian regression model to estimate the computational
cost, and query the point that maximizes expected improvement per
second

UofT CSC 411: 20-Gaussian Processes 32 / 39

Bayesian Optimization

BayesOpt can often beat hand-tuned configurations in a relatively
small number of steps.

Results on optimizing hyperparameters (layer-specific learning rates,
weight decay, and a few other parameters) for a CIFAR-10 conv net:

Each function evaluation takes about an hour

Human expert = Alex Krizhevsky, the creator of AlexNet

UofT CSC 411: 20-Gaussian Processes 33 / 39

GP Kernels (optional)

The periodic kernel encodes for a probability distribution over periodic
functions
The linear kernel results in a probability distribution over linear
functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

UofT CSC 411: 20-Gaussian Processes 34 / 39

GP Kernels (optional)

The Matern kernel is similar to the squared-exp kernel, but less
smooth.

See Chapter 4 of GPML for an explanation (advanced).

Imagine trying to get this behavior by designing basis functions!

UofT CSC 411: 20-Gaussian Processes 35 / 39

GP Kernels (optional)

We get exponentially more flexibility by combining kernels.

The sum of two kernels is a kernel.
This is because valid covariance matrices (i.e. PSD matrices) are closed
under addition.

The sum of two kernels corresponds to the sum of functions.

Linear + Periodic

e.g. seasonal pattern w/ trend

Additive kernel

k(x , y , x ′, y ′) = k1(x , x ′) + k2(y , y ′)

UofT CSC 411: 20-Gaussian Processes 36 / 39

GP Kernels (optional)

A kernel is like a similarity function on the input space. The sum of
two kernels is like the OR of their similarity.

Amazingly, the product of two kernels is a kernel. (Follows from the
Schur Product Theorem.)

The product of two kernels is like the AND of their similarity
functions.

Example: the product of a squared-exp kernel (spatial similarity) and
a periodic kernel (similar location within cycle) gives a locally periodic
function.

UofT CSC 411: 20-Gaussian Processes 37 / 39

GP Kernels (optional)

Modeling CO2 concentrations:
trend + (changing) seasonal pattern + short-term variability + noise

Encoding the structure allows sensible extrapolation.

UofT CSC 411: 20-Gaussian Processes 38 / 39

Summary

Bayesian approach to regression lets us determine uncertainty in our
predictions.

Gaussian processes are an elegant framework for doing Bayesian
inference directly over functions.

The choice of kernels gives us much more control over what sort of
functions our prior would allow or favor.

UofT CSC 411: 20-Gaussian Processes 39 / 39

