
CSC 411: Introduction to Machine Learning
CSC 411 Lecture 20: Gaussian Processes

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC411 2019 Winter Lecture 20 1 / 26

Overview

Last lecture: Bayesian linear regression, a parametric model

This lecture: Gaussian processes

Derive as a generalization of Bayesian linear regression, with possibly
infinitely many basis functions

Define a distribution directly over functions (i.e., a stochastic process)

Based on the Kernel Trick, one of the most important ideas in machine
learning

Conceptually cleaner, since we can specify priors directly over functions.
This lets us easily incorporate assumptions like smoothness, periodicity,
etc., which are hard to encode as priors over regression weights.

UofT CSC411 2019 Winter Lecture 20 2 / 26

Towards Gaussian Processes

Gaussian Processes are distributions over functions.

They’re actually a simpler and more intuitive way to think about
regression, once you’re used to them.

— GPML

UofT CSC411 2019 Winter Lecture 20 3 / 26

Towards Gaussian Processes

A Bayesian linear regression model defines a distribution over
functions:

f (x) = w>ψ(x)

Here, w is sampled from the prior N (µw,Σw).

Let f = (f1, . . . , fN) denote the vector of function values at
(x1, . . . , xN).

By the linear transformation rules for Gaussian random variables, the
distribution of f is a Gaussian with

E[fi] = µ>wψ(x)

Cov(fi , fj) = ψ(xi)
>Σwψ(xj)

In vectorized form, f ∼ N (µf ,Σf) with

µf = E[f] = Ψµw

Σf = Cov(f) = ΨΣwΨ>

UofT CSC411 2019 Winter Lecture 20 4 / 26

Towards Gaussian Processes

Recall that in Bayesian linear regression, we assume noisy Gaussian
observations of the underlying function.

yi ∼ N (fi , σ
2) = N (w>ψ(xi), σ

2).

The observations y are jointly Gaussian, just like f.

E[yi] = E[f (xi)]

Cov(yi , yj) =

{
Var(f (xi)) + σ2 if i = j

Cov(f (xi), f (xj)) if i 6= j

In vectorized form, y ∼ N (µy,Σy), with

µy = µf

Σy = Σf + σ2I

UofT CSC411 2019 Winter Lecture 20 5 / 26

Towards Gaussian Processes

Bayesian linear regression is just computing the conditional
distribution in a multivariate Gaussian

Let y and y′ denote the observables at the training and test data.

They are jointly Gaussian:(
y
y′

)
∼ N

((
µy

µy′

)
,

(
Σyy Σyy′

Σy′y Σy′y′

))
.

The predictive distribution is a special case of the conditioning
formula for a multivariate Gaussian:

y′ | y ∼ N (µy′|y,Σy′|y)

µy′|y = µy′ + Σy′yΣ−1yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yy Σyy′

We’re implicitly marginalizing out w

UofT CSC411 2019 Winter Lecture 20 6 / 26

Towards Gaussian Processes

The marginal likelihood is just the PDF of a multivariate Gaussian:

p(y |X) = N (y;µy,Σy)

=
1

(2π)d/2|Σy|1/2
exp

(
−1

2
(y − µy)>Σ−1y (y − µy)

)

UofT CSC411 2019 Winter Lecture 20 7 / 26

Towards Gaussian Processes

To summarize:

µf = Ψµw

Σf = ΨΣwΨ>

µy = µf

Σy = Σf + σ2I

µy′|y = µy′ + Σy′yΣ−1yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yy Σyy′

p(y |X) = N (y;µy,Σy)

After defining µf and Σf , we can forget about w

What if we just let µf and Σf be other forms?

UofT CSC411 2019 Winter Lecture 20 8 / 26

Gaussian Processes

We need to specify

a mean function E[f (xi)] = µ(xi)

a covariance function called a kernel function:
Cov(f (xi), f (xj)) = k(xi , xj)

Let KX denote the kernel matrix for points X. This is a matrix whose
(i , j) entry is k(x(i), x(j)), and is called the Gram matrix.

We require that KX be positive semidefinite for any X. Other than
that, µ and k can be arbitrary.

UofT CSC411 2019 Winter Lecture 20 9 / 26

Gaussian Processes

We’ve just defined a distribution over function values at an arbitrary
finite set of points.

This can be extended to a distribution over functions using
Kolmogorov Extension Theorem. This distribution over functions is
called a Gaussian process (GP).

But distributions over functions are conceptually cleaner.

How are these plots were generated?
UofT CSC411 2019 Winter Lecture 20 10 / 26

Kernel Trick

This is an instance of a more general trick called the Kernel Trick.

Many algorithms (e.g. linear regression, logistic regression, SVMs)
can be written in terms of dot products between feature vectors,
ψ(x)>ψ(x′).

A kernel implements an inner product between feature vectors,
typically implicitly, and often much more efficiently than the explicit
dot product.

For instance, the following feature vector is quadratic in size:

φ(x) = (1,
√

2x1, ...,
√

2xd ,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd , x
2
1 , ..., x

2
d)

But the quadratic kernel can compute the inner product in linear
time:

k(x, x′) = φ(x)>φ(x′) = 1 +
d∑

i=1

2xix
′
i +

d∑
i ,j=1

xixjx
′
i x
′
j = (1 + x>x′)2

UofT CSC411 2019 Winter Lecture 20 11 / 26

SVM & Kernels

Convert the constrained minimization to an unconstrained
optimization problem: represent constraints as penalty terms:

min
w ,b

1

2
||w ||2 + penalty term

For data {(φ(x (i)), t(i))}Ni=1, use the following penalty

max
αi≥0

αi [1− (wTφ(x (i)) + b)t(i)] =

{
0 if (wTφ(x (i)) + b)t(i) ≥ 1

∞ otherwise

Rewrite the minimization problem

min
w ,b

{
1

2
||w ||2 +

N∑
i=1

max
αi≥0

αi [1− (wTφ(x (i)) + b)t(i)]

}
where αi are the Lagrange multipliers

= min
w ,b

max
αi≥0

{
1

2
||w ||2 +

N∑
i=1

αi [1− (wTφ(x (i)) + b)t(i)]

}
UofT CSC411 2019 Winter Lecture 20 12 / 26

SVM & Kernels

Let:

J(w , b;α) =
1

2
||w ||2 +

N∑
i=1

αi [1− (wTφ(x (i)) + b)t(i)]

Swap the ”max” and ”min”: This is a lower bound

max
αi≥0

min
w ,b

J(w , b;α) ≤ min
w ,b

max
αi≥0

J(w , b;α)

Equality holds in certain conditions

UofT CSC411 2019 Winter Lecture 20 13 / 26

SVM & Kernels

Solving:

max
αi≥0

min
w ,b

J(w , b;α) = max
αi≥0

min
w ,b

1

2
||w ||2 +

N∑
i=1

αi [1− (wTx (i) + b)t(i)]

First minimize J() w.r.t. w , b for fixed Lagrange multipliers:

∂J(w , b;α)

∂w
= w −

N∑
i=1

αiφ(x (i))t(i) = 0

∂J(w , b;α)

∂b
= −

N∑
i=1

αi t
(i) = 0

We obtain w =
∑N

i=1 αi t
(i)φ(x (i))

Then substitute back to get final optimization:

L = max
αi≥0

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj (φ(x (i))Tφ(x (j)))

K(x (i),x (j))

UofT CSC411 2019 Winter Lecture 20 14 / 26

Kernel Trick

Many algorithms can be kernelized, i.e. written in terms of kernels,
rather than explicit feature representations.

We rarely think about the underlying feature space explicitly. Instead,
we build kernels directly.

Useful composition rules for kernels:

A constant function k(x, x′) = α is a kernel.
If k1 and k2 are kernels and a, b ≥ 0, then ak1 + bk2 is a kernel.
If k1 and k2 are kernels, then the product k(x, x′) = k1(x, x′)k2(x, x′) is
a kernel.

Before neural nets took over, kernel SVMs were probably the
best-performing general-purpose classification algorithm.

UofT CSC411 2019 Winter Lecture 20 15 / 26

Kernel Trick: Computational Cost

The kernel trick lets us implicitly use very high-dimensional (even
infinite-dimensional) feature spaces, but this comes at a cost.

Bayesian linear regression:

µ = σ−2ΣΨ>t

Σ−1 = σ−2Ψ>Ψ + S−1

Need to compute the inverse of a D × D matrix, which is an O(D3)
operation. (D is the number of features.)

GP regression:

µy′|y = µy′ + Σy′yΣ−1yy (y − µy)

Σy′|y = Σy′y′ −Σy′yΣ−1yy Σyy′

Need to invert an N × N matrix! (N is the number of training
examples.)

UofT CSC411 2019 Winter Lecture 20 16 / 26

Kernel Trick: Computational Cost

This O(N3) cost is typical of kernel methods. Most exact kernel
methods don’t scale to more than a few thousand data points.

Kernel SVMs can be scaled further, since you can show you only need
to consider the kernel over the support vectors, not the entire training
set.

Scaling GP methods to large datasets is an active (and fascinating)
research area.

UofT CSC411 2019 Winter Lecture 20 17 / 26

GP Kernels

One way to define a kernel function is to give a set of basis functions
and put a Gaussian prior on w.
But we have lots of other options. Here’s a useful one, called the
squared-exp, or Gaussian, or radial basis function (RBF) kernel:

kSE(xi , xj) = σ2 exp

(
−
‖xi − xj‖2

2`2

)
More accurately, this is a kernel family with hyperparameters σ
and `.
It gives a distribution over smooth functions:

UofT CSC411 2019 Winter Lecture 20 18 / 26

GP Kernels

kSE(xi , xj) = σ2 exp

(
−

(xi − xj)
2

2`2

)
The hyperparameters determine key properties of the function.

Varying the output variance σ2:

Varying the lengthscale `:

UofT CSC411 2019 Winter Lecture 20 19 / 26

GP Kernels

The choice of hyperparameters heavily influences the predictions:

In practice, it’s very important to tune the hyperparameters (e.g. by
maximizing the marginal likelihood).

UofT CSC411 2019 Winter Lecture 20 20 / 26

GP Kernels

kSE(xi , xj) = σ2 exp

(
−

(xi − xj)
2

2`2

)

The squared-exp kernel is stationary because it only depends on
xi − xj . Most kernels we use in practice are stationary.

We can visualize the function k(0, x):

UofT CSC411 2019 Winter Lecture 20 21 / 26

GP Kernels (optional)

The periodic kernel encodes for a probability distribution over periodic
functions

The linear kernel results in a probability distribution over linear
functions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

UofT CSC411 2019 Winter Lecture 20 22 / 26

GP Kernels (optional)

We get exponentially more flexibility by combining kernels.

The sum of two kernels is a kernel.
This is because valid covariance matrices (i.e. PSD matrices) are closed
under addition.

The sum of two kernels corresponds to the sum of functions.

Linear + Periodic

e.g. seasonal pattern w/ trend

Additive kernel

k(x , y , x ′, y ′) = k1(x , x ′) + k2(y , y ′)

UofT CSC411 2019 Winter Lecture 20 23 / 26

GP Kernels (optional)

A kernel is like a similarity function on the input space. The sum of
two kernels is like the OR of their similarity.

Amazingly, the product of two kernels is a kernel. (Follows from the
Schur Product Theorem.)

The product of two kernels is like the AND of their similarity
functions.

Example: the product of a squared-exp kernel (spatial similarity) and
a periodic kernel (similar location within cycle) gives a locally periodic
function.

UofT CSC411 2019 Winter Lecture 20 24 / 26

GP Kernels (optional)

Modeling CO2 concentrations:
trend + (changing) seasonal pattern + short-term variability + noise

Encoding the structure allows sensible extrapolation.

UofT CSC411 2019 Winter Lecture 20 25 / 26

Summary

Bayesian linear regression lets us determine uncertainty in our
predictions.

Bayesian Occam’s Razor is a sophisticated way of penalizing the
complexity of a distribution over functions.

Gaussian processes are an elegant framework for doing Bayesian
inference directly over functions.

The choice of kernels gives us much more control over what sort of
functions our prior would allow or favor.

UofT CSC411 2019 Winter Lecture 20 26 / 26

