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Overview

@ We've covered both parametric and nonparametric models for
regression and classification.

o Parametric models summarize the data into a finite-sized model. E.g.,
linear regression, logistic regression, neural nets, (linear) SVM, Naive
Bayes, GDA

e Nonparametric models refer back to the data to make predictions.
E.g., KNN

@ The next two lectures are about Bayesian approaches to regression.

o This lecture: Bayesian linear regression, a parametric model

o Next lecture: Gaussian processes, a nonparametric model

Uof T CSC411 2019 Winter Lecture 19 2 /28



Overview

@ We're going to be Bayesian about the parameters of the model.

e This is in contrast with naive Bayes and GDA: in those cases, we used
Bayes' rule to infer the class, but used point estimates of the
parameters.

e By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

@ How can uncertainty in the predictions help us?

e Smooth out the predictions by averaging over lots of plausible
explanations (like ensembles)

e Assign confidences to predictions
o Make more robust decisions

o Guide exploration (focus on areas you're uncertain about)
o E.g., Bayesian optimization
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Recap: Linear Regression

o Given a training set of inputs and targets {(x(), t())}N
@ Linear model:

y =w'9(x)
@ Squared error loss:

£l 1) = 5(6 -y

o Ly regularization:
A

R(w) = >

lwlf?

@ Solution 1: solve analytically by setting the gradient to 0
w=Ww4a) et
@ Solution 2: solve approximately using gradient descent
w (1—ad)w—aW'(y—t)
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Recap: Linear Regression

@ We can give linear regression a probabilistic interpretation by
assuming a Gaussian noise model:

t]x ~N(w'(x), 0?)

@ Linear regression is just maximum likelihood under this model:

N

1 N

N > ~log p(t) [ x1); w, b)
i=1

N
= 5> log Nt wT4s(x), 0?)
i=1

1 Y 1 () — wTep(x))?
e | e (_(r v ) >]

N
1 .
=const — W E (t(l) — WT¢(X))2
i=1

Uof T CSC411 2019 Winter Lecture 19 5/28



Recap: Linear Regression

@ We can view an Ly regularizer as MAP inference.
@ arg maxy log p(w | D) = arg maxy, [log p(w) + log p(D | w)]

@ We just derived the likelihood term Iog p(D|w):

log p(D | w) —w'x — b)? + const

2NJ2
@ Assume a Gaussian prior, w ~ N(m,S):
log p(w) = log N'(w; m,S)
—1(w—m)"S™}(w — m) + const
@ Set m =0 and S = yl, then
1
log p(w) = —%HW”2 + const.
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Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes' Rule:
p(w|D) o< p(w)p(D | w)

@ Make predictions using the posterior predictive distribution:

p(trx,D)=/p(ww)p(t\x,w)dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

o Bayesian linear regression considers various plausible explanations
for how the data were generated.

o It makes predictions using all possible regression weights, weighted by

their posterior probability.

> > >
>

no observations one observation two observations

@ Prior distribution: w ~ N(0,S)
o Likelihood: t|x,w ~ N (w'(x), 0?)

Uof T CSC411 2019 Winter Lecture 19 8 /28



Bayesian Linear Regression: Posterior

@ Deriving the posterior distribution:

log p(w | D)
=log p(w) + log p(D | w) + const
=—Iw's” w——H\Uw—tHz—i—const
—_ %WTS_lw ( Twiww —2t"ww + tTt) + const
202

=—2(w—p) T (w — p) + const
where
p=oc2TW't
T l=0WwTw4s!
e This is a multivariate Gaussian distribution, i.e. w|D ~ N (u, X)
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Bayesian Linear Regression: Posterior

@ Just showed:
w|D ~ N (s, E)
p=oc2TW't
Tl=0cwwist

@ Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

@ Compare p the closed-form solution for linear regression:

w=(Ww4a)tu't
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Bayesian Linear Regression

likelihood prior/posterior data space
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— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

e Example with radial basis function (RBF) features

Yy() = exp (—(X‘“’z)

252
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— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

-1

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

@ Posterior predictive distribution:

p(t\x,D):/ p(t|x,w) p(w|D) dw
N(t;wTap(x),0) N(w;p,X)

o Another interpretation: t = w'(x) + &, where £ ~ N(0,0) is
independent of w.

@ By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

Hpred = NT'lp(X)
Ohrea = P(x) T Zp(x) + 0°

@ Hence, the posterior predictive distribution is A/(t; /‘predvagred)-
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Decision Theory

@ What do we actually do with the posterior predictive distribution
p(t|x,D)?

@ Often, we want to make a decision. We can formulate this as
minimizing the expected loss under the posterior distribution. This is
known as decision theory.

@ Simple example: want to choose a single prediction y to minimize the
expected squared error loss.

argmin Es o)y — 0] = Epte ]

e Similarly, you can show that under absolute value loss, you should pick
the median.
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Bayesian Optimization

o Black-box optimization: we want to minimize a function, but we
only get to query function values (i.e. no gradients!)

e Each query is expensive, so we want to do as few as possible

o Canonical example: minimize the validation error of an ML algorithm
with respect to its hyperparameters

e Bayesian Optimization: approximate the function with a simpler
function called the surrogate function.

o After we've queried a certian number of points, we can condition on
these to infer the posterior over the surrogate function using Bayesian
linear regression.

0 - 1
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Bayesian Optimization

@ To choose the next point to query, we must define an acquisition
function, which tells us how promising a candidate it is.

@ Desiderata:
e v points we expect to be good —E[f(6)]
e v points we're uncertain about Var(f(0))
e X points we've already tried

Acquisition function
Acquisition function
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Bayesian Optimization

e Candidate 1: probability of improvement (Pl)
PI =Pr(f(0) <~y —e),
where v is the best value so far, and € is small.

@ The problem with Probability of Improvement (PI): it queries points it
is highly confident will have a small imporvement

o Usually these are right next to ones we've already evaluated
e Candidate 2: Expected Improvement (EIl)

EI = E[max(vy — f(6),0)]

e The idea: if the new value is much better, we win by a lot; if it's much
worse, we haven't lost anything.

e There is an explicit formula for this if the posterior predictive
distribution is Gaussian.
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Bayesian Optimization

@ Higher-dimensional case is conceptually no different.
e Maximize the acquisition function using gradient descent
o Use lots of random restarts, since it is riddled with local maxima
o BayesOpt can be used to optimize tens of hyperparameters.

@ BayesOpt in terms of Bayesian linear regression with basis functions
learned by a neural net.
e In practice, it's typically done with Gaussian processes
o Bayesian linear regression scales better to large numbers of queries

@ One variation: some configurations can be much more expensive than
others

o Another Bayesian regression model to estimate the computational cost,

and query the point that maximizes expected improvement per second
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Bayesian Optimization

@ BayesOpt can often beat hand-tuned configurations in a relatively
small number of steps.

@ Results on optimizing hyperparameters (layer-specific learning rates,
weight decay, and a few other parameters) for a CIFAR-10 conv net:
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Function evaluations

@ Each function evaluation takes about an hour

@ Human expert = Alex Krizhevsky, the creator of AlexNet
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Occam'’s Razor (optional)

@ Occam’s Razor: “Entities should not be multiplied beyond necessity.”
o Named after the 14th century British theologian William of Occam

@ Huge number of attempts to formalize mathematically
e See Domingos, 1999, “The role of Occam'’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf

@ Common misinterpretation: your prior should favor simple
explanations
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Occam'’s Razor (optional)

@ Suppose you have a finite set of models, or hypotheses {’H,-},-"il
(e.g. polynomials of different degrees)

@ Posterior inference over models (Bayes' Rule):
p(Hi|D) < p(Hi) p(D | ;)
N ——
prior  evidence

@ Which of these terms do you think is more important?

@ The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

P(D 1) = [ plw | #:) p(D | w, 1)

o If we're comparing a handful of hypotheses, p(H;) isn't very
important, so we can compare them based on marginal likelihood.
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Occam'’s Razor (optional)

@ Suppose My, M, and M3 denote a linear, quadratic, and cubic model.
@ Mjs is capable of explaning more datasets than M.

@ But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

4

p(D) M,

M

("

Dy

D

— Bishop, Pattern Recognition and Machine Learning
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Occam'’s Razor (optional)

@ Approximating the integral:

o(D|H;) = / p(D | w, H:) p(w | 1)

~ p(D|wnap, Hi) p(Wnap | Hi) Aw

-~
best-fit likelihood Occam factor
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Occam'’s Razor (optional)

likelihood priorfposterior data space
1 1

@ Multivariate case:

p(D | Hi) = p(D | wmap, Hi) p(wmap | Hi) [A] 722,
best-fit likelihood Occam factor
where A = V2 log p(D | w, H,)
@ The determinant appears because we're
taking the volume.

@ The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays.

- ]
t 0wy ! ) oz 1

i
— Bishop, Pattern Recognition and Machine
Learning
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Occam'’s Razor (optional)

@ Analyzing the asymptotic behavior:

A = V3, log p(D |w, H))

N
= ZY& log p(yi [ xi, w, H,;)
Jj=1 A

LA,
~ NE[A/]
log Occam factor = log p(wniap | Hi) + log |A|_1/2

~ log p(wiap | H;) + log [N E[A;]]|71/2
Dlog N
2

1
= log p(waiap | Hi) — 5 log [E[A;]| —
Dlog N
2

e Bayesian Information Criterion (BIC): penalize the complexity of
your model by %Dlog N.

= const —
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Occam'’s Razor (optional)

@ Summary

p(Hi|D) o< p(H;i) p(D|H,i)
p(D|H;) =~ p(D | waap, Hi) p(waiap | Hi) |A| 72

Asymptotically, with lots of data, this behaves like

1
log p(D | ;) = log p(D [ wnap, ;) — 5 Dlog N.
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