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Overview

Recall PCA: project data onto a low-dimensional subspace defined by
the top eigenvalues of the data covariance

We saw that PCA could be viewed as a linear autoencoder, which let
us generalize to nonlinear autoencoders

Today we consider another generalization, matrix factorizations

view PCA as a matrix factorization problem

extend to matrix completion, where the data matrix is only partially
observed

extend to other matrix factorization models, which place different kinds
of structure on the factors
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PCA as Matrix Factorization

Recall: each input vector x
(i)

is approximated as Uz, where U is the
orthogonal basis for the principal subspace, and z is the code vector.

Write this in matrix form: X and Z are matrices with one column per
data point

We transpose our usual convention for data matrices (for some parts of
this lecture).

Writing the squared error in matrix form

N

∑
i=1

∥x
(i)
−Uz

(i)∥2
= ∥X −UZ∥2

F

Recall that the Frobenius norm is defined as ∥A∥2
F = ∑i ,j a

2
ij .
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PCA as Matrix Factorization

So PCA is approximating X ≈ UZ.

Based on the sizes of the matrices, this is a rank-K approximation.

Since U was chosen to minimize reconstruction error, this is the
optimal rank-K approximation, in terms of ∥X −UZ∥2

F .
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PCA vs. SVD (optional)

This has a close relationship to the Singular Value Decomposition
(SVD) of X. This is a factorization

X = UΣV
⊤

Properties:

U, Σ, and V
⊤

provide a real-valued matrix factorization of X, an
m × n matrix.

U is a m ×m matrix with orthonormal columns U
⊤

U = Im, where Im
is the m ×m identity matrix.

V is an orthonormal n × n matrix, V
⊤

V = In.

Σ is a m × n diagonal matrix, with non-negative singular values,
σ1, σ2, . . . , σmin{m,n}, on the diagonal, where the singular values are
conventionally ordered from largest to smallest.

It’s possible to show that the first n singular vectors correspond to the first
n principal components; more precisely, Z = UΣ
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PCA vs. SVD (optional)

X = UΣV
⊤
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Matrix Completion

We just saw that PCA gives the optimal low-rank matrix factorization.

Two ways to generalize this:

1) Consider when X is only partially observed.

A sparse 1000 × 1000 matrix with 50,000 observations (only 5%
observed).
A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.
Unfortunately, no closed form solution.

2) Impose structure on the factors. We can get lots of interesting
models this way.
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Recommender systems: Why?

400 hours of video are uploaded to YouTube every
minute

353 million products and 310 million users

83 million paying subscribers and streams about 35
million songs

Who cares about all these videos, products and songs? People may care
only about a few → Personalization: Connect users with content they
may use/enjoy.

Recommender systems suggest items of interest and enjoyment to people
based on their preferences
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Some recommender systems in action
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Some recommender systems in action

Ideally recommendations should combine global and session interests, look at your
history if available, should adapt with time, be coherent and diverse, etc.
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or
bad.

User Movie Rating

Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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Matrix completion problem

Matrix completion problem: Transform the table into a N users by M movies
matrix R

Cha
in

ed

Fr
oz

en

Bam
bi

Ti
ta

ni
c

Goo
df

el
la
s

Dum
bo

Tw
ili
gh

t
Th

or

Ta
ng

le
d

Ninja

Cat

Angel

Nursey

Tongey

Neutral

2 3 ? ? ? ? ? 1 ?

4 ? 5 ? ? ? ? ? ?

? ? ? 3 5 5 ? ? ?

? ? ? ? ? ? 2 ? ?

? 5 ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? 1

Rating matrix 

Data: Users rate some movies.
Ruser,movie. Very sparse

Task: Finding missing data, e.g.
for recommending new movies to
users. Fill in the question marks

Algorithms: Alternating Least
Square method, Gradient
Descent, Non-negative Matrix
Factorization, low rank matrix
Completion, etc.
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Latent factor models

In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

That is, we seek a representation movies and users as vectors in RK

For simplicity, we can associate these factors (i.e. the dimensions of
the vectors) with idealized concepts like

comedy
drama
action
But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Alternating least squares

Let the representation of user n in the K -dimensional space be un and the
representation of movie m be zm

Assume the rating user n gives to movie m is given by a dot product:

Rnm ≈ u
T
n zm

In matrix form, if:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

— u
⊤
1 —
⋮

— u
⊤
N —

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣
z1 . . . zM
∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

then: R ≈ UZ

This is a matrix factorization problem!
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Approach: Matrix factorization methods

R
<latexit sha1_base64="4897wgcjkIkUSGQZXxEHuJvRMZA=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF49VbC22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/De5D2</latexit><latexit sha1_base64="4897wgcjkIkUSGQZXxEHuJvRMZA=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF49VbC22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/De5D2</latexit><latexit sha1_base64="4897wgcjkIkUSGQZXxEHuJvRMZA=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF49VbC22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/De5D2</latexit><latexit sha1_base64="4897wgcjkIkUSGQZXxEHuJvRMZA=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF49VbC22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/De5D2</latexit>

⇡<latexit sha1_base64="1q/1tZx1S5Cts5qr+pV12vBHIps=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2A9ol5JNs21oNglJVixLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvUpwZ6/vfXmltfWNzq7xd2dnd2z+oHh61jUw1oS0iudTdCBvKmaAtyyynXaUpTiJOO9HkNvc7j1QbJsWDnSoaJngkWMwItk7q9LFSWj4NqjW/7s+BVklQkBoUaA6qX/2hJGlChSUcG9MLfGXDDGvLCKezSj81VGEywSPac1TghJowm587Q2dOGaJYalfCorn6eyLDiTHTJHKdCbZjs+zl4n9eL7XxdZgxoVJLBVksilOOrET572jINCWWTx3BRDN3KyJjrDGxLqGKCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILCEzgGV7hzVPei/fufSxaS14xcwx/4H3+AJNij7Y=</latexit><latexit sha1_base64="1q/1tZx1S5Cts5qr+pV12vBHIps=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2A9ol5JNs21oNglJVixLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvUpwZ6/vfXmltfWNzq7xd2dnd2z+oHh61jUw1oS0iudTdCBvKmaAtyyynXaUpTiJOO9HkNvc7j1QbJsWDnSoaJngkWMwItk7q9LFSWj4NqjW/7s+BVklQkBoUaA6qX/2hJGlChSUcG9MLfGXDDGvLCKezSj81VGEywSPac1TghJowm587Q2dOGaJYalfCorn6eyLDiTHTJHKdCbZjs+zl4n9eL7XxdZgxoVJLBVksilOOrET572jINCWWTx3BRDN3KyJjrDGxLqGKCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILCEzgGV7hzVPei/fufSxaS14xcwx/4H3+AJNij7Y=</latexit><latexit sha1_base64="1q/1tZx1S5Cts5qr+pV12vBHIps=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2A9ol5JNs21oNglJVixLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvUpwZ6/vfXmltfWNzq7xd2dnd2z+oHh61jUw1oS0iudTdCBvKmaAtyyynXaUpTiJOO9HkNvc7j1QbJsWDnSoaJngkWMwItk7q9LFSWj4NqjW/7s+BVklQkBoUaA6qX/2hJGlChSUcG9MLfGXDDGvLCKezSj81VGEywSPac1TghJowm587Q2dOGaJYalfCorn6eyLDiTHTJHKdCbZjs+zl4n9eL7XxdZgxoVJLBVksilOOrET572jINCWWTx3BRDN3KyJjrDGxLqGKCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILCEzgGV7hzVPei/fufSxaS14xcwx/4H3+AJNij7Y=</latexit><latexit sha1_base64="1q/1tZx1S5Cts5qr+pV12vBHIps=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQY9FLx4r2A9ol5JNs21oNglJVixLf4QXD4p49fd489+YbfegrQ8GHu/NMDMvUpwZ6/vfXmltfWNzq7xd2dnd2z+oHh61jUw1oS0iudTdCBvKmaAtyyynXaUpTiJOO9HkNvc7j1QbJsWDnSoaJngkWMwItk7q9LFSWj4NqjW/7s+BVklQkBoUaA6qX/2hJGlChSUcG9MLfGXDDGvLCKezSj81VGEywSPac1TghJowm587Q2dOGaJYalfCorn6eyLDiTHTJHKdCbZjs+zl4n9eL7XxdZgxoVJLBVksilOOrET572jINCWWTx3BRDN3KyJjrDGxLqGKCyFYfnmVtC/qgV8P7i9rjZsijjKcwCmcQwBX0IA7aEILCEzgGV7hzVPei/fufSxaS14xcwx/4H3+AJNij7Y=</latexit> U
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Alternating least squares

Let O = {(n,m) ∶ entry (n,m) of matrix R is observed}
Using the squared error loss, a matrix factorization corresponds to solving

min
U,Z

1

2
∑

(n,m)∈O
(Rnm − u

⊤
n zm)

2

The objective is non-convex and in fact it’s NP-hard to optimize. (See
Low-Rank Matrix Approximation with Weights or Missing Data is NP-hard
by Gillis and Glineur, 2011)

As a function of either U or Z individually, the problem is convex and easy
to optimize. We can use coordinate descent, just like with K-means and
mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U and
optimize Z, and so on until convergence.
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Alternating least squares

ALS for Matrix Completion algorithm

1 Initialize U and Z randomly

2 repeat

3 for n = 1, ..,N do

4 un = (∑m∶(n,m)∈O zmz
⊤
m)

−1 ∑m∶(n,m)∈O Rnmzm

5 for m = 1, ..,M do

6 zm = (∑n∶(n,m)∈O unu
⊤
n )

−1 ∑n∶(n,m)∈O Rnmun

7 until convergence

See also the paper “Probabilistic Matrix Factorization” in the course readings.
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K-Means

It’s possible to view K-means as a matrix factorization.

Stack the indicator vectors ri for assignments into a N × K matrix R,
and stack the cluster centers mk into a matrix K × D matrix M.

“Reconstruction” of the data (replace each point with its cluster
center) is given by RM.

K-means distortion function in matrix form:

N

∑
n=1

K

∑
k=1

r
(n)
k ∣∣mk − x

(n)∣∣2
= ∥X − RM∥2

F
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K-Means

Can sort by cluster for visualization:
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Co-clustering (optional)

We can take this a step further.

Idea: feature dimensions can be redundant, and some feature
dimensions cluster together.

Co-clustering clusters both the rows and columns of a data matrix,
giving a block structure.

We can represent this as the indicator matrix for rows, times the
matrix of means for each block, times the indicator matrix for
columns
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Sparse Coding

Efficient coding hypothesis: the structure of our visual system is
adapted to represent the visual world in an efficient way

E.g., be able to represent sensory signals with only a small fraction of
neurons having to fire (e.g. to save energy)

Olshausen and Field fit a sparse coding model to natural images to
try to determine what’s the most efficient representation.

They didn’t encode anything specific about the brain into their
model, but the learned representations bore a striking resemblance to
the representations in the primary visual cortex
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Sparse Coding

This algorithm works on small (e.g. 20 × 20) image patches, which
we reshape into vectors (i.e. ignore the spatial structure)

Suppose we have a dictionary of basis functions {ak}Kk=1 which can
be combined to model each patch

Each patch is approximated as a linear combination of a small
number of basis functions:

x =
K

∑
k=1

skak = As

This is an overcomplete representation, in that typically K > D
(e.g. more basis functions than pixels)

The requirement that s is sparse makes things interesting
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Sparse Coding

x ≈
K

∑
k=1

skak = As

Since we use only a few basis functions, s is a sparse vector.
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Sparse Coding

We’d like choose s to accurately reconstruct the image, but
encourage sparsity in s.

What cost function should we use?

Inference in the sparse coding model:

min
s

∥x − As∥2
+ β∥s∥1

Here, β is a hyperparameter that trades off reconstruction error
vs. sparsity.

There are efficient algorithms for minimizing this cost function
(beyond the scope of this class)
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Sparse Coding: Learning the Dictionary

We can learn a dictionary by optimizing both A and {si}Ni=1 to trade
off reconstruction error and sparsity

min
{si},A

N

∑
i=1

∥x − Asi∥2
+ β∥si∥1

subject to ∥ak∥2
≤ 1 for all k

Why is the normalization constraint on ak needed?

Reconstruction term can be written in matrix form as ∥X − AS∥2
F ,

where S combines the si as columns

Can fit using an alternating minimization scheme over A and S, just
like K-means, EM, low-rank matrix completion, etc.
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Sparse Coding: Learning the Dictionary

Basis functions learned from natural images:
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Sparse Coding: Learning the Dictionary

The sparse components are oriented edges, similar to what a conv net
learns

But the learned dictionary is much more diverse than the first-layer
conv net representations: tiles the space of location, frequency, and
orientation in an efficient way

Each basis function has similar response properties to cells in the
primary visual cortex (the first stage of visual processing in the brain)
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Sparse Coding

Applying sparse coding to speech signals:

(Grosse et al., 2007, “Shift-invariant sparse coding for audio classification”)
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Summary

PCA can be viewed as fitting the optimal low-rank approximation to a
data matrix.

Matrix completion is the setting where the data matrix is only
partially observed

Solve using ALS, an alternating procedure analogous to EM

PCA, K-means, co-clustering, sparse coding, and lots of other
interesting models can be viewed as matrix factorizations, with
different kinds of structure imposed on the factors.
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