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A Generative View of Clustering

Last time: introduced EM algorithm as a way of fitting a Gaussian
Mixture Model

I E-step: Compute probability each datapoint came from certain cluster,
given model parameters

I M-step: Adjust parameters of each cluster to maximize probability it
would generate data it is currently responsible for

This lecture: derive EM from principled approach and see how EM
can be applied to general latent variable models
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Latent Variable Models

Recall: variables which are always unobserved are called latent
variables or sometimes hidden variables

In a mixture model, the identity of the component that generated a
given datapoint is a latent variable

Why use latent variables if introducing them complicates learning?

I We can build a complex model out of simple parts - this can simplify
the description of the model

I We can sometimes use the latent variables as a representation of the
original data (e.g. cluster assignments in a GMM model)
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Preliminaries: Jensen’s Inequality

Theorem: Suppose f is a convex function and X is a random
variable. Then:

f (E[X ]) ≤ E[f (X )]

If X takes on two values x1 and x2 with probabilities p1 and p2, just
the defintion of a convex function:

f (p1x1 + p2x2) ≤ p1f (x1) + p2f (x2)

I This is a convenient way to remember which way the inequality goes
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Preliminaries: Jensen’s Inequality

Jensen’s Inequality: For convex f:

f (E[X ]) ≤ E[f (X )]

Image credit: Mark Reid
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Preliminaries: Jensen’s Inequality

Jensen’s Inequality: For convex f:

f (E[X ]) ≤ E[f (X )]

Sufficient condition for equality: if X is a constant (i.e. the random
variable takes on one value)

If g is concave, the inequality changes directions:

g(E[X ]) ≥ E[g(X )]
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Preliminaries: Notation

In this lecture, we’ll be using x to denote observed data and z to
denote the latent variables

We’ll let p(z , x;θ) denote the probabilistic model we’ve defined
I Anything following a semicolon denotes a parameter of the distribution
I We’re not treating the parameters as random variables

We assume we have an observed dataset D = {x(n)}Nn=1 and would
like to fit θ using maximum likelihood:

log p(D;θ) =
N∑

n=1

log p(x(n);θ)

To compute p(x;θ), we have to marginalize over z :

p(x;θ) =
∑
z

p(z , x;θ)
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EM

Typically no closed form solution to the maximum likelihood problem

log p(D;θ) =
N∑

n=1

log p(x(n);θ) =
N∑

n=1

log

∑
z(n)

p(z(n), x(n);θ)


Key difficulty: once z is marginalized out, p(x;θ) could be complex
(e.g. a mixture distribution)

We’d like to write an objective in terms of log p(z , x;θ), which should
be simpler to solve

To accomplish this, we need to move the summation outside the log

We introduce auxilliary distributions qn(z(n)) over each of the latent
variables
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EM

N∑
n=1

log

∑
z(n)

p(z(n), x(n);θ)

 =
N∑

n=1

log

∑
z(n)

qn(z(n))
p(z(n), x(n);θ)

qn(z(n))


=

N∑
n=1

log

(
Eqn(z(n))

[
p(z(n), x(n);θ)

qn(z(n))

])

≥
N∑

n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]

In the last step, we use Jensen’s Inequality. Since log is concave:

log

(
Eqn(z(n))

[
p(z(n), x(n);θ)

qn(z(n))

])
≥ Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]
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EM

N∑
n=1

log p(x(n);θ) ≥
N∑

n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]
≡ L(q,θ) where q = {q1, . . . , qN}

We expect L(q,θ) might be easier to optimize w.r.t. θ, since it only
appears in log p(z(n), x(n);θ), so we’ll use this as our new objective

For any auxilliary distributions qn, we obtain a lower bound on the
log likelihood

Which qn should we choose? Want to make the bound as tight as
possible
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EM

We know this bound is tight (i.e. the inequality becomes an equality)
if there are constants cn such that:

p(z(n), x(n);θ)

qn(z(n))
= constant =⇒ qn(z(n)) = cnp(z(n), x(n);θ)

Using
∑

z(n) qn(z(n)) = 1, we have:

1 =
∑
z(n)

qn(z(n)) = cn
∑
z(n)

p(z(n), x(n);θ) = cnp(x(n);θ)

=⇒ cn =
1

p(x(n);θ)

Hence:

qn(z(n)) =
p(z(n), x(n);θ)

p(x(n);θ)
= p(z(n)|x(n);θ)
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EM

For fixed θ0, if we set qn(z(n)) = p(z(n)|x(n);θ0) the bound is tight:

N∑
n=1

log p(x(n);θ0) =
N∑

n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ0)

qn(z(n))

]

Written another way:

log p(D;θ0) = L(q;θ0) if ∀ n , qn(z(n)) = p(z(n)|x(n);θ0)

UofT CSC411 2019 Winter Lecture 17 12 / 22



EM

The EM algorithm alternates between making the bound tight at the
current parameter values and then optimizing the lower bound

If the current parameter value is θold:
I E-step: For all n, set qn(z (n)) = p(z (n)|x(n);θold) and form the lower

bound L(q;θ)
I Remember: log p(D;θold) = L(q;θold) after this step

I M-step: Optimize the lower bound:

θnew = argmax
θ

L(q,θ)

= argmax
θ

N∑
n=1

Eqn(z(n))

[
log

p(z (n), x(n);θ)

qn(z (n))

]
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M-Step

M-step: Optimize the lower bound:

N∑
n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]
=

N∑
n=1

Eqn(z(n))

[
log p(z(n), x(n);θ)

]
− Eqn(z(n))

[
log qn(z(n))

]
︸ ︷︷ ︸

constant w.r.t.θ

Substitute in qn(z(n)) = p(z(n)|x(n);θold):

θnew = argmax
θ

N∑
n=1

Ep(z(n)|x(n);θold)

[
log p(z(n), x(n);θ)

]
This is the expected complete data log-likelihood.

UofT CSC411 2019 Winter Lecture 17 14 / 22



EM Alternative Description

E-step: For all n, set qn(z(n)) = p(z(n)|x(n);θold) and form the lower
bound L(q;θ)

M-step: Optimize the lower bound:

θnew = argmax
θ

L(q,θ)

= argmax
θ

N∑
n=1

Ep(z(n)|x(n);θold)

[
log p(z(n), x(n);θ)

]
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EM Convergence

We can deduce that an iteration of EM will improve the log-likelihood
by using the fact that the bound is tight at θold after the E-step

Let q denote the qn’s after the E-step i.e. qn(z(n)) = p(z(n)|x(n);θold)

log p(D;θnew) ≥ L(q,θnew) since log p(D;θ) ≥ L(q,θ) always

≥ L(q,θold) since θnew = argmax
θ

L(q,θ)

= log p(D;θold) since log p(D;θold) = L(q;θold)
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EM Visualization

The EM algorithm involves alternately computing a lower bound on
the log likelihood for the current parameter values and then
maximizing this bound to obtain the new parameter values
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Revisiting Mixture of Gaussians

Let’s revisit the mixture of Gaussians example from last lecture and
derive the updates using our general EM algorithm

Recall our model was:

p(z = k ;θ) = πk

p(x|z = k ;θ) = N (x;µk ,Σk)

In this scenario, we have θ = {µk , πk ,Σk}Kk=1
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E-Step for Mixture of Gaussians

Let the current parameters be θold = {µoldk , πoldk ,Σold
k }Kk=1

E-step: For all n, set qn(z(n)) = p(z(n)|x(n);θold)

r
(n)
k := qn(z (n) = k) = p(z (n) = k|x(n);θold) =

πold
k N (x(n)|µold

k ,Σold
k )∑K

j=1 π
old
j N (x(n)|µold

j ,Σold
j )
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M-Step for Mixture of Gaussians

M-step:

θnew = argmax
θ

N∑
n=1

Eqn(z(n))

[
log p(z(n), x(n);θ)

]

Substitute in:
I log p(z (n), x(n);θ) =

∑K
k=1 I[z (n) = k]

(
log πk + logN (x(n);µk ,Σk)

)
I qn(z (n)) = p(z (n)|x(n);θold):

θnew = argmax
θ

N∑
n=1

Eqn(z(n))

[
K∑

k=1

I[z(n) = k]
(

log πk + logN (x(n);µk ,Σk)
)]

= argmax
θ

N∑
n=1

K∑
k=1

r
(n)
k

(
log πk + logN (x(n);µk ,Σk)

)
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M-Step for Mixture of Gaussians

θnew = argmax
θ

N∑
n=1

K∑
k=1

r
(n)
k

(
log πk +N (x(n);µk ,Σk)

)
Taking derivatives and setting to zero, we get the updates from last
lecture:

µk =
1

Nk

N∑
n=1

r
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

r
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

r
(n)
k
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EM Recap

A general algorithm for optimizing many latent variable models.

Iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima.

Can use multiple restarts.

Can initialize from k-means for mixture models

Limitation - need to be able to compute p(z |x;θ), not possible for
more complicated models.
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