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A Generative View of Clustering

@ Last time: introduced EM algorithm as a way of fitting a Gaussian
Mixture Model

» E-step: Compute probability each datapoint came from certain cluster,
given model parameters

» M-step: Adjust parameters of each cluster to maximize probability it
would generate data it is currently responsible for

@ This lecture: derive EM from principled approach and see how EM
can be applied to general latent variable models
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Latent Variable Models

@ Recall: variables which are always unobserved are called latent
variables or sometimes hidden variables

@ In a mixture model, the identity of the component that generated a
given datapoint is a latent variable

@ Why use latent variables if introducing them complicates learning?

» We can build a complex model out of simple parts - this can simplify
the description of the model

» We can sometimes use the latent variables as a representation of the
original data (e.g. cluster assignments in a GMM model)
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Preliminaries: Jensen's Inequality

@ Theorem: Suppose f is a convex function and X is a random

variable. Then:
f(E[X]) < E[f(X)]

o If X takes on two values x; and xp with probabilities p; and py, just
the defintion of a convex function:

f(pix1 + pox2) < pif(x1) + p2f(x2)

» This is a convenient way to remember which way the inequality goes
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Preliminaries: Jensen's Inequality

Jensen’s Inequality: For convex f:

F(E[X]) <E[f(X)]

h
I Iy ]E[z] I3 fll?4

Image credit: Mark Reid
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Preliminaries: Jensen's Inequality

Jensen’s Inequality: For convex f:

FE[X]) < E[f(X)]

e Sufficient condition for equality: if X is a constant (i.e. the random
variable takes on one value)

e If g is concave, the inequality changes directions:

g(E[X]) > E[g(X)]
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Preliminaries: Notation

@ In this lecture, we'll be using x to denote observed data and z to
denote the latent variables
o We'll let p(z,x; @) denote the probabilistic model we've defined

» Anything following a semicolon denotes a parameter of the distribution
» We're not treating the parameters as random variables

o We assume we have an observed dataset D = {x("}N_, and would
like to fit @ using maximum likelihood:

log p(D; 0) = Zlogp ”)0

e To compute p(x; @), we have to marginalize over z:
= Z p(z,x;0)
z
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@ Typically no closed form solution to the maximum likelihood problem
N
log p(D; 0) Z log p(x 0) = Z log Zp(z(”)’x(n); 6)
n=1 z(n)

o Key difficulty: once z is marginalized out, p(x;8) could be complex
(e.g. a mixture distribution)

e We'd like to write an objective in terms of log p(z, x; €), which should
be simpler to solve

@ To accomplish this, we need to move the summation outside the log

@ We introduce auxilliary distributions g,(z(") over each of the latent
variables
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S N () ().
2 (ZMZ(”%X(”):‘))) 2 log ( )w)

n=1 2(n) (n)

< p(z"),x(); )
PR qn(zw)
N
p(z(M, x("); )
; n)) llog n(z(n))
@ In the last step, we use Jensen's Inequality. Since log is concave:

p(z(",x("); 9) p(z(M,x("); 9)
log (Eqn(z(”)) [ 2> Eq, 2ty [log T

qn( z(”))
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N
N p(z (n), x(n). :9)
;logp(x( :6) > ZE () llog T @™

= E(q,@) where g = {q1,...,qn}

o We expect £(g,0) might be easier to optimize w.r.t. 8, since it only
appears in log p(z{", x("): ), so we'll use this as our new objective

@ For any auxilliary distributions g,, we obtain a lower bound on the
log likelihood

@ Which g, should we choose? Want to make the bound as tight as
possible
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e We know this bound is tight (i.e. the inequality becomes an equality)
if there are constants ¢, such that:

p(z(M, x("); 9)

— (n)y = (n) x(n).
a2 = constant = qn(z\") = c,p(2\",x\"; 0)

o Using 3" qn(2(™) = 1, we have:
1_Zq ()_Czp () x(M: 9) = c,p(x("); 6)

— Cp = p(X(n)re)

@ Hence:
p(z(M, x("); 9)

p(x(”); 0)

Uof T CSC411 2019 Winter Lecture 17 11 /22

an(2(") = = p(z"x("); 6)



o For fixed g, if we set g,(z(") = p(z{M|x("); By) the bound is tight:

N z(m x(); 9)
log p(x("): @ E lo ¥
nZ_l gp(x";00) = Z an(207) [ & (@)
o Written another way:

log p(D; 8) = £(4; 00) if ¥ 1, a(2") = p(z(" x"; )
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@ The EM algorithm alternates between making the bound tight at the
current parameter values and then optimizing the lower bound
o If the current parameter value is 8°'9:
» E-step: For all n, set g,(z(") = p(z{™[x("; 8°) and form the lower
bound L(q; 0)
» Remember: log p(D; 8°¢) = L(q; 8°) after this step
» M-step: Optimize the lower bound:

0™ = argmax £(q, 0)
)

N
p(z(™, x("); )
=argmax Y E_ ) |log ——F——
& HZ:; an(z(") { g€ an(z(M)
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@ M-step: Optimize the lower bound:

p(z (n), x(n). :9)
an(27) ] -

Z Eg, (2

ZN:IEC," [Iog p(z(", (");9)} = Eq (2 {Iog Qn(z(n))]

constant w.r.t.0

log

@ Substitute in q,,(z(")) = p(z(n)|x(n); gold):
N

onew — argmax ZEP(Z ) x(); 01 [Iog p( (”),x("); 0)

@ This is the expected complete data log-likelihood.
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EM Alternative Description

o E-step: For all n, set g,(z(") = p(z(M|x("); 8°'9) and form the lower
bound L(q; 0)

@ M-step: Optimize the lower bound:

onew

= argmax £L(q, 0)
0

N
= argmax Z ]Ep(z(")|x(”);0°'d) [Iog p(z(”), x(”); 0)

o n=1
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EM Convergence

@ We can deduce that an iteration of EM will improve the log-likelihood
by using the fact that the bound is tight at 8°'¢ after the E-step

o Let g denote the g,'s after the E-step i.e. g,(z(") = p(z("|x("); g°'d)
log p(D; 0"™") > L(q,0™") since log p(D; 0) > L(q,0) always

> L(q,0°9) since " = argmax £(q, 0)
)

= log p(D; 6°'%) since log p(D; 8°9) = £(q; 6°)
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EM Visualization

Inp(X10)

901d enew

@ The EM algorithm involves alternately computing a lower bound on
the log likelihood for the current parameter values and then
maximizing this bound to obtain the new parameter values
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Revisiting Mixture of Gaussians

@ Let’s revisit the mixture of Gaussians example from last lecture and
derive the updates using our general EM algorithm

@ Recall our model was:
p(z =k;0) = my
p(x|z = k; 0) = N(x; i, Tk)

o In this scenario, we have 8 = {puk, mk, Zx K|
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E-Step for Mixture of Gaussians

o Let the current parameters be 8°¢ = {y9!d 79ld FoldyK

o E-step: For all n, set g,(z("M) = p(z("M|x("); go'9)

oIdN( |‘uold ZOId)
ZJ L )::IdN( |N0|d zold)

rin) = go(z" = k) = p(z'" = k|x"; 0°¢) =
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M-Step for Mixture of Gaussians

M-step:

N

grew — arggnax ZEqn(Z(n)) [Iog p(z(n)7x(n); 0)]
n=1

@ Substitute in:
» log p(z(",x("; 9) = Z,’le I[z(" = k] (log mk + log N (x("; 1, Zy))
> qn(z(n)) = p(Z(n)|X(")’ BOId):

N

K
0" — argmax ZE%(Z(")) [Z I[2(" = K] (Iog Tk + log N (x"); pug, Zk))]
k=1

o n=1

K
= argmax Z Z (Iog Tk + IogN(x("); ks Zk))
n=1 k=1
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M-Step for Mixture of Gaussians

N K
orew — argmax Z Z rlEn) (Iog Tk + N(X(n); ik, Zk))
O S1k=1

@ Taking derivatives and setting to zero, we get the updates from last

lecture:
1 = ()
- = ), (n)
= r,’x
Mk Nk ; k
;N
Do = om0 — () )T
-1
N
Ne ()
Tk = N with Nk:nz:lrk
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A general algorithm for optimizing many latent variable models.

Iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima.
@ Can use multiple restarts.
@ Can initialize from k-means for mixture models

e Limitation - need to be able to compute p(z|x; @), not possible for
more complicated models.
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