
CSC 411: Introduction to Machine Learning
CSC 411 Lecture 17: Expectation-Maximization

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC411 2019 Winter Lecture 17 1 / 22



A Generative View of Clustering

Last time: introduced EM algorithm as a way of fitting a Gaussian
Mixture Model

I E-step: Compute probability each datapoint came from certain cluster,
given model parameters

I M-step: Adjust parameters of each cluster to maximize probability it
would generate data it is currently responsible for

This lecture: derive EM from principled approach and see how EM
can be applied to general latent variable models

UofT CSC411 2019 Winter Lecture 17 2 / 22



Latent Variable Models

Recall: variables which are always unobserved are called latent
variables or sometimes hidden variables

In a mixture model, the identity of the component that generated a
given datapoint is a latent variable

Why use latent variables if introducing them complicates learning?

I We can build a complex model out of simple parts - this can simplify
the description of the model

I We can sometimes use the latent variables as a representation of the
original data (e.g. cluster assignments in a GMM model)

UofT CSC411 2019 Winter Lecture 17 3 / 22



Preliminaries: Jensen’s Inequality

Theorem: Suppose f is a convex function and X is a random
variable. Then:

f (E[X ]) ≤ E[f (X )]

If X takes on two values x1 and x2 with probabilities p1 and p2, just
the defintion of a convex function:

f (p1x1 + p2x2) ≤ p1f (x1) + p2f (x2)

I This is a convenient way to remember which way the inequality goes

UofT CSC411 2019 Winter Lecture 17 4 / 22



Preliminaries: Jensen’s Inequality

Jensen’s Inequality: For convex f:

f (E[X ]) ≤ E[f (X )]

Image credit: Mark Reid
UofT CSC411 2019 Winter Lecture 17 5 / 22



Preliminaries: Jensen’s Inequality

Jensen’s Inequality: For convex f:

f (E[X ]) ≤ E[f (X )]

Sufficient condition for equality: if X is a constant (i.e. the random
variable takes on one value)

If g is concave, the inequality changes directions:

g(E[X ]) ≥ E[g(X )]

UofT CSC411 2019 Winter Lecture 17 6 / 22



Preliminaries: Notation

In this lecture, we’ll be using x to denote observed data and z to
denote the latent variables

We’ll let p(z , x;θ) denote the probabilistic model we’ve defined
I Anything following a semicolon denotes a parameter of the distribution
I We’re not treating the parameters as random variables

We assume we have an observed dataset D = {x(n)}Nn=1 and would
like to fit θ using maximum likelihood:

log p(D;θ) =
N∑

n=1

log p(x(n);θ)

To compute p(x;θ), we have to marginalize over z :

p(x;θ) =
∑
z

p(z , x;θ)

UofT CSC411 2019 Winter Lecture 17 7 / 22



EM

Typically no closed form solution to the maximum likelihood problem

log p(D;θ) =
N∑

n=1

log p(x(n);θ) =
N∑

n=1

log

∑
z(n)

p(z(n), x(n);θ)


Key difficulty: once z is marginalized out, p(x;θ) could be complex
(e.g. a mixture distribution)

We’d like to write an objective in terms of log p(z , x;θ), which should
be simpler to solve

To accomplish this, we need to move the summation outside the log

We introduce auxilliary distributions qn(z(n)) over each of the latent
variables

UofT CSC411 2019 Winter Lecture 17 8 / 22



EM

N∑
n=1

log

∑
z(n)

p(z(n), x(n);θ)

 =
N∑

n=1

log

∑
z(n)

qn(z(n))
p(z(n), x(n);θ)

qn(z(n))


=

N∑
n=1

log

(
Eqn(z(n))

[
p(z(n), x(n);θ)

qn(z(n))

])

≥
N∑

n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]

In the last step, we use Jensen’s Inequality. Since log is concave:

log

(
Eqn(z(n))

[
p(z(n), x(n);θ)

qn(z(n))

])
≥ Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]

UofT CSC411 2019 Winter Lecture 17 9 / 22



EM

N∑
n=1

log p(x(n);θ) ≥
N∑

n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]
≡ L(q,θ) where q = {q1, . . . , qN}

We expect L(q,θ) might be easier to optimize w.r.t. θ, since it only
appears in log p(z(n), x(n);θ), so we’ll use this as our new objective

For any auxilliary distributions qn, we obtain a lower bound on the
log likelihood

Which qn should we choose? Want to make the bound as tight as
possible

UofT CSC411 2019 Winter Lecture 17 10 / 22



EM

We know this bound is tight (i.e. the inequality becomes an equality)
if there are constants cn such that:

p(z(n), x(n);θ)

qn(z(n))
= constant =⇒ qn(z(n)) = cnp(z(n), x(n);θ)

Using
∑

z(n) qn(z(n)) = 1, we have:

1 =
∑
z(n)

qn(z(n)) = cn
∑
z(n)

p(z(n), x(n);θ) = cnp(x(n);θ)

=⇒ cn =
1

p(x(n);θ)

Hence:

qn(z(n)) =
p(z(n), x(n);θ)

p(x(n);θ)
= p(z(n)|x(n);θ)

UofT CSC411 2019 Winter Lecture 17 11 / 22



EM

For fixed θ0, if we set qn(z(n)) = p(z(n)|x(n);θ0) the bound is tight:

N∑
n=1

log p(x(n);θ0) =
N∑

n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ0)

qn(z(n))

]

Written another way:

log p(D;θ0) = L(q;θ0) if ∀ n , qn(z(n)) = p(z(n)|x(n);θ0)

UofT CSC411 2019 Winter Lecture 17 12 / 22



EM

The EM algorithm alternates between making the bound tight at the
current parameter values and then optimizing the lower bound

If the current parameter value is θold:
I E-step: For all n, set qn(z (n)) = p(z (n)|x(n);θold) and form the lower

bound L(q;θ)
I Remember: log p(D;θold) = L(q;θold) after this step

I M-step: Optimize the lower bound:

θnew = argmax
θ

L(q,θ)

= argmax
θ

N∑
n=1

Eqn(z(n))

[
log

p(z (n), x(n);θ)

qn(z (n))

]

UofT CSC411 2019 Winter Lecture 17 13 / 22



M-Step

M-step: Optimize the lower bound:

N∑
n=1

Eqn(z(n))

[
log

p(z(n), x(n);θ)

qn(z(n))

]
=

N∑
n=1

Eqn(z(n))

[
log p(z(n), x(n);θ)

]
− Eqn(z(n))

[
log qn(z(n))

]
︸ ︷︷ ︸

constant w.r.t.θ

Substitute in qn(z(n)) = p(z(n)|x(n);θold):

θnew = argmax
θ

N∑
n=1

Ep(z(n)|x(n);θold)

[
log p(z(n), x(n);θ)

]
This is the expected complete data log-likelihood.

UofT CSC411 2019 Winter Lecture 17 14 / 22



EM Alternative Description

E-step: For all n, set qn(z(n)) = p(z(n)|x(n);θold) and form the lower
bound L(q;θ)

M-step: Optimize the lower bound:

θnew = argmax
θ

L(q,θ)

= argmax
θ

N∑
n=1

Ep(z(n)|x(n);θold)

[
log p(z(n), x(n);θ)

]

UofT CSC411 2019 Winter Lecture 17 15 / 22



EM Convergence

We can deduce that an iteration of EM will improve the log-likelihood
by using the fact that the bound is tight at θold after the E-step

Let q denote the qn’s after the E-step i.e. qn(z(n)) = p(z(n)|x(n);θold)

log p(D;θnew) ≥ L(q,θnew) since log p(D;θ) ≥ L(q,θ) always

≥ L(q,θold) since θnew = argmax
θ

L(q,θ)

= log p(D;θold) since log p(D;θold) = L(q;θold)

UofT CSC411 2019 Winter Lecture 17 16 / 22



EM Visualization

The EM algorithm involves alternately computing a lower bound on
the log likelihood for the current parameter values and then
maximizing this bound to obtain the new parameter values

UofT CSC411 2019 Winter Lecture 17 17 / 22



Revisiting Mixture of Gaussians

Let’s revisit the mixture of Gaussians example from last lecture and
derive the updates using our general EM algorithm

Recall our model was:

p(z = k ;θ) = πk

p(x|z = k ;θ) = N (x;µk ,Σk)

In this scenario, we have θ = {µk , πk ,Σk}Kk=1

UofT CSC411 2019 Winter Lecture 17 18 / 22



E-Step for Mixture of Gaussians

Let the current parameters be θold = {µoldk , πoldk ,Σold
k }Kk=1

E-step: For all n, set qn(z(n)) = p(z(n)|x(n);θold)

r
(n)
k := qn(z (n) = k) = p(z (n) = k|x(n);θold) =

πold
k N (x(n)|µold

k ,Σold
k )∑K

j=1 π
old
j N (x(n)|µold

j ,Σold
j )

UofT CSC411 2019 Winter Lecture 17 19 / 22



M-Step for Mixture of Gaussians

M-step:

θnew = argmax
θ

N∑
n=1

Eqn(z(n))

[
log p(z(n), x(n);θ)

]

Substitute in:
I log p(z (n), x(n);θ) =

∑K
k=1 I[z (n) = k]

(
log πk + logN (x(n);µk ,Σk)

)
I qn(z (n)) = p(z (n)|x(n);θold):

θnew = argmax
θ

N∑
n=1

Eqn(z(n))

[
K∑

k=1

I[z(n) = k]
(

log πk + logN (x(n);µk ,Σk)
)]

= argmax
θ

N∑
n=1

K∑
k=1

r
(n)
k

(
log πk + logN (x(n);µk ,Σk)

)

UofT CSC411 2019 Winter Lecture 17 20 / 22



M-Step for Mixture of Gaussians

θnew = argmax
θ

N∑
n=1

K∑
k=1

r
(n)
k

(
log πk +N (x(n);µk ,Σk)

)
Taking derivatives and setting to zero, we get the updates from last
lecture:

µk =
1

Nk

N∑
n=1

r
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

r
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

r
(n)
k

UofT CSC411 2019 Winter Lecture 17 21 / 22



EM Recap

A general algorithm for optimizing many latent variable models.

Iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima.

Can use multiple restarts.

Can initialize from k-means for mixture models

Limitation - need to be able to compute p(z |x;θ), not possible for
more complicated models.

UofT CSC411 2019 Winter Lecture 17 22 / 22


