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A Generative View of Clustering

Last time: hard and soft k-means algorithm

This lecture: statistical formulation of clustering → principled, justification
for updates

We need a sensible measure of what it means to cluster the data well

I This makes it possible to judge different methods
I It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

I Then we adjust the model parameters to maximize the probability that
it would produce exactly the data we observed
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Generative Models Recap

We model the joint distribution as,

p(x, z) = p(x|z)p(z)

But in unsupervised clustering we do not have the class labels z .

What can we do instead?

p(x) =
∑
z

p(x, z) =
∑
z

p(x|z)p(z)

This is a mixture model
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Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

with πk the mixing coefficients, where:

K∑
k=1

πk = 1 and πk ≥ 0 ∀k

GMM is a density estimator

GMMs are universal approximators of densities (if you have enough
Gaussians). Even diagonal GMMs are universal approximators.

In general mixture models are very powerful, but harder to optimize
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Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood maximizes

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

w.r.t Θ = {πk , µk ,Σk}

Problems:

I Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point

I Identifiability: Solution is invariant to permutations
I Non-convex

How would you optimize this?

Can we have a closed form update?

Don’t forget to satisfy the constraints on πk and Σk
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Latent Variable

Our original representation had a hidden (latent) variable z which would
represent which Gaussian generated our observation x, with some probability

Let z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Then:

p(x) =
K∑

k=1

p(x, z = k) =
K∑

k=1

p(z = k)︸ ︷︷ ︸
πk

p(x|z = k)︸ ︷︷ ︸
N (x|µk ,Σk )

This breaks a complicated distribution into simple components - the price is
the hidden variable.
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Latent Variable Models

Some model variables may be unobserved, either at training or at test time,
or both

If occasionally unobserved they are missing, e.g., undefined inputs, missing
class labels, erroneous targets

Variables which are always unobserved are called latent variables, or
sometimes hidden variables

We may want to intentionally introduce latent variables to model complex
dependencies between variables – this can actually simplify the model

Form of divide-and-conquer: use simple parts to build complex models

In a mixture model, the identity of the component that generated a given
datapoint is a latent variable
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Back to GMM

A Gaussian mixture distribution:

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

We had: z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Joint distribution: p(x, z) = p(z)p(x|z)

Log-likelihood:

`(π, µ,Σ) = ln p(X|π, µ,Σ) =
N∑

n=1

ln p(x(n)|π, µ,Σ)

=
N∑

n=1

ln
K∑

z(n)=1

p(x(n)| z (n);µ,Σ)p(z (n)|π)

Note: We have a hidden variable z (n) for every observation

General problem: sum inside the log

How can we optimize this?
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Maximum Likelihood

If we knew z (n) for every x (n), the maximum likelihood problem is easy:

`(π, µ,Σ) =
N∑

n=1

ln p(x (n), z (n)|π, µ,Σ) =
N∑

n=1

ln p(x(n)| z (n);µ,Σ)+ln p(z (n)|π)

We have been optimizing something similar for Gaussian bayes classifiers

We would get this:

µk =

∑N
n=1 1[z(n)=k] x(n)∑N

n=1 1[z(n)=k]

Σk =

∑N
n=1 1[z(n)=k] (x(n) − µk)(x(n) − µk)T∑N

n=1 1[z(n)=k]

πk =
1

N

N∑
n=1

1[z(n)=k]
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Intuitively, How Can We Fit a Mixture of Gaussians?

Optimization uses the Expectation Maximization algorithm, which
alternates between two steps:

1. E-step: Compute the posterior probability over z given our current
model - i.e. how much do we think each Gaussian generates each
datapoint.

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it
would generate the data it is currently responsible for.
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Relation to k-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the center of gravity of

the data assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it is
currently responsible for.
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Expectation Maximization for GMM Overview

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I We fit each Gaussian to the weighted datapoints
I We can derive closed form updates for all parameters
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GMM E-Step: Responsibilities

Lets see how it works on GMM:

Conditional probability (using Bayes rule) of z given x

γk = p(z = k |x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

γk can be viewed as the responsibility of cluster k towards x
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GMM E-Step

Once we computed γ
(i)
k = p(z (i) = k |x(i)) we can compute the expected

likelihood

EP(z(i)|x(i))

[∑
i

log(P(x(i), z (i)|Θ))

]
=

∑
i

∑
k

γ
(i)
k

(
log(P(z i = k |Θ)) + log(P(x(i)|z (i) = k,Θ))

)
=

∑
i

∑
k

γ
(i)
k

(
log(πk) + log(N (x(i);µk ,Σk))

)
=

∑
k

∑
i

γ
(i)
k log(πk) +

∑
k

∑
i

γ
(i)
k log(N (x(i);µk ,Σk))

We need to fit k Gaussians, just need to weight examples by γk
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GMM M-Step

Need to optimize∑
k

∑
i

γ
(i)
k log(πk) +

∑
k

∑
i

γ
(i)
k log(N (x(i);µk ,Σk))

Solving for µk and Σk is like fitting k separate Gaussians but with weights

γ
(i)
k .

Solution is similar to what we have already seen:

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

γ
(n)
k
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EM Algorithm for GMM

Initialize the means µk , covariances Σk and mixing coefficients πk

Iterate until convergence:
I E-step: Evaluate the responsibilities given current parameters

γ
(n)
k = p(z (n)|x) =

πkN (x(n)|µk ,Σk)∑K
j=1 πjN (x(n)|µj ,Σj)

I M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

γ
(n)
k

I Evaluate log likelihood and check for convergence

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)
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Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-means, with
fixed priors and covariance

Instead of hard assignments in the E-step, we do soft assignments based
on the softmax of the squared Mahalanobis distance from each point to
each cluster.

Each center moved by weighted means of the data, with weights given by
soft assignments

In K-means, weights are 0 or 1
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GMM Recap

A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach, can replace Gaussian with other distributions
(continuous or discrete)

More generally, mixture model are very powerful models, universal
approximator

Optimization is done using the EM algorithm.
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Where does EM come from?

In the next lecture, we’ll see a principled justification of the EM
algorithm and describe how it can be applied to general latent
variable models
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