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Motivating Examples

Some examples of situations where you’d use unsupervised learning
I You want to understand how a scientific field has changed over time.

You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?

I You’re a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don’t know the
set of behaviors ahead of time.

I You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

Common theme: you have some data, and you want to infer the
structure underlying the data.

This structure is latent, which means it’s never observed.
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Overview

In last lecture, we looked at density modeling where all the random
variables were fully observed.

The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.

I Today’s lecture: K-means, a simple algorithm for clustering, i.e.
grouping data points into clusters

I Next 2 lectures: reformulate clustering as a latent variable model,
apply the EM algorithm
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Clustering

Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no labels, is called clustering

E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

CSC411 Lec15 4 / 17



Clustering

Assume the data {x(1), . . . , x(N)} lives in a Euclidean space, x(n) ∈ Rd .

Assume each data point belongs to one of K clusters

Assume the data points from same cluster are similar, i.e. close in Euclidean
distance.

How can we identify those clusters (data points that belong to each cluster)?
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K-means Objective

Let’s formulate this as an optimization problem

K-means Objective:
Find cluster centers {mk}Kk=1 and assignments {r(n)}Nn=1 to minimize the
sum of squared distances of data points {x(n)} to their assigned cluster
centers

Mathematically:

min
{mk},{r(n)}

J({mk}, {r(n)}) = min
{m},{r}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2 (1)

where r
(n)
k = I[x(n) is assigned to cluster k]

Finding an optimal solution is an NP-hard problem!
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Coordinate Descent

But note:

I If we fix the centers {mk} then we can easily find the optimal
assignments {r(n)}

I Assign each point to the cluster with the nearest center (check!)

I Likewise, if we fix the assignments {r(n)} then can easily find optimal
centers {mk}

I Set each cluster’s center to the average of its assigned data points
(check!)

Let’s alternate between minimizing J({m}, {r}) with respect to {m} and {r}

This is called coordinate descent
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K-means

High level overview of algorithm:

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster
I Refitting step: Move each cluster center to the mean of the data

assigned to it

Assignments Refitted 
means 
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Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment: Optimize J w.r.t. {r}: Each data point x(n) assigned to
nearest center

k̂(n) = arg min
k
||mk − x(n)||2

and Responsibilities (1-hot encoding)

r
(n)
k = I[k̂(n) = k]

I Refitting: Optimize J w.r.t. {m}: Each center is set to mean of data
assigned to it

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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K-means for Vector Quantization

Figure from Bishop

Given image, construct “dataset“ of pixels represented by their RGB pixel
intensities

Run k-means, replace each pixel by its cluster center
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K-means for Image Segmentation

Given image, construct “dataset” of pixels, represented by their RGB pixel
intensities and grid locations

Run k-means (with some modifications) to get superpixels
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Why K-means Converges

Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

This will always happen after a finite number of iterations, since the number
of possible cluster assignments is finite

K-means cost function after each assignment step (blue) and refitting step
(red). The algorithm has converged after the third refitting step
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Local Minima

The objective J is non-convex (so
coordinate descent on J is not guaranteed
to converge to the global minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

I Simultaneously merge two nearby
clusters

I and split a big cluster into two

A bad local optimum 
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Soft K-means

Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a
datapoint and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the refitting
step.

I How do we decide on the soft assignments?
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (measured by how much J changes):

I Assignment: Each data point n given soft ”degree of assignment” to
each cluster mean k , based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

=⇒ r(n) = softmax(−β[d(mk , x
(n))]Kk=1)

I Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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Questions about Soft K-means

Some remaining issues

How to set β?

Clusters with unequal weight and width?

These aren’t straightforward to address with K-means. Instead, next lecture, we’ll
reformulate clustering using a generative model.

CSC411 Lec15 17 / 17


	Introduction

