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Motivating Examples

@ Some examples of situations where you'd use unsupervised learning

» You want to understand how a scientific field has changed over time.
You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?

> You're a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don't know the
set of behaviors ahead of time.

» You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

@ Common theme: you have some data, and you want to infer the
structure underlying the data.

@ This structure is latent, which means it's never observed.
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Overview

@ In last lecture, we looked at density modeling where all the random
variables were fully observed.
@ The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.
» Today's lecture: K-means, a simple algorithm for clustering, i.e.

grouping data points into clusters
» Next 2 lectures: reformulate clustering as a latent variable model,

apply the EM algorithm
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Clustering

@ Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

@ Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

@ Grouping data points into clusters, with no labels, is called clustering

e E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)
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@ Assume the data {x(!), ..., x(M} lives in a Euclidean space, x(") € RY.
@ Assume each data point belongs to one of K clusters

@ Assume the data points from same cluster are similar, i.e. close in Euclidean
distance.

@ How can we identify those clusters (data points that belong to each cluster)?
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K-means Objective

Let’s formulate this as an optimization problem

@ K-means Objective:
Find cluster centers {m;}£_, and assignments {r("}_ to minimize the
sum of squared distances of data points {x(")} to their assigned cluster
centers

@ Mathematically:

min }J({mk},{r(")}): min ZZr,E")Hmk—X(")Hz (1)

{my} e {m}{r} = &=

where r{” = I[x(") is assigned to cluster K]

@ Finding an optimal solution is an NP-hard problem!
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Coordinate Descent

@ But note:
» If we fix the centers {my} then we can easily find the optimal
assignments {r("}
> Assign each point to the cluster with the nearest center (check!)

» Likewise, if we fix the assignments {r("} then can easily find optimal
centers {my}

> Set each cluster's center to the average of its assigned data points
(check!)

@ Let's alternate between minimizing J({m}, {r}) with respect to {m} and {r}

@ This is called coordinate descent
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K-means

High level overview of algorithm:

@ Initialization: randomly initialize cluster centers
@ The algorithm iteratively alternates between two steps:

» Assignment step: Assign each data point to the closest cluster
> Refitting step: Move each cluster center to the mean of the data
assigned to it
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Figure from Bishop
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Simple demo: http://syskall.com/kmeans. js/
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http://syskall.com/kmeans.js/

The K-means Algorithm

@ Initialization: Set K cluster means my, ..., mg to random values
® Repeat until convergence (until assignments do not change):

» Assignment: Optimize J w.r.t. {r}: Each data point x(") assigned to

nearest center

k(" = arg mkin [|my — x(M]2

and Responsibilities (1-hot encoding)

" =1k = K]

» Refitting: Optimize J w.r.t. {m}: Each center is set to mean of data
assigned to it

don rk x(")
Zn rkn

my =
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K-means for Vector Quantization

2

Figure from Bishop

@ Given image, construct “dataset" of pixels represented by their RGB pixel
intensities

@ Run k-means, replace each pixel by its cluster center
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K-means for Image Segmentation

@ Given image, construct “dataset” of pixels, represented by their RGB pixel
intensities and grid locations

@ Run k-means (with some modifications) to get superpixels
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Why K-means Converges

@ Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

@ Whenever a cluster center is moved, J is reduced.

@ Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

@ This will always happen after a finite number of iterations, since the number
of possible cluster assignments is finite
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@ K-means cost function after each assignment step (blue) and refitting step
(red). The algorithm has converged after the third refitting step
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Local Minima

@ The objective J is non-convex (so
coordinate descent on J is not guaranteed

to converge to the global minimum)
A bad local optimum

@ There is nothing to prevent k-means
getting stuck at local minima.

@ We could try many random starting points o *Oe
i eQe
@ We could try non-local split-and-merge o

moves:

» Simultaneously merge two nearby
clusters
» and split a big cluster into two
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@ Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a
datapoint and another may have a responsibility of .3.

> Allows a cluster to use more information about the data in the refitting
step.
» How do we decide on the soft assignments?
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Soft K-means Algorithm

@ Initialization: Set K means {mj} to random values
@ Repeat until convergence (measured by how much J changes):

» Assignment: Each data point n given soft " degree of assignment” to
each cluster mean k, based on responsibilities

) _ exp[fﬂd(mk,x("))]
< T el Bd(mx)]

— (" = softmax(—B[d(my, x("M)]E_,)

» Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

3, )
N Zn rkn)

my
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Questions about Soft K-means

Some remaining issues
@ How to set 37
@ Clusters with unequal weight and width?

These aren't straightforward to address with K-means. Instead, next lecture, we'll
reformulate clustering using a generative model.
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