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Overview

@ Bayesian parameter estimation
@ MAP estimation

@ Gaussian discriminant analysis
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Data Sparsity

@ Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?

N2
_NH+NT_2—|-O_

OmL

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

If you observe a single T in the test set, the log-likelihood is —oc.
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

@ The Bayesian approach treats the parameters as random variables as
well. [ is the set of parameters in the prior distribution of 6.

@ To define a Bayesian model, we need to specify two distributions:

o The prior distribution p(¢), which encodes our beliefs about the
parameters before we observe the data
e The likelihood p(D|#), same as in maximum likelihood
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Bayesian Parameter Estimation

@ When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes' Rule:

p(9)p(D |6)
[ p(@)p(D] )"

p(8D) =

@ We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

o Let's revisit the coin example. We already know the likelihood:
L(0) = p(D) = 6" (1 — )"

@ It remains to specify the prior p(6).
e We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
e But our experience tells us 0.5 is more likely than 0.99. One particularly
useful prior that lets us specify this is the beta distribution:

Ma+ b)

pl8:a.6) = £y ()

01— 0)"1

e This notation for proportionality lets us ignore the normalization
constant:

p(6; a, b) o< H271(1 — )1,
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Bayesian Parameter Estimation

@ Beta distribution for various values of a, b:

— a=05,b=05
st — a=1, b=1
— a=5,b=5
— a=2,b=6
4| — a=200, b=100
3
2
1 N
85 0.2 04 0.6 0.8 .0

@ Some observations:

o The expectation E[f] = a/(a + b).
e The distribution gets more peaked when a and b are large.
e The uniform distribution is the special case where a = b = 1.
@ The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

@ Computing the posterior distribution:

p(0|D) o p(8)p(D|0)
x 07711 - 0)P72] oM (1 — o) |
— 93—1+NH(1 _ 0)b—1+N7—.

@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 6 is:

Ny +a

E[6| D] =
O = Ny T a v b

@ The parameters a and b of the prior can be thought of as
pseudo-counts.
e The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it's
very useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting Large data setting
Ny=2 Nr=0 Ny =55, Nt =45
3.0 9
— Prior — Prior
55| — Likelihood 8/l — Likelihood
—— Posterior 7| — Posterior
2.0 6
5
1.5 A
1.0| 3
2
0.5 1
%80 02 04 06 08 1.0 80 02 04 06 08 10

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D| D) = / p(0|D)p(D' | 6) do.

@ For the coin flip example:

opred:Pr(X,:H|D)
= /p(9|D)PI’(X/ =H|0)do
:/Beta(e; Ny + a, N7 + b) - 6.6

= IEBe):a(t9;N,./+a,N7—+b) [‘9]
. Ny + a
- Nu+Nr+a+b
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Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

@ Assume observations are
i.i.d. Gaussian with known

standard deviation o and — Prior
unknown mean g — Posterior
0.20 — Posterior predictive

@ Broad Gaussian prior over p,

centered at 0 0.15
@ We can compute the posterior

and posterior predictive 0.10

distributions analytically (full

derivation in notes) 0.05
@ Why is the posterior predictive 000

distribution more spread out than =20 -15 -10 -5 o0 5 10 15 20
the posterior distribution?
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter
estimation

@ The Bayesian approach deals better with data sparsity

@ Maximum likelihood is an optimization problem, while Bayesian
parameter estimation is an integration problem (taking expectation).

o This means maximum likelihood is much easier in practice, since we
can just do gradient descent.

e Automatic differentiation packages make it really easy to compute
gradients.

e There aren't any comparable black-box tools for Bayesian parameter
estimation.
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Maximum A-Posteriori Estimation

e Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

3.0 :
— Prior
a5l — Likelihood
— Posterior
2.0
1.5
1.0
0.5
0'8.0 0.2 0.4 0.6 0.8 1.0
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Maximum A-Posteriori Estimation

@ This converts the Bayesian parameter estimation problem into a
maximization problem
Ovap = arg max p(0|D)
= argmax p(0, D)
= argmax p(6) p(D | )

= arg max log p(0) + log p(D | 6)
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(60, D) = log p(0) + log p(D | 0)
= Const+ (a—1)log 6 + (b — 1) log(1 — 6) + Ny log 6 + Nt log(1 — 0)
= Const+ (Ny +a—1)logf + (Nt + b —1)log(1 — 0)

@ Maximize by finding a critical point

d Ny+a—1 Ny+b-1
= —| D) = —
@ Solving for 6,
A Ny+a-1
Omap

T Ny+Nr+atb—2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr=0 Ny =55, Ny =45

o Nt 1 T = 0.55
Opred RS 4 ~0.67 57~ 0.548
Ovar R 3=075 28 ~0.549

HAMAP assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation

7 observations

0.08 0.08
— maximum likelihood — maximum likelihood
0.07 — full Bayesian 0.07 — full Bayesian
0.06 — MAP 0.06 — MAP
0.05 0.05
0.04 0.04
0.03] 0.03
0.02 0.02
0.01 0.01
000 =15 =5 =5 0 5 10 15 20 0005 =16 5 6 5 10 15 20
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Gaussian Discriminant Analysis

o Generative models - model p(x|t = k)

@ Instead of trying to separate classes, try to model what each class
"looks like".

@ Recall that p(x|t = k) may be very complex

p(Xl)"' ,Xd,}/) = P(X1|X2,"‘ ;ng_)/)"'p(Xd—1|Xd7y)p(Xd;}/)

@ Naive bayes used a conditional independence assumption. What else
could we do? Choose a simple distribution.

@ Today we will discuss fitting Gaussian distributions to our data.
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Bayes Classifier

@ Let’s take a step back...

@ Bayes Classifier

p(x|t = K)p(t = k)

h(x) = arg max p(t = k|x) = arg max

= arg ml?xp(x|t = k)p(t = k)

@ Talked about Discrete x, what if x is continuous?
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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

0.08

— P(x|C=0) (no diabetes)
— P(x|C=1) (diabetes)

@ How can we model p(x|t = k)? Multivariate Gaussian
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Multivariate Data

e Multiple measurements (sensors)
@ d inputs/features/attributes

e N instances/observations/examples

NONNO X
2 2 2
. xf') PORN X(({)
RN ORI
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Multivariate Parameters

@ Mean
Ex] = [u1, -, pa] "

@ Covariance

02 o1 -+ 014
2
o12 05 - O
¥ = Cov(x) =E[(x — p) " (x — u)] = _
Od1 Od2 -+ 03

@ For Gaussians - all you need to know to represent (not true in general)
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Multivariate Gaussian Distribution

@ x ~ N(p, X), a Gaussian (or normal) distribution defined as

1 1 .
p(x) = W@(P [2(X — )T (x — N)}

,//11,3)Ot W\

A i““‘\\\\\\

AN
(OSSN

7))
”l”;'l:":%' s

@ Mahalanobis distance (x — i) " 71(x — p1x) measures the distance
from x to p in terms of X

@ It normalizes for difference in variances and correlations
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Bivariate Normal

10 1 0 10

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Normal

var(xy) = var(x2) var(xy) > var(x2) var(xy) < var(x2)

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Normal

Cov(x1,x2) =0 Cov(x1,x2) >0 Cov(x1,x2) <0

Probability Density

Probability density function
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Figure: Contour plot of the pdf
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

@ Gaussian Discriminant Analysis in its general form assumes that
p(x|t) is distributed according to a multivariate normal (Gaussian)
distribution

@ Multivariate Gaussian distribution:
(x|t = k) . (= ) TR (x — )
Xt=k)=———+——exp | —=(x— X —

where |X x| denotes the determinant of the matrix, and d is dimension
of x

@ Each class k has associated mean vector p) and covariance matrix >

@ ¥, has O(d?) parameters - could be hard to estimate
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

e GDA (GBC) decision boundary is based on class posterior:

log p(tk|x) = log p(x|ti) + log p(tk) — log p(x)
d 1 1 _
= — log(2) = S log [¥, | — 5 (x — ) "Xt (x — k)

+ log p(tx) — log p(x)

@ Decision boundary:
(x = ) T2 () = i) = (x — pe) T, H(x — ) + Const
xTZ;1x - 2ukTZ;1x = xTZE_IX — 2,ueTZZ_IX + Const
@ Quadratic function in x

o What if Xy =2,?
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Decision Boundary

g

o
I;v'.‘{dl”";;{’

XN
QRSN

discriminant:
P(t;|x)=0.5

p(C,1%)

posterior for t, O
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@ Learn the parameters for each class using maximum likelihood
@ Assume the prior is Bernoulli (we have two classes)

p(tlo) = o' (1 —¢)* "
@ You can compute the ML estimate in closed form

1 N
_ (n) _
¢ = N HE:1 1" = 1]

ZnN=1 ﬂ[t(”) = k] . x(m

T e = 4]

N
s, 1 L1 — 1(x( — (" _ T
K = D 1 = K = i) (X = 1)

ZnN:I 1[t(n) = k] £~
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Simplifying the Model

What if x is high-dimensional?
@ For Gaussian Bayes Classifier, if input x is high-dimensional, then
covariance matrix has many parameters

@ Save some parameters by using a shared covariance for the classes
@ Any other idea you can think of?
@ MLE in this case:

1

N
=) (= ) (X = )T

n=1

=

@ Linear decision boundary.
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Decision Boundary: Shared Variances (between Classes)

variances may be
different
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Gaussian Discriminative Analysis vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and
assume Lo = 1 = X, you will find that it looks like this:

1
1+ exp(—wTx)

p(t|X, ¢7 Ko, K1, z)

where w is an appropriate function of (¢, uo, 1,%), ¢ = p(t = 1)
@ Same model as logistic regression.

@ When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

@ GDA makes stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)

@ But LR is more robust, less sensitive to incorrect modeling
assumptions (what loss is it optimizing?)

@ Many class-conditional distributions lead to logistic classifier

@ When these distributions are non-Gaussian (a.k.a almost always), LR
usually beats GDA

@ GDA can handle easily missing features

Uof T CSC411 2019 Winter Lecture 14 35 /41



@ Naive Bayes: Assumes features independent given the class

d

p(x|t = k) = [ p(xilt = k)

i=1
@ Assuming likelihoods are Gaussian, how many parameters required for

Naive Bayes classifier?

@ Equivalent to assuming X is diagonal.
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are

Gaussian:
(s — 17)2
eXP[ (XI z'ulk) :|
2075

1
Plilt = k) =

(this is just a 1-dim Gaussian, one for each input dimension)

@ Model the same as Gaussian Discriminative Analysis with diagonal
covariance matrix

@ Maximum likelihood estimate of parameters

SV [ = K] £
SV [ = K]
o T = K- (6 = pa)?
" SOV 1t = K]

@ What decision boundaries do we get?

Hik =
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Decision Boundary: isotropic

@ In this case: oj« = o (just one parameter), class priors equal (e.g.,
p(tx) = 0.5 for 2-class case)

@ Going back to class posterior for GDA:

log p(tk|x) = log p(x|t) + log p(tk) — log p(x)
d 1 )
= —3 log(27) — 3 log |X, 7

1 _
—5x— ) TE T (x = ) +

+ log p(tx) — log p(x)
where we take ¥, = 0/ and ignore terms that don’t depend on k

(don’t matter when we take max over classes):

log p(ti|x) = —%(X — ) T (x = k)
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Decision Boundary: isotropic

@ Same variance across all classes and input dimensions, all class priors
equal

o Classification only depends on distance to the mean. Why?
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)
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Generative models - Recap

@ GDA - quadratic decision boundary.

@ With shared covariance " collapses” to logistic regression.

@ Generative models:
o Flexible models, easy to add/remove class.

e Handle missing data naturally

e More "natural” way to think about things, but usually doesn't work as
well.

@ Tries to solve a hard problem in order to solve a easy problem.
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