
CSC 411 Lecture 11: Neural Networks II

Mengye Ren and Matthew MacKay

University of Toronto

CSC411 Lec11 1 / 41

Neural Nets for Visual Object Recognition

People are very good at recognizing shapes

I Intrinsically difficult, computers are bad at it

Why is it difficult?

CSC411 Lec11 2 / 41

Why is it a Problem?

Difficult scene conditions

[From: Grauman & Leibe]
CSC411 Lec11 3 / 41

Why is it a Problem?

Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
CSC411 Lec11 4 / 41

Why is it a Problem?

Tons of classes

[Biederman]
CSC411 Lec11 5 / 41

Neural Nets for Object Recognition

People are very good at recognizing object

I Intrinsically difficult, computers are bad at it

Some reasons why it is difficult:

I Segmentation: Real scenes are cluttered
I Invariances: We are very good at ignoring all sorts of variations that do

not affect class
I Deformations: Natural object classes allow variations (faces, letters,

chairs)
I A huge amount of computation is required

CSC411 Lec11 6 / 41

How to Deal with Large Input Spaces

How can we apply neural nets to images?

Images can have millions of pixels, i.e., x is very high dimensional

How many parameters do I have?

Prohibitive to have fully-connected layers

What can we do?

We can use a locally connected layer

CSC411 Lec11 7 / 41

34

Locally Connected Layer

Example: 200x200 image
 40K hidden units
 Filter size: 10x10

 4M parameters

Ranzato

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).
CSC411 Lec11 8 / 41

When Will this Work?

When Will this Work?

This is good when the input is (roughly) registered

CSC411 Lec11 9 / 41

General Images

The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec11 10 / 41

General Images

The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec11 11 / 41

General Images

The object can be anywhere

[Slide: Y. Zhu]

CSC411 Lec11 12 / 41

The replicated feature approach

The red connections all
have the same weight.

5

Adopt approach apparently used in
monkey visual systems

Use many different copies of the same
feature detector.

I Copies have slightly different
positions.

I Could also replicate across scale and
orientation.

I Tricky and expensive

I Replication reduces the number of
free parameters to be learned.

Use several different feature types, each
with its own replicated pool of detectors.

I Allows each patch of image to be
represented in several ways.

CSC411 Lec11 13 / 41

Convolutional Neural Net

Idea: statistics are similar at different locations (Lecun 1998)

Connect each hidden unit to a small input patch and share the weight across
space

This is called a convolution layer and the network is a convolutional network

CSC411 Lec11 14 / 41

Convolution

Convolution layers are named after the convolution operation.

If a and b are two (possibly infinite) 1-D arrays, a ∗ b is another 1-D
array:

(a ∗ b)t =
∑
τ

aτbt−τ .

Can think of a as a signal living on a one dimensional line

Normally a finite so at = 0 for t 6∈ {1, . . . , d}

CSC411 Lec11 15 / 41

Convolution

“Flip and Filter” interpretation:

CSC411 Lec11 16 / 41

2-D Convolution

2-D convolution is analogous:

(A ∗ B)ij =
∑
s

∑
t

AstBi−s,j−t .

CSC411 Lec11 17 / 41

2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

� 0 1 0
1 4 1

0 1 0

CSC411 Lec11 18 / 41

2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 8 -1

0 -1 0

CSC411 Lec11 19 / 41

2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 4 -1

0 -1 0

CSC411 Lec11 20 / 41

2-D Convolution

What does this convolution kernel do?

� 1 0 -1
2 0 -2

1 0 -1

CSC411 Lec11 21 / 41

54

Learn multiple filters.

E.g.: 200x200 image
 100 Filters
 Filter size: 10x10

 10K parameters

Ranzato

Convolutional Layer

CSC411 Lec11 22 / 41

Convolutional Filter

Convolving one filter F with an image I of size C × H ×W yields an activation
map A of size H ′ ×W ′

I ∗ F = A

H ′ and W ′ depend on:
I the stride: how many units apart do we apply a filter spatially
I the size of the filter
I These are hyperparameters!

CSC411 Lec11 23 / 41

Convolutional Layer

We convolve with many filters and stack the resulting activation maps
depthwise

I This will be the “image” we convolve over in the next layer

This operation is called a convolutional layer

The number of filters in a layer is a hyperparameter!

CSC411 Lec11 24 / 41

Pooling

Figure: Left: Pooling, right: max pooling example

By pooling filter responses at different locations we gain robustness to the exact
spatial location of our features

Hyperparameters of a pooling layer:

The spatial extent F

The stride

[http://cs231n.github.io/convolutional-networks/]
CSC411 Lec11 25 / 41

Pooling Options

Max Pooling: return the maximal argument

Average Pooling: return the average of the arguments

Other types of pooling exist.

CSC411 Lec11 26 / 41

Backpropagation with Weight Constraints

The backprop procedure from last lecture can be applied directly to conv
nets.

This is covered in csc421.

As a user, you don’t need to worry about the details, since they’re handled
by automatic differentiation packages.

CSC411 Lec11 27 / 41

LeNet

Here’s the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:The!architecture!of!LeNet5!

CSC411 Lec11 28 / 41

ImageNet

Imagenet, biggest dataset for object classification: http://image-net.org/

1000 classes, 1.2M training images, 150K for test

CSC411 Lec11 29 / 41

http://image-net.org/

AlexNet

AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to
guess the right category).

Closest competitor: 26.1%

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

The two processing pathways correspond to 2 GPUs. (At the time, the network
couldn’t fit on one GPU.)

AlexNet’s stunning performance on the ILSVRC is what set off the deep learning
boom of the last 6 years.

CSC411 Lec11 30 / 41

150 Layers!

Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

Amazing performance!

A lot of “mistakes” are due to wrong ground-truth

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

CSC411 Lec11 31 / 41

Results: Object Classification

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec11 32 / 41

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec11 33 / 41

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec11 34 / 41

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016] CSC411 Lec11 35 / 41

Results: Object Detection

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

CSC411 Lec11 36 / 41

What do CNNs Learn?

Figure: Filters in the first convolutional layer of Krizhevsky et al

CSC411 Lec11 37 / 41

What do CNNs Learn?

Figure: Filters in the second layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec11 38 / 41

What do CNNs Learn?

Figure: Filters in the third layer

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec11 39 / 41

What do CNNs Learn?

[http://arxiv.org/pdf/1311.2901v3.pdf]

CSC411 Lec11 40 / 41

Links

Great course dedicated to NN: http://cs231n.stanford.edu

Open source frameworks:

I Pytorch http://pytorch.org/
I Tensorflow https://www.tensorflow.org/
I Caffe http://caffe.berkeleyvision.org/

Most cited NN papers:
https://github.com/terryum/awesome-deep-learning-papers

CSC411 Lec11 41 / 41

http://cs231n.stanford.edu
http://pytorch.org/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://github.com/terryum/awesome-deep-learning-papers

	Introduction

