CSC 411: Introduction to Machine Learning

CSC 411 Lecture 10: Neural Networks

Mengye Ren and Matthew MacKay

University of Toronto

Uof T CSC411 2019 Winter Lecture 10 1/36

Inspiration: The Brain

@ Our brain has ~ 10! neurons, each of which communicates (is
connected) to ~ 10% other neurons

impulses carried
toward cell body
branches
of axon

dendrites

axon

nucleus terminals

impulses carried

away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Uof T CSC411 2019 Winter Lecture 10 2/36

Inspiration: The Brain

@ Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

Action potential

+40
Na’ ions in
s/ |3 @
1 e
& =3
S o 05 |z
£ s B K'ions out
o & =
o Q
fa]
g =
o
= Threshold [Failed (s
55— initiations
1) —

Resting state

e StimuiusT -----------------------
(1

Hyperpolarization

2 3 4 5
Time (ms)

[Pic credit: www.moleculardevices.com]

Uof T CSC411 2019 Winter Lecture 10

3/36

Inspiration: The Brain

@ For neural nets, we use a much simpler model neuron, or unit:

Yy _ _
output output weights bias

e J=¢(§Tx+i)

inputs ’\
ry T2 I3

activation function inputs

o Compare with logistic regression: y = o(w'x + b)

@ By throwing together lots of these incredibly simplistic neuron-like

processing units, we can do some powerful computations!
UofT CSC411 2019 Winter Lecture 10 4/36

Multilayer Perceptrons

@ We can connect lots of an output
units together into a] ung
directed acyclic graph.

@ Typically, units are
grouped together into
layers.

@ This gives a
a hidden
feed-forward neural unit
network. That's in
contrast to recurrent

| aconnection

. depth an input
neural networks, which s
can have cycles.
Uof T CSC411 2019 Winter Lecture 10

output layer

second hidden layer

first hidden layer

input layer

5/36

Multilayer Perceptr

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs

to the network.
@ We need to compute M outputs from N

inputs. We can do so in parallel using matrix
multiplication. This means we'll be using a
M x N matrix

@ The output units are a function of the input

units:
y=f(x) = ¢ (Wx+b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

Uof T CSC411 2019 Winter Lecture 10 6/36

Multilayer Perceptrons

Some activation functions:

Rectified Linear Unit

(ReLU) Soft RelLU

Identity

y=2 y = max(0, z) y=logl+e

UofT CSC411 2019 Winter Lecture 10 7/36

Multilayer Perceptrons

Some activation functions:

Hyperbolic Tangent

Hard Threshold Logistic (tanh)
. 1 lf z > O 1 z -z
Y=Y 0 ifz<0 Y T 1ves y="—"
e+ e7?

Uof T CSC411 2019 Winter Lecture 10 8/36

Multilayer Perceptrons
@ Each layer computes a function, so the network
computes a composition of functions: y m
h® = FO(x) = H(WDx + b1 f (L)|
h(® = F@(hM)) = HWERO) 4 p(2)

: @O O O
y = f(L)(h(Lfl)) f(z)‘

@ Or more simply: hH O O O

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

Uof T CSC411 2019 Winter Lecture 10 9/36

Feature Learning

o If task is regression: choose y = f(1)(h(t=1)) = (w(t))Th(t=1) 4 p(L)
o If task is binary classification: choose

y = f(L)(h(L—l)) = O—((w(L))Th(L—l) + b(L))
@ Neural nets can be viewed as a way of learning features:

linear regressor.

/ clasifier
=9(x)
@ The goal:

- T+

o +-- (x) + -t-++
g -
-+ - +
++y 7 -=

Uof T CSC411 2019 Winter Lecture 10 10 /36

Feature Learning

@ Suppose we're trying to classify images of handwritten digits. Each
image is represented as a vector of 28 x 28 = 784 pixel values.

@ Each first-layer hidden unit computes d)(w,-Tx). It acts as a feature
detector.

@ We can visualize w by reshaping it into an image. Here's an example
that responds to a diagonal stroke.

Uof T CSC411 2019 Winter Lecture 10 11/36

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Uof T CSC411 2019 Winter Lecture 10 12 /36

Expressive Power

@ We've seen that there are some functions that linear classifiers can't
represent. Are deep networks any better?

@ Suppose a layer's activation function was the identity, so the layer just
computes a affine transformation of the input

o We call this a linear layer

@ Any sequence of linear layers can be equivalently represented with a

single linear layer.
y = WOWW® x
N—
Aw/

e Deep linear networks are no more expressive than linear regression.

o Linear layers do have their uses

Uof T CSC411 2019 Winter Lecture 10 13 /36

Expressive Power

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal function approximators: they can approximate any
function arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)
e Even though RelLU is “almost” linear, it's nonlinear enough.

Uof T CSC411 2019 Winter Lecture 10 14 /36

Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Uof T CSC411 2019 Winter Lecture 10 15 /36

Multilayer Perceptrons

@ hy computes I[[x; + x2 — 0.5 > 0]
e i.e. x1 OR x

@ hy computes I[[x; + x2 — 1.5 > 0]
e i.e. x1 AND x»

e y computes I[h; — hp — 0.5 > 0] = I[h; + (1 — h2) — 1.5 > 0]
o i.e. hy AND (NOT hy)

UofT CSC411 2019 Winter Lecture 10 16 / 36

Expressive Power

Universality for binary inputs and targets:
@ Hard threshold hidden units, linear output

@ Strategy: 20 hidden units, each of which responds to one particular
input configuration

-1 -1 1| -1
-1 1 -17]1
-1 1 1 1

@ Only requires one hidden layer, though it needs to be extremely wide.

Uof T CSC411 2019 Winter Lecture 10 17 /36

Expressive Power

@ What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights and
biases:

1

08+

0.6+

0.4

0.2-

y = o(x) y = o(5%)

@ This is good: logistic units are differentiable, so we can train them
with gradient descent.

Uof T CSC411 2019 Winter Lecture 10 18 /36

Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.

How can you find the appropriate weights to represent a given function?

o If you can learn any function, you'll just overfit.

Really, we desire a compact representation.

Uof T CSC411 2019 Winter Lecture 10 19 /36

Training neural networks with backpropagation

CSC411 2019 Winter Lecture 10

20 /36

Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

05 N \
fbo0 500 0 500 1000 1500 2000
0o

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d.7/dw, which is the vector of
partial derivatives.
o This is the average of d£/dw over all the training examples, so in this
lecture we focus on computing dL/dw.

Uof T CSC411 2019 Winter Lecture 10 21/36

Univariate Chain Rule

o We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
af(x(t)) = dr

Uof T CSC411 2019 Winter Lecture 10 22/36

Univariate Chain Rule

Recall: Univariate logistic least squares model

z=wx+b
y =o0(2)
1
L=Z(y—t)?
Sy —1)
J ; ; oL oL
Let's compute the loss derivatives 5=, ¢

Uof T CSC411 2019 Winter Lecture 10 23 /36

Univariate Chain Rule

How you would have done it in calculus class

L= %(0’(WX+ b) — t)?

oL 9 [1
ow ow
1

Ea—(a(wx-i- b) — t)?

= (o(wx + b) — t)a—w(a(wx +b)—1t)

oL 0

T 6b (G’(WX + b) — t)?

Solwc+b)— 6 °
_ 2
E%(U(WX‘F b) —t)
0
= (o(wx + b) — t)%(a(wx + b) —t)

= (o(wx + b) — t)o’ (wx + b)%(wx + b)

, 0
= (o(wx + b) — t)o’ (wx + b)afW(WX + b) = (o(wx + b) — t)o’(wx + b)

= (o(wx + b) — t)o’ (wx + b)x

What are the disadvantages of this approach?

Uof T CSC411 2019 Winter Lecture 10 24 /36

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

dc
7:y—t
z=wx+b dy

Computing the loss:

dcL dLd dc
y=0(2) 5:@1{:@&@)
L=3y—2y oL _dcdz _dL

ow dzdw ~ dz

oL _dLdz _dc

ob~ dzdb dz

Remember, the goal isn't to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

Uof T CSC411 2019 Winter Lecture 10 25 /36

Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
—_—

t

Computing the loss:

Z=wx-+b £
y =o(2) ~

Lz%(y—f)2 b/

Compute Derivatives
-—

Uof T CSC411 2019 Winter Lecture 10 26 /36

Univariate Chain Rule

A slightly more convenient notation:

@ Use ¥y to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss:

Computing the derivatives:
z=wx+b Y=yt
y=ol) 7=70'(2)

li:%(y—t)2 w=zx
b=z

CSC411 2019 Winter Lecture 10

27/36

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!
Softmax regression

L>-Regularized regression
w11 Wi

./I;\ t])1
t
72—>y—>£—>£reg Li—2 _’yl\k
b /| 2
D2 /]
z=wx+b ws W21
y=o0(2) 5
1 zp = weiXj + be
L= E(y - t)2 j
1, e
R—EW yk_izlezé
Lreg = L+ AR £:72tklogyk
k

CSC411 2019 Winter Lecture 10

Multivariate Chain Rule

@ Suppose we have a function f(x,y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d _ofdx Ofdy t/ﬂ\f
N,

a (x(t),y(¢)) = O dt + oy dt
@ Example:
f(x,y)=y+¢e&v
x(t) = cost
y(t) = t?
@ Plug in to Chain Rule:

df _ ofdx | 0f dy
dt Oxdt Oy dt
=(ye?¥) - (—sint) + (1 + xe¥) - 2t

Uof T CSC411 2019 Winter Lecture 10 29 /36

Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df _ofdw 9fdy
dt oz dt Oy dt

Values already computed
by our program

@ In our notation:

Uof T CSC411 2019 Winter Lecture 10 30/36

Backpropagation

Full backpropagation algorithm:

Let vi,..., vy be a topological ordering of the computation graph

(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass

backward pass

Vi = icCh(v:) V7 gor

Fori=1,...,N

Compute v; as a function of Pa(v;)

1%}

Vi
Vi

CSC411 2019 Winter Lecture 10 31/36

Backpropagation

Example: univariate logistic least squares regression

. t Backward pass:
gz—’y_’ﬁ—’['rcg 7

/ g reg
w

=1
___dy
>R _ Al =Yz
TR =y4'(2)
Forward pass: = Lreg A 0z dR
wez 92 iR
z=wx+b L=°C gdﬁreg : o w
re, dL
y:o’(Z) -7 _ZX+RW
=Xy e E:f%
: Ty
— 2 A N
R=3w =L(y—1t)
Lreg = L+ AR
UofT

CSC411 2019 Winter Lecture 10 32/36

Backpropagation

Multilayer Perceptron (multiple outputs):

Backward pass:

) e b =k
Forward pass: = Z—kwﬁ)
&) ® P
zi=) wi'x+b
; v zi = hio'(z)
h,' = O'(Z,') W'.J(-l) = ij
yie=y_wihi+ b W=z

1 2
L= Ezk:(}’k = t)

Uof T CSC411 2019 Winter Lecture 10 33/36

Backpropagation

In vectorized form:

W(ii Wij) Backward pass:
X—Z—h—y—L =
y=~L(y—t)
b b® W® =yh'
Forward pass: b2 — v
z=WWx 4 p®) h=w®@Ty
h =o0(2) Z=hoo'(2)
y =W®h 4 b® WO = zx "
1 T -
£=3lt—ylP b =2

2

CSC411 2019 Winter Lecture 10 34 /36

Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight
1 1
2= 3w + 4
J
Computational cost of backward pass: two add-multiply operations
per weight
2)
W/E,') =Yk hi
- (2
hi = ZYk W;E,')
k
Rule of thumb: the backward pass is about as expensive as two

forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Uof T CSC411 2019 Winter Lecture 10 35/36

Backpropagation

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.
e No evidence for biological signals analogous to error derivatives.

o Forward & backward weights are tied in backprop.

Backprop requires synchronous update (1 forward followed by 1
backward).

All the biologically plausible alternatives we know about learn much
more slowly (on computers).

Uof T CSC411 2019 Winter Lecture 10 36 /36

