
CSC 411: Introduction to Machine Learning
CSC 411 Lecture 10: Neural Networks

Mengye Ren and Matthew MacKay

University of Toronto

UofT CSC411 2019 Winter Lecture 10 1 / 36



Inspiration: The Brain

Our brain has ∼ 1011 neurons, each of which communicates (is
connected) to ∼ 104 other neurons

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

UofT CSC411 2019 Winter Lecture 10 2 / 36



Inspiration: The Brain

Neurons receive input signals and accumulate voltage. After some
threshold they will fire spiking responses.

[Pic credit: www.moleculardevices.com]

UofT CSC411 2019 Winter Lecture 10 3 / 36



Inspiration: The Brain

For neural nets, we use a much simpler model neuron, or unit:

Compare with logistic regression: y = σ(w>x + b)

By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!

UofT CSC411 2019 Winter Lecture 10 4 / 36



Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

Typically, units are
grouped together into
layers.

This gives a
feed-forward neural
network. That’s in
contrast to recurrent
neural networks, which
can have cycles.

UofT CSC411 2019 Winter Lecture 10 5 / 36



Multilayer Perceptrons

Each layer connects N input units to M output units.

In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We’ll consider other layer types later.

Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.
We need to compute M outputs from N
inputs. We can do so in parallel using matrix
multiplication. This means we’ll be using a
M × N matrix

The output units are a function of the input
units:

y = f (x) = φ (Wx + b)

A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

UofT CSC411 2019 Winter Lecture 10 6 / 36



Multilayer Perceptrons

Some activation functions:

Identity

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez

UofT CSC411 2019 Winter Lecture 10 7 / 36



Multilayer Perceptrons

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z

UofT CSC411 2019 Winter Lecture 10 8 / 36



Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x) = φ(W(1)x + b(1))

h(2) = f (2)(h(1)) = φ(W(2)h(1) + b(2))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can implement
each layer’s computations as a black box.

UofT CSC411 2019 Winter Lecture 10 9 / 36



Feature Learning

If task is regression: choose y = f (L)(h(L−1)) = (w(L))Th(L−1) + b(L)

If task is binary classification: choose
y = f (L)(h(L−1)) = σ((w(L))Th(L−1) + b(L))

Neural nets can be viewed as a way of learning features:

The goal:

UofT CSC411 2019 Winter Lecture 10 10 / 36



Feature Learning

Suppose we’re trying to classify images of handwritten digits. Each
image is represented as a vector of 28× 28 = 784 pixel values.

Each first-layer hidden unit computes φ(wT
i x). It acts as a feature

detector.

We can visualize w by reshaping it into an image. Here’s an example
that responds to a diagonal stroke.

UofT CSC411 2019 Winter Lecture 10 11 / 36



Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

UofT CSC411 2019 Winter Lecture 10 12 / 36



Expressive Power

We’ve seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

Suppose a layer’s activation function was the identity, so the layer just
computes a affine transformation of the input

We call this a linear layer

Any sequence of linear layers can be equivalently represented with a
single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

Deep linear networks are no more expressive than linear regression.

Linear layers do have their uses

UofT CSC411 2019 Winter Lecture 10 13 / 36



Expressive Power

Multilayer feed-forward neural nets with nonlinear activation functions
are universal function approximators: they can approximate any
function arbitrarily well.

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

Even though ReLU is “almost” linear, it’s nonlinear enough.

UofT CSC411 2019 Winter Lecture 10 14 / 36



Multilayer Perceptrons

Designing a network to classify XOR:

Assume hard threshold activation function

UofT CSC411 2019 Winter Lecture 10 15 / 36



Multilayer Perceptrons

h1 computes I[x1 + x2 − 0.5 > 0]
i.e. x1 OR x2

h2 computes I[x1 + x2 − 1.5 > 0]
i.e. x1 AND x2

y computes I[h1 − h2 − 0.5 > 0] ≡ I[h1 + (1− h2)− 1.5 > 0]
i.e. h1 AND (NOT h2)

UofT CSC411 2019 Winter Lecture 10 16 / 36



Expressive Power

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one particular
input configuration

Only requires one hidden layer, though it needs to be extremely wide.

UofT CSC411 2019 Winter Lecture 10 17 / 36



Expressive Power

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights and
biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can train them
with gradient descent.

UofT CSC411 2019 Winter Lecture 10 18 / 36



Expressive Power

Limits of universality

You may need to represent an exponentially large network.

How can you find the appropriate weights to represent a given function?

If you can learn any function, you’ll just overfit.

Really, we desire a compact representation.

UofT CSC411 2019 Winter Lecture 10 19 / 36



Training neural networks with backpropagation

UofT CSC411 2019 Winter Lecture 10 20 / 36



Recap: Gradient Descent

Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

Conceptually, not any different from what we’ve seen so far — just higher
dimensional and harder to visualize!

We want to compute the cost gradient dJ /dw, which is the vector of
partial derivatives.

This is the average of dL/dw over all the training examples, so in this
lecture we focus on computing dL/dw.

UofT CSC411 2019 Winter Lecture 10 21 / 36



Univariate Chain Rule

We’ve already been using the univariate Chain Rule.

Recall: if f (x) and x(t) are univariate functions, then

d

dt
f (x(t)) =

df

dx

dx

dt
.

UofT CSC411 2019 Winter Lecture 10 22 / 36



Univariate Chain Rule

Recall: Univariate logistic least squares model

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Let’s compute the loss derivatives ∂L
∂w ,

∂L
∂b

UofT CSC411 2019 Winter Lecture 10 23 / 36



Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(σ(wx + b)− t)2

∂L
∂w

=
∂

∂w

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂w
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂w
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂w
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)x

∂L
∂b

=
∂

∂b

[
1

2
(σ(wx + b)− t)2

]
=

1

2

∂

∂b
(σ(wx + b)− t)2

= (σ(wx + b)− t)
∂

∂b
(σ(wx + b)− t)

= (σ(wx + b)− t)σ′(wx + b)
∂

∂b
(wx + b)

= (σ(wx + b)− t)σ′(wx + b)

What are the disadvantages of this approach?

UofT CSC411 2019 Winter Lecture 10 24 / 36



Univariate Chain Rule

A more structured way to do it

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

dL
dy

= y − t

dL
dz

=
dL
dy

dy

dz
=

dL
dy

σ′(z)

∂L
∂w

=
dL
dz

dz

dw
=

dL
dz

x

∂L
∂b

=
dL
dz

dz

db
=

dL
dz

Remember, the goal isn’t to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

UofT CSC411 2019 Winter Lecture 10 25 / 36



Univariate Chain Rule

We can diagram out the computations using a computation graph.

The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

UofT CSC411 2019 Winter Lecture 10 26 / 36



Univariate Chain Rule

A slightly more convenient notation:

Use y to denote the derivative dL/dy , sometimes called the error signal.

This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

Computing the loss:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

Computing the derivatives:

y = y − t

z = y σ′(z)

w = z x

b = z

UofT CSC411 2019 Winter Lecture 10 27 / 36



Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?
This requires the multivariate Chain Rule!

L2-Regularized regression

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Softmax regression

z` =
∑
j

w`jxj + b`

yk =
ezk∑
` e

z`

L = −
∑
k

tk log yk

UofT CSC411 2019 Winter Lecture 10 28 / 36



Multivariate Chain Rule

Suppose we have a function f (x , y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d

dt
f (x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Example:

f (x , y) = y + exy

x(t) = cos t

y(t) = t2

Plug in to Chain Rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

= (yexy ) · (− sin t) + (1 + xexy ) · 2t

UofT CSC411 2019 Winter Lecture 10 29 / 36



Multivariable Chain Rule

In the context of backpropagation:

In our notation:

t = x
dx

dt
+ y

dy

dt

UofT CSC411 2019 Winter Lecture 10 30 / 36



Backpropagation

Full backpropagation algorithm:
Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)

vN denotes the variable we’re trying to compute derivatives of (e.g. loss).

UofT CSC411 2019 Winter Lecture 10 31 / 36



Backpropagation

Example: univariate logistic least squares regression

Forward pass:

z = wx + b

y = σ(z)

L =
1

2
(y − t)2

R =
1

2
w 2

Lreg = L+ λR

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg λ

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y − t)

z = y
dy

dz

= y σ′(z)

w= z
∂z

∂w
+RdR

dw

= z x +Rw

b = z
∂z

∂b

= z

UofT CSC411 2019 Winter Lecture 10 32 / 36



Backpropagation

Multilayer Perceptron (multiple outputs):

Forward pass:

zi =
∑
j

w
(1)
ij xj + b

(1)
i

hi = σ(zi )

yk =
∑
i

w
(2)
ki hi + b

(2)
k

L =
1

2

∑
k

(yk − tk)
2

Backward pass:

L = 1

yk = L (yk − tk)

w
(2)
ki = yk hi

b
(2)
k = yk

hi =
∑
k

ykw
(2)
ki

zi = hi σ
′(zi )

w
(1)
ij = zi xj

b
(1)
i = zi

UofT CSC411 2019 Winter Lecture 10 33 / 36



Backpropagation

In vectorized form:

Forward pass:

z = W(1)x + b(1)

h = σ(z)

y = W(2)h + b(2)

L =
1

2
‖t− y‖2

Backward pass:

L = 1

y = L (y − t)

W(2) = yh>

b(2) = y

h = W(2)>y

z = h ◦ σ′(z)

W(1) = zx>

b(1) = z

UofT CSC411 2019 Winter Lecture 10 34 / 36



Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight

zi =
∑
j

w
(1)
ij xj + b

(1)
i

Computational cost of backward pass: two add-multiply operations
per weight

w
(2)
ki = yk hi

hi =
∑
k

ykw
(2)
ki

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

UofT CSC411 2019 Winter Lecture 10 35 / 36



Backpropagation

Backprop is used to train the overwhelming majority of neural nets today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

Despite its practical success, backprop is believed to be neurally implausible.

No evidence for biological signals analogous to error derivatives.

Forward & backward weights are tied in backprop.

Backprop requires synchronous update (1 forward followed by 1
backward).

All the biologically plausible alternatives we know about learn much
more slowly (on computers).

UofT CSC411 2019 Winter Lecture 10 36 / 36


