CSC 411: Introduction to Machine Learning CSC 411 Lecture 9: SVMs and Boosting

Mengye Ren and Matthew MacKay

University of Toronto

Overview

- Support Vector Machines
- Connection between Exponential Loss and AdaBoost

Binary Classification with a Linear Model

- Classification: Predict a discrete-valued target
- Binary classification: Targets $t \in \{-1, +1\}$
- Linear model:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$
$$y = sign(z)$$

• Question: How should we choose w and b?

Zero-One Loss

ullet We can use the 0-1 loss function, and find the weights that minimize it over data points

$$\mathcal{L}_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{if } y \neq t \end{cases}$$
$$= \mathbb{I}\{y \neq t\}.$$

- But minimizing this loss is computationally difficult, and it can't distinguish different hypotheses that achieve the same accuracy.
- ullet We investigated some other loss functions that are easier to minimize, e.g., logistic regression with the cross-entropy loss $\mathcal{L}_{\mathrm{CE}}$.
- Let's consider a different approach, starting from the geometry of binary classifiers.

Suppose we are given these data points from two different classes and want to find a linear classifier that separates them.

- The decision boundary looks like a line because $\mathbf{x} \in \mathbb{R}^2$, but think about it as a D-1 dimensional hyperplane.
- Recall that a hyperplane is described by points $\mathbf{x} \in \mathbb{R}^D$ such that $f(\mathbf{x}) = \mathbf{w}^\top x + b = 0$.

• There are multiple separating hyperplanes, described by different parameters (\mathbf{w}, b) .

Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and maximizes the distance to the closest point from either class, i.e., maximize the **margin** of the classifier.

Intuitively, ensuring the decision boundary is not too close to any data points leads to better generalization on the test data.

- ullet Recall that the decision hyperplane is orthogonal (perpendicular) to ullet.
- The vector $\mathbf{w}^* = \frac{\mathbf{w}}{\|\mathbf{w}\|_2}$ is a unit vector pointing in the same direction as \mathbf{w} .
- ullet The same hyperplane could equivalently be defined in terms of ${f w}^*$.

- Let's compute the distance between a point \mathbf{x}' and the hyperplane $H = {\mathbf{x} : \mathbf{w}^T \mathbf{x} + b = 0}$
- We can write: $\mathbf{x}' = \mathbf{x}_{\text{proj}} + \mathbf{x}_N$ where $\mathbf{x}_{\text{proj}} \in H$ and $\mathbf{x}_N \in \text{span}(\mathbf{w})$
- Note: $\|\mathbf{x}_N\|_2$ is the distance from \mathbf{x}' to H

- Since $\mathbf{x}_N \in \text{span}(\mathbf{w})$, can write $\mathbf{x}_N = \lambda \mathbf{w}$ for some λ
- Then:

$$\mathbf{w}^{T}\mathbf{x}' + b = \mathbf{w}^{T}(\mathbf{x}_{proj} + \mathbf{x}_{N}) + b$$

$$= \mathbf{w}^{T}\mathbf{x}_{proj} + b + \mathbf{w}^{T}(\lambda \mathbf{w})$$

$$= 0 + \lambda \|\mathbf{w}\|_{2}^{2}$$

$$= \lambda \|\mathbf{w}\| \|\mathbf{w}\|$$

• Hence, $\|\mathbf{x}_N\| = |\lambda| \|\mathbf{w}\| = \frac{|\mathbf{w}^T \mathbf{x}' + b|}{\|\mathbf{w}\|}$

The (signed) distance of a point \mathbf{x}' to the hyperplane is

$$\frac{\mathbf{w}^{\top}\mathbf{x}'+b}{\|\mathbf{w}\|_2}$$

• Recall: the classification for the *i*-th data point is correct when

$$\mathsf{sign}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)=t^{(i)}$$

• This can be rewritten as

$$t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)>0$$

• Enforcing a margin of C:

$$t^{(i)} \cdot \underbrace{\frac{(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_2}}_{\text{signed distance}} \ge C$$

Max-margin objective:

$$\max_{\mathbf{w},b} C$$
s.t. $\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)}{\|\mathbf{w}\|_2} \geq C$ $i=1,\ldots,N$

- Note: can scale w and b by any positive value and get the same decision boundary
- This means we can choose to enforce $\|\mathbf{w}\|_2 = r$ for any r > 0 without changing the original solution
- Let's add the constraint $\|\mathbf{w}\|_2 = \frac{1}{C}$

$$\max_{\mathbf{w},b} C$$
s.t.
$$\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_{2}} \ge C \qquad i = 1, \dots, N$$

$$\|\mathbf{w}\|_{2} = \frac{1}{C}$$

$$\begin{aligned} \max_{\mathbf{w},b} C \\ \text{s.t.} \ \frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_2} \geq C \qquad i = 1,\dots, N \\ \|\mathbf{w}\|_2 = \frac{1}{C} \end{aligned}$$

Note that if $\|\mathbf{w}\|_2 = \frac{1}{C}$ then:

$$\underbrace{\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_2} \geq \frac{1}{\|\mathbf{w}\|_2}}_{\text{geometric margin constraint}} \Leftrightarrow \underbrace{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \geq 1}_{\text{algebraic margin constraint}}$$

Plugging in $C = \frac{1}{\|\mathbf{w}\|_2}$, equivalent optimization objective:

$$\begin{aligned} &\min \|\mathbf{w}\|_2^2 \\ &\text{s.t. } t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \geq 1 \end{aligned} \qquad i = 1, \dots, N$$

Algebraic max-margin objective:

$$\min_{\mathbf{w},b}\left\|\mathbf{w}\right\|_2^2$$

s.t.
$$t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b) \geq 1$$
 $i=1,\ldots,N$

- Observe: if the margin constraint is not tight for $\mathbf{x}^{(i)}$, we could remove it from the training set and the optimal \mathbf{w} would be the same.
- The important training examples are the ones with algebraic margin 1, and are called support vectors.
- Hence, this algorithm is called the (hard) Support Vector Machine (SVM) (or Support Vector Classifier).
- SVM-like algorithms are often called max-margin or large-margin.

Non-Separable Data Points

How can we apply the max-margin principle if the data are ${f not}$ linearly separable?

Main Idea:

- Allow some points to be within the margin or even be misclassified; we represent this with **slack variables** ξ_i .
- But constrain or penalize the total amount of slack.

Soft margin constraint:

$$\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)}+b)}{\|\mathbf{w}\|_2} \geq C(1-\xi_i),$$

for $\xi_i \geq 0$.

• Penalize $\sum_i \xi_i$

$$\max_{\mathbf{w},b,\xi} C + \gamma \sum_{i=1}^{N} \xi_{i}$$
s.t.
$$\frac{t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)}{\|\mathbf{w}\|_{2}} \ge C(1 - \xi_{i}) \qquad i = 1,\dots, N$$

$$\xi_{i} \ge 0 \qquad i = 1,\dots, N$$

Do the same $\|\mathbf{w}\|_2 = \frac{1}{C}$ trick to derive the **Soft-margin SVM** objective:

$$\begin{aligned} & \min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|_2^2 + \gamma \sum_{i=1}^N \xi_i \\ \text{s.t.} \quad & t^{(i)}(\mathbf{w}^\top \mathbf{x}^{(i)} + b) \geq 1 - \xi_i \qquad i = 1, \dots, N \\ & \xi_i \geq 0 \qquad \qquad i = 1, \dots, N \end{aligned}$$

- \bullet γ is a hyperparameter that trades off the margin with the amount of slack.
 - For $\gamma = 0$, we'll get $\mathbf{w} = 0$. (Why?)
 - As $\gamma \to \infty$ we get the hard-margin objective.
- Note: it is also possible to constrain $\sum_i \xi_i$ instead of penalizing it.

From Margin Violation to Hinge Loss

Let's simplify the soft margin constraint by eliminating ξ_i . Recall:

$$t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \ge 1 - \xi_i$$
 $i = 1, \dots, N$
 $\xi_i \ge 0$ $i = 1, \dots, N$

- Rewrite as $\xi_i \geq 1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)$.
- Case 1: $1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) \leq 0$
 - ▶ The smallest non-negative ξ_i that satisfies the constraint is $\xi_i = 0$.
- Case 2: $1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b) > 0$
 - ▶ The smallest ξ_i that satisfies the constraint is $\xi_i = 1 t^{(i)}(\mathbf{w}^\top \mathbf{x}^{(i)} + b)$.
- Hence, $\xi_i = \max\{0, 1 t^{(i)}(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)\}.$
- Therefore, the slack penalty can be written as

$$\sum_{i=1}^N \xi_i = \sum_{i=1}^N \max\{0, 1-t^{(i)}(\mathbf{w}^ op \mathbf{x}^{(i)} + b)\}.$$

From Margin Violation to Hinge Loss

If we write $y^{(i)}(\mathbf{w},b) = \mathbf{w}^{\top}\mathbf{x} + b$, then the optimization problem can be written as

$$\min_{\mathbf{w},b,\xi} \sum_{i=1}^{N} \max\{0,1-t^{(i)}y^{(i)}(\mathbf{w},b)\} + \frac{1}{2\gamma} \left\|\mathbf{w}\right\|_{2}^{2}$$

- The loss function $\mathcal{L}_{H}(y,t) = \max\{0,1-ty\}$ is called the **hinge** loss.
- The second term is the L₂-norm of the weights.
- Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss and an L_2 regularizer.

Revisiting Loss Functions for Classification

Hinge loss compared with other loss functions

SVMs: What we Left Out

What we left out:

- How to fit w:
 - One option: gradient descent
 - Can reformulate with the Lagrange dual
- The "kernel trick" converts it into a powerful nonlinear classifier. We'll
 cover this later in the course.
- Classic results from learning theory show that a large margin implies good generalization.

AdaBoost Revisited

Part 2: reinterpreting AdaBoost in terms of what we've learned about loss functions.

AdaBoost Revisited

Additive Models

- Consider a hypothesis class \mathcal{H} with each $h_i: \mathbf{x} \mapsto \{-1, +1\}$ within \mathcal{H} , i.e., $h_i \in \mathcal{H}$. These are the "weak learners", and in this context they're also called **bases**.
- An additive model with m terms is given by

$$H_m(x) = \sum_{i=1}^m \alpha_i h_i(\mathbf{x}),$$

where $(\alpha_1, \cdots, \alpha_m) \in \mathbb{R}^m$.

- Observe that we're taking a linear combination of base classifiers, just like in boosting.
- We'll now interpret AdaBoost as a way of fitting an additive model.

Stagewise Training of Additive Models

A greedy approach to fitting additive models, known as stagewise training:

- 1. Initialize $H_0(x) = 0$
- 2. For m=1 to T:
 - ▶ Compute the m-th hypothesis and its coefficient, assuming previous additive model H_{m-1} is fixed:

$$(h_m, \alpha_m) \leftarrow \underset{h \in \mathcal{H}, \alpha}{\operatorname{argmin}} \sum_{i=1}^{N} \mathcal{L}\left(H_{m-1}(\mathbf{x}^{(i)}) + \alpha h(\mathbf{x}^{(i)}), t^{(i)})\right)$$

Add it to the additive model

$$H_m = H_{m-1} + \alpha_m h_m$$

Consider the exponential loss

$$\mathcal{L}_{\mathrm{E}}(y,t) = \exp(-ty).$$

We want to see how the stagewise training of additive models can be done.

$$(h_{m}, \alpha_{m}) \leftarrow \underset{h \in \mathcal{H}, \alpha}{\operatorname{argmin}} \sum_{i=1}^{N} \exp\left(-\left[H_{m-1}(\mathbf{x}^{(i)}) + \alpha h(\mathbf{x}^{(i)})\right] t^{(i)}\right)$$

$$= \sum_{i=1}^{N} \exp\left(-H_{m-1}(\mathbf{x}^{(i)}) t^{(i)} - \alpha h(\mathbf{x}^{(i)}) t^{(i)}\right)$$

$$= \sum_{i=1}^{N} \exp\left(-H_{m-1}(\mathbf{x}^{(i)}) t^{(i)}\right) \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right)$$

$$= \sum_{i=1}^{N} w_{i}^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right).$$

Here we defined $w_i^{(m)} \triangleq \exp(-H_{m-1}(\mathbf{x}^{(i)})t^{(i)}).$

We want to solve the following minimization problem:

$$(h_m, \alpha_m) \leftarrow \underset{h \in \mathcal{H}, \alpha}{\operatorname{argmin}} \sum_{i=1}^N w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)})t^{(i)}\right).$$

- If $h(\mathbf{x}^{(i)}) = t^{(i)}$, we have $\exp(-\alpha h(\mathbf{x}^{(i)})t^{(i)}) = \exp(-\alpha)$.
- If $h(\mathbf{x}^{(i)}) \neq t^{(i)}$, we have $\exp(-\alpha h(\mathbf{x}^{(i)})t^{(i)}) = \exp(+\alpha)$.

(recall that we are in the binary classification case with $\{-1,+1\}$ output values). We can divide the summation to two parts:

$$\sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)})t^{(i)}\right) = \underbrace{e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_i\}}_{\text{correct predictions}} + \underbrace{e^{\alpha} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\}}_{\text{incorrect predictions}}$$

$$= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\} +$$

$$e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \left[\mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\} + \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_i\} \right]$$

We can divide the summation to two parts:

$$\begin{split} \sum_{i=1}^{N} w_{i}^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) \mathbf{t}^{(i)}\right) &= \underbrace{e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_{i}\}}_{\text{correct predictions}} + \underbrace{e^{\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\}}_{\text{incorrect predictions}} \\ &= e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_{i}\} + e^{\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} \\ &- e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} + e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} + \\ &= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} + \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_{i}\} \end{bmatrix} \end{split}$$

$$\begin{split} \sum_{i=1}^{N} w_{i}^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) = & (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)} \neq t_{i})\} + \\ & e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)} \left[\mathbb{I}\{h(\mathbf{x}^{(i)} \neq t_{i})\} + \mathbb{I}\{h(\mathbf{x}^{(i)}) = t_{i}\} \right] \\ = & (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{N} w_{i}^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_{i}\} + e^{-\alpha} \sum_{i=1}^{N} w_{i}^{(m)}. \end{split}$$

Let us first optimize h: The second term on the RHS does not depend on h. So we get

$$h_m \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) \equiv \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\}.$$

This means that h_m is the minimizer of the weighted 0/1-loss.

Now that we obtained h_m , we want to find α : Define the weighted classification error:

$$err_m = \frac{\sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h_m(\mathbf{x}^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^{N} w_i^{(m)}}$$

With this definition and $\min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)})t^{(i)}\right) = \sum_{i=1}^{N} w_i^{(m)} \mathbb{I}\{h_m(\mathbf{x}^{(i)}) \neq t_i\}, \text{ we have}$

$$\begin{aligned} & \min_{\alpha} \min_{h \in \mathcal{H}} \sum_{i=1}^{N} w_i^{(m)} \exp\left(-\alpha h(\mathbf{x}^{(i)}) t^{(i)}\right) = \\ & \min_{\alpha} \left\{ \left(e^{\alpha} - e^{-\alpha}\right) \sum_{i=1}^{N} w_i^{(m)} \mathbb{I} \left\{h_m(\mathbf{x}^{(i)}) \neq t_i\right\} + e^{-\alpha} \sum_{i=1}^{N} w_i^{(m)} \right\} \\ & = \min_{\alpha} \left\{ \left(e^{\alpha} - e^{-\alpha}\right) \operatorname{err}_m \left(\sum_{i=1}^{N} w_i^{(m)}\right) + e^{-\alpha} \left(\sum_{i=1}^{N} w_i^{(m)}\right) \right\} \end{aligned}$$

Take derivative w.r.t. α and set it to zero. We get that

$$\mathrm{e}^{2lpha} = rac{1 - \mathrm{err}_m}{\mathrm{err}_m} \Rightarrow lpha = rac{1}{2} \log \left(rac{1 - \mathrm{err}_m}{\mathrm{err}_m}
ight).$$

UofT

The updated weights for the next iteration is

$$w_i^{(m+1)} = \exp\left(-H_m(\mathbf{x}^{(i)})t^{(i)}\right)$$

$$= \exp\left(-\left[H_{m-1}(\mathbf{x}^{(i)}) + \alpha_m h_m(\mathbf{x}^{(i)})\right]t^{(i)}\right)$$

$$= \exp\left(-H_{m-1}(\mathbf{x}^{(i)})t^{(i)}\right) \exp\left(-\alpha_m h_m(\mathbf{x}^{(i)})t^{(i)}\right)$$

$$= w_i^{(m)} \exp\left(-\alpha_m h_m(\mathbf{x}^{(i)})t^{(i)}\right)$$

To summarize, we obtain the additive model $H_m(x) = \sum_{i=1}^m \alpha_i h_i(\mathbf{x})$ with

$$\begin{split} h_m &\leftarrow \operatorname*{argmin} \sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h(\mathbf{x}^{(i)}) \neq t_i\}, \\ \alpha &= \frac{1}{2} \log \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right), \qquad \text{where } \operatorname{err}_m = \frac{\sum_{i=1}^N w_i^{(m)} \mathbb{I}\{h_m(\mathbf{x}^{(i)}) \neq t^{(i)}\}}{\sum_{i=1}^N w_i^{(m)}}, \\ w_i^{(m+1)} &= w_i^{(m)} \exp \left(-\alpha_m h_m(\mathbf{x}^{(i)}) t^{(i)}\right). \end{split}$$

We derived the AdaBoost algorithm!

Revisiting Loss Functions for Classification

- If AdaBoost is minimizing exponential loss, what does that say about its behavior (compared to, say, logistic regression)?
- This interpretation allows boosting to be generalized to lots of other loss functions.