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Overview

@ Support Vector Machines

@ Connection between Exponential Loss and AdaBoost

Uof T CSC411 2019 Winter Lecture 09 2/39



Binary Classification with a Linear Model

@ Classification: Predict a discrete-valued target
@ Binary classification: Targets t € {—1,+1}
@ Linear model:

z=w'x+b

y = sign(z)

Question: How should we choose w and b?
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@ We can use the 0 — 1 loss function, and find the weights that minimize it
over data points

Lo-1(y,t) = { (1) gi ; i
=y # t}.

@ But minimizing this loss is computationally difficult, and it can't distinguish
different hypotheses that achieve the same accuracy.

@ We investigated some other loss functions that are easier to minimize, e.g.,
logistic regression with the cross-entropy loss Lcg.

@ Let's consider a different approach, starting from the geometry of binary
classifiers.
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Separating Hyperplanes

Suppose we are given these data points from two different classes and want to
find a linear classifier that separates them.

*
* *
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Separating Hyperplanes

@ The decision boundary looks like a line because x € R2, but think about it
as a D — 1 dimensional hyperplane.

@ Recall that a hyperplane is described by points x € RP such that
f(x)=w'x+b=0.
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Separating Hyperplanes

by +u11rx =0

@ There are multiple separating hyperplanes, described by different parameters
(w, b).
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Separating Hyperplanes
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Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and

maximizes the distance to the closest point from either class, i.e., maximize the
margin of the classifier.

5/
S
7

Intuitively, ensuring the decision boundary is not too close to any data points
leads to better generalization on the test data.
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Geometry of Points and Planes

[wll

fl@)=b+w'z=0

@ Recall that the decision hyperplane is orthogonal (perpendicular) to w.

@ The vector w* = | is a unit vector pointing in the same direction as w.

[wil,

@ The same hyperplane could equivalently be defined in terms of w*.
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Geometry of Points and Planes

« w

=l

fl@)=b+w'z=0

@ Let's compute the distance between a point x” and the hyperplane
H={x:w'x+ b=0}

@ We can write: X' = Xproj + Xy Where Xproj € H and xy € span(w)

@ Note: [|xp]|, is the distance from x" to H
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Geometry of Points and Planes

@ Since xy € span(w), can write xy = Aw for some A

@ Then:
w'x 4+ b=w(Xpo; +xn) + b
=W Xpoj + b+ w' (Aw)
2
=0+ Awlf;
= Allwl| [lw|
T/

o Hence, x| = [A] [lw]| = 272!

fwll
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Geometry of Points and Planes

wlz+b

T,

fx)=b+w'z=0

The (signed) distance of a point x” to the hyperplane is

w'x +b

[lwll
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Maximizing Margin as an Optimization Problem

@ Recall: the classification for the i-th data point is correct when
sign(w " x() 4 p) = ¢()
@ This can be rewritten as
tO(w™x? 4+ b) >0
@ Enforcing a margin of C:

(wTx() 4+ b)
[wll

signed distance

) >C
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Maximizing Margin as an Optimization Problem

Max-margin objective:

max C
w,b

@ Note: can scale w and b by any positive value and get the same decision
boundary
@ This means we can choose to enforce ||w||, = r for any r > 0 without

changing the original solution

@ Let’s add the constraint |lw||, = %

max C
w,b
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Maximizing Margin as an Optimization Problem

Note that if [|wl|, = & then:

tO(wx) + b) 1
[[wll, ~ wll,

— tO(w x4 p) >1

algebraic margin constraint
geometric margin constraint

Plugging in C = equivalent optimization objective:

1
TwlT,”
. 2
min ||wl|;
st. tOw'xD+py>1  i=1,...,N
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Maximizing Margin as an Optimization Problem
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Maximizing Margin as an Optimization Problem

Algebraic max-margin objective:
min [|w|3
w,b 2

st. tOw'xD+p)y>1  i=1,...,

@ Observe: if the margin constraint is not tight for x(), we could remove it
from the training set and the optimal w would be the same.

@ The important training examples are the ones with algebraic margin 1, and
are called support vectors.

@ Hence, this algorithm is called the (hard) Support Vector Machine
(SVM) (or Support Vector Classifier).

@ SVM-like algorithms are often called max-margin or large-margin.
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Non-Separable Data Points

How can we apply the max-margin principle if the data are not linearly separable?
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Maximizing Margin for Non-Separable Data Points

Main ldea:

@ Allow some points to be within the margin or even be misclassified; we
represent this with slack variables &;.

@ But constrain or penalize the total amount of slack.
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Maximizing Margin for Non-Separable Data Points

@ Soft margin constraint:

tO(wTx) + b)
[[wll,

> C(1-&),

for f,' 2 0.
@ Penalize ), ¢;
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Maximizing Margin for Non-Separable Data Points

>Cc(l-¢&) i=1,...,N
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Maximizing Margin for Non-Separable Data Points

Do the same ||w||, = % trick to derive the Soft-margin SVM objective:

N
1 2
min 5 |lwllz +7;£f
st tOw'xD 4+ p)>1-¢ i=1,...,N
& >0 i=1,...,N

@ v is a hyperparameter that trades off the margin with the amount of slack.

» For v =0, we'll get w=10. (Why?)
» As v — oo we get the hard-margin objective.

@ Note: it is also possible to constrain ), &; instead of penalizing it.
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From Margin Violation to Hinge Loss

Let's simplify the soft margin constraint by eliminating &;. Recall:

& >0 i=1,...,N

Rewrite as §; > 1 — t(i)(wa(’) + b).
Case 1: 1 — t)(w'x() + p) <0

» The smallest non-negative &; that satisfies the constraint is £ = 0.
Case 2: 1 — t)(w'x() 4+ b) >0

» The smallest ¢; that satisfies the constraint is & = 1 — t()(w " x() + b).
Hence, & = max{0,1 — tO(wx() 4 p)}.

Therefore, the slack penalty can be written as

Z& Zmax{O 1—tO(w x4+ p)}.

i=1
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From Margin Violation to Hinge Loss

If we write y()(w, b) = w"x + b, then the optimization problem can be written as

N
N 1
: 1 +OyO(w. b il 2
vr’nlinE él max{0, y'"(w, b)} + 2y [[wl[3

@ The loss function Ly (y,t) = max{0,1 — ty} is called the hinge loss.
@ The second term is the Ly-norm of the weights.

@ Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss
and an L, regularizer.
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Revisiting Loss Functions for Classification

Hinge loss compared with other loss functions

3.0 ——
= |east squares
2_ 5 = |ogistic + LS
—— logistic + CE
—— hinge
2.0
%]
8 1.5
1.0
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SVMs: What we Left Out

What we left out:
@ How to fit w:

» One option: gradient descent
» Can reformulate with the Lagrange dual

@ The “kernel trick” converts it into a powerful nonlinear classifier. We'll
cover this later in the course.

@ Classic results from learning theory show that a large margin implies good
generalization.
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AdaBoost Reuvisited

Part 2: reinterpreting AdaBoost in terms of what we've learned about loss
functions.

H_ =sign}| 0.42 +0.65 +0.92
final
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AdaBoost Reuvisited

T
Res';"n‘:mfd ________ »hy H(x) = sign <; atht(:c)>
s
w; — w; exp (2o¢t]l{ht(x(i)) £ tW}
Re-weighted
-

1 ( 1-— errt>
a; = = log
2 erry

1

_ vazl w;T{hy (xW £ t®}
N
D im Wi
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Additive Models

@ Consider a hypothesis class H with each h; : x — {—1,41} within H, i.e.,
h; € H. These are the “weak learners”, and in this context they're also
called bases.

@ An additive model with m terms is given by
Hm(x) = Za,-h,-(x),
i=1
where (o, -+, am) € R™.

@ Observe that we're taking a linear combination of base classifiers, just like in
boosting.

@ We'll now interpret AdaBoost as a way of fitting an additive model.
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Stagewise Training of Additive Models

A greedy approach to fitting additive models, known as stagewise training:
1. Initialize Ho(x) =0
2. Form=1to T:

» Compute the m-th hypothesis and its coefficient, assuming previous
additive model H,,_1 is fixed:

N
(hm, tm) < argmin Z L (H,,,,l(x(i)) + ah(x), t‘”))
heH,« i—1
» Add it to the additive model

Hp = Hp_1 + amhny
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Additive Models with Exponential Loss

Consider the exponential loss

Li(y,t) = exp(—ty).

We want to see how the stagewise training of additive models can be done.

(hm,am) < argmin Zexp ( [ ) 4 ah(xC ))} (i)>

heH,a )
zN:exp( Hm— 1(x() —ah(x(i))t(i))
i=1
N
() () _ ()Y ()
;exp( Hm-1(x )exp( ah(x)t )

N
M0y ¢()
; W, exp( ah(x\")t ) .

Here we defined W,-(m) £ exp (—Hp_1(xD) ).
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Additive Models with Exponential Loss

We want to solve the following minimization problem:

N
hm, m) < argmin W,-(m) exp [ —ah xM) ) |
( ) heH,a ’z:; ( ( ) )

o If h(x(D) = t(), we have exp (—ah(x())t) = exp(—a).

o If h(x(D) # t(), we have exp (—ah(x(N)t()) = exp(+a).

(recall that we are in the binary classification case with {—1, +1} output values).
We can divide the summation to two parts:

N N N
Z Wi(m) exp (—ah(x(i))t(i)) =e ¢ Z Wl.(m)]I{h(x(i)) =t} +e“ Z Wi(m)]I{h(x(")) # ti}
i=1 i=1

i=1

correct predictions incorrect predictions

N
=(e" = ™) 3w HAKD) £ ti}+

i=1
N
e > w™ [H{h(x(i)) £t} + I{h(x1) = t,-}]
i=1
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Additive Models with Exponential Loss

We can divide the summation to two parts:

N

N N
w™ exp (—ah(xM)t0)) = = wMI{h(x") = ti}+e® w M I{h(x" t;
> w;™ exp ) i () =t} i H{h(XY) # i}

i=1 i=1 i=1

correct predictions incorrect predictions

N N
—e @ Z Wi(m)]l{h(x(')) =t} +e” Z w'.(m)]I{h(X(')) # t;}
i=1 i=1
N

N
e~ 3w M{A(xD) # 6} + e > WM AD) # 6}

i=1 i=1

N
=(e — &™) D w{ M Hh(D) # t}+
i=1

N
e 3w []I{h(x(i)) £t} + I{h(x") = t;}]

i=1
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Additive Models with Exponential Loss

N

N
S W™ exp (—ah(xM)e?) =(e* — ) S wiMTA(xD £ t}+

i=1 i=1

N
e > wm [H{h(xw £t} + I{h(xD) = t,-}]
i=1

N N
=(e" — &) 3w I{h(xD) £ )+ e Y w™,

i=1 i=1

Let us first optimize h: The second term on the RHS does not depend on h. So
we get

N N
hm + argmin Z W’-(m) exp (—ah(x(i))t(i)) = argmin Z W,.(m)]I{h(x(")) # ti}.
heH i1 heH i—1

This means that h, is the minimizer of the weighted 0/1-loss.
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Additive Models with Exponential Loss

Now that we obtained h,,, we want to find a: Define the weighted classification
error:

SN W M b (xD) £ t0)

Z,‘V—l w™
With this definition and

Minhen Yo, W’-(m) exp (—ah(x()t®) = PO W,.(m)H{hm(x(")) # t;}, we have

err, =

N
i (m) <_ h(x(® t<">) _
min min 3 w;" exp | —ah(x'")

N N
min {(ea —e %) Z W,-(m)]l{hm(x(")) £t} +e @ Z W;(m)}
=1 i=1

N N
=min {(e"‘ — e Yerry (Z W’-(m)> +e @ (Z W’-(m)> }
i=1 i=1

Take derivative w.r.t. « and set it to zero. We get that

20 l—errp

1—err,
e =

1
= a = -log

errm, 2 errm
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Additive Models with Exponential Loss

The updated weights for the next iteration is

W™ — o (_H,,,(xmtm)
(- [ aanats] )
( . 1(x< >) exp (—amhm(x<">)t<"))
W’( )exp< (X ())t(n)

= exp
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Additive Models with Exponential Loss

To summarize, we obtain the additive model H,(x) = Y"1, a;hi(x) with

N
hm < argmin Z W,-(m)]I{h(x(")) # ti},
heH ‘=
- N wm (i) £ ¢0i)
o= tlog (120  here err,, = izt Wi Hn(XY) # 60}
2 €rfm vazl Wi(m)

w(m = (™) exp (—amhm(x(i))t(i)) .

1 1

We derived the AdaBoost algorithm!
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Revisiting Loss Functions for Classification

— zero-one
—— least squares
—— logistic + CE
— hinge

—— exponential

@ If AdaBoost is minimizing exponential loss, what does that say about its
behavior (compared to, say, logistic regression)?

@ This interpretation allows boosting to be generalized to lots of other loss
functions.

Uof T CSC411 2019 Winter Lecture 09

39/39



