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Gradient Checking

o We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

Xty ooy Xi+hyooo xn) = F(X1, ooy Xiy e ooy XN)

0 .
a—Xif(xh...,xN) = }gno

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 10719, This is known as finite differences.
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Gradient Checking

@ Even better:

aX i

0 f(Xl,...

the two-sided definition

,XN) :ilin}) f(X1,...,X,‘+h,...,XN)2—hf(X1,...,X,'—h,...,XN)
=

— exact
—— one-sided
— two-sided

CSC 411: 08-Linear Classification



Gradient Checking

@ Run gradient checks on small, randomly chosen inputs
@ Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

@ Compute the relative error between derived gradient and finite

difference approximation:
|a—b]

|al +[b]

@ The relative error should be very small, e.g. 10-°
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Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

o They might work much better if the derivatives are correct.
e Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.
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@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

« too small: « too large:

O e a much too large:
slow progress oscillations

instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).
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Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: it's very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can't guarantee convergence.
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Stochastic Gradient Descent

@ So far, the cost function J has been the average loss over the
training examples:

N N
1 . 1 . :
:75: ('):72: () ()

o By linearity,
0T _ 15~0L0
00 N pt 00

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

@ Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!
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Stochastic Gradient Descent

@ Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example, chosen uniformly at random:
oL
00

00—«

@ SGD can make significant progress before it has even looked at all the data!

@ Mathematical justification: if you sample a training example uniformly at
random, the stochastic gradient is an unbiased estimate of the batch
gradient:

oL 1 Tooch N
00 7NI,=1 00 90’
@ Problems:

e Variance in this estimate may be high
o If we only look at one training example at a time, we can’t exploit
efficient vectorized operations.
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Stochastic Gradient Descent

@ Compromise approach: compute the gradients on a randomly chosen
medium-sized set of training examples M C {1,..., N}, called a
mini-batch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance:

oL
!M!Z aej] \MP Z "

@ The mini-batch size | M| is a hyperparameter that needs to be set.
e Too large: takes more memory to store the activations, and longer to
compute each gradient update
e Too small: can't exploit vectorization
o A reasonable value might be |M| = 100.

1
= —— Var
M|

39 06;

ag(i)]
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Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:
o Use a large learning rate early in training so you can get close to the
optimum
o Gradually decay the learning rate to reduce the fluctuations
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SGD Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

Vo)
9

epoch
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Convex Sets

N\

@ A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

X, X0 €S — )\X1+(1—)\)X2€S for 0 <A <1.

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+--+Auxy €S for \j >0, A +--- Ay =1

CSC 411: 08-Linear Classification



Convex Functions

@ A function f is convex if for any xg,x; in the domain of f,

f((l — )\)Xo + )\Xl) < (1 — )\)f(X()) + )\f(xl)

e Equivalently, the set of

points lying above the (Jlr;;()i()%) e -------------------- -------------
graph of f is convex. ' ' ‘
@ Intuitively: the function
is bowl-shaped. M- | ENC
+)\J‘1) i . i
Zo (1=Nzo I
+ Azq
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Convex Functions

@ We just saw that the
least-squares loss ‘
function (y — t)? is

2y = 1) (1= N)£ (o)

convex as a function of y | [0V b\ )

@ For a linear model,
z=w'x+ bis a linear |
function of w and b. If (1 s, |
the loss function is o) [ i f i
convex as a function of
z, then it is convex as a
function of w and b. - . .
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Convex Functions

Which loss functions are convex?

3.0 —
—— least squares
2.5 b — logistic + LS
— logistic + CE
— hinge
2.0 1
%))
E 1.51
1.0
0.51 B\ N S
0.0 ‘ . 3 ‘ ‘
-3 =2 -1 0 1 2 3
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Convex Functions

Why we care about convexity
@ All critical points are minima

o Gradient descent finds the optimal solution (more on this in a later
lecture)
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Multiclass Classification

@ What about classification tasks with more than two categories?

cd@l N (1A 2
22322337
26794977658

L7\ 11239

8378409497
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Multiclass Classification

o Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

(N

entry k is 1
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Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:
Zy = Z Wi Xj + by
J

@ Vectorized:
z=Wx-+b
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Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

ek

Yk = SOftmaX(Z]_7 . 7ZK)k — W
k/

@ The inputs z, are called the logits.
@ Properties:

e Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)

o If one of the z's is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)

o Exercise: how does the case of K = 2 relate to the logistic function?

@ Note: sometimes o(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.
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Multiclass Classification

@ If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(y,t) = — ) tilog y
k=1
= —t'(logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

@ Softmax regression:

z=Wx+b
y = softmax(z)
Log = —t' (logy)
@ Gradient descent updates are derived in the readings:

O0LcE
0z
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Limits of Linear Classification

@ Visually, it's obvious that XOR is not linearly separable. But how to
show this?

T2
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Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

zy

@ But the intersection can't lie in both half-spaces. Contradiction!
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Limits of Linear Classification

A more troubling example

(T mm w0 pattern A T msTTrIr)  pattern B
Crrm T mmTmir0 pattern A OO rmm T pattern B

T s Pattern A oo wms  pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!
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Limits of Linear Classification

A more troubling example

(T mm w0 pattern A T msTTrIr)  pattern B
Crrm T mmTmir0 pattern A OO rmm T pattern B

e Pattern A T Pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).

Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1

P(x) = | x

X1X2
i x| (%) va(x) ws(x) |t
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)
@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.
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