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Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging, boosting
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Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging, boosting

@ For the remainder of this course, we'll take a more modular approach:
o choose a model describing the relationships between variables of

interest

e define a loss function quantifying how bad is the fit to the data

e choose a regularizer saying how much we prefer different candidate
explanations

o fit the model, e.g. using an optimization algorithm
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Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging, boosting
@ For the remainder of this course, we'll take a more modular approach:

o choose a model describing the relationships between variables of
interest

e define a loss function quantifying how bad is the fit to the data

e choose a regularizer saying how much we prefer different candidate
explanations

o fit the model, e.g. using an optimization algorithm

@ By mixing and matching these modular components, your ML skills
become combinatorially more powerful!
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Problem Setup
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@ Want to predict a scalar t as a function of a scalar x
o Given a dataset of pairs {(x(), t())}N

o The x(!) are called inputs, and the t() are called targets.
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Problem Setup
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@ Model: y is a linear function of x:

y=wx+b

e y is the prediction
o w is the weight
e b is the bias
@ w and b together are the parameters
@ Settings of the parameters are called hypotheses
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Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t)=3(y—1)

@ y — t is the residual, and we want to make this small in magnitude

@ The % factor is just to make the calculations convenient.
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Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t)=3(y—1)

@ y — t is the residual, and we want to make this small in magnitude

o The % factor is just to make the calculations convenient.
@ Cost function: loss function averaged over all training examples

T(w,b) = — ZN: (y(f) _ t("))2
)TN £
1< . 1\ 2

i=1
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Problem Setup
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@ Right plot is a plot of the contours of the cost function
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Problem setup

@ Suppose we have multidimensional input x = (x1,...,xp). This is
referred to as multivariable regression.

@ This is no different than the single input case, just harder to visualize.

@ Linear model:
y =) wx+b
J
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@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]
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@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]
@ For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.
_ T _
w=(w,....wp)"  x=(x,...,xp)

y:wa—i—b
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@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]
@ For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.
_ T _
w=(w,....wp)"  x=(x,...,xp)

y:wa—i—b

@ This is simpler and much faster:
y = np.dot(w, XJ + b
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Why vectorize?
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Why vectorize?
@ The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!
@ Vectorized code is much faster

o Cut down on Python interpreter overhead
o Use highly optimized linear algebra libraries
e Matrix multiplication is very fast on a Graphics Processing Unit (GPU)
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@ We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.
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@ We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.

one feature across
all training examples

example (vector)
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@ Computing the predictions for the whole dataset:

w'x() +p

Xw + bl =

wa("V) +b
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@ Computing the squared error cost across the whole dataset:

@ In Python:

y = Xw + bl
J = 7||y—t||2

y = np.dot(X, w) + b
cost = np.sum((y - £) ** 2) /(2. * N)
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Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.
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Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.
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Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

@ Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.
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Direct solution

o Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

f(x1 4+ h,x2) — f(x1,x2)
h

o = |
0x1 (x1,%2) hlno

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

dy o]

J’

=%
dy o
2 9b [Z""j’xj'”}
j/
=1
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Direct solution

@ Chain rule for derivatives:

oc _ac oy

8W_,-_dy8w_,-
a i s
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e Cost derivatives (average over data points):
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Direct solution

@ The minimum must occur at a point where the partial derivatives are

zero.
oF _g 9T _
ow; ob
e If 0J/0w; # 0, you could reduce the cost by changing w;.

0 0.
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Direct solution

@ The minimum must occur at a point where the partial derivatives are
zero. 07 o7
— =0 — =0.
ow; ob
e If 0J/0w; # 0, you could reduce the cost by changing w;.

@ This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

Optimal weights:
w=(X"X)"1x"t
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Direct solution

@ The minimum must occur at a point where the partial derivatives are

zero.
oF _g 9T _
ow; ob
e If 0J/0w; # 0, you could reduce the cost by changing w;.

0 0.

@ This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

@ Optimal weights:
w=(X"X)"1x"t

@ Linear regression is one of only a handful of models in this course that
permit direct solution.
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Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.
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Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.
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Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.
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Gradient descent

@ Observe:

o if 07 /0w; > 0, then increasing w; increases J.
o if 0.J/0w; < 0, then increasing w; decreases 7.
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Gradient descent

@ Observe:
o if 07 /0w; > 0, then increasing w; increases J.
o if 0.J/0w; < 0, then increasing w; decreases 7.

@ The following update decreases the cost function:

W-%W-—aa—j
J J 8WJ
N
a i iy i
:M_Nz(yo_t())xj()
i=1
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Gradient descent

@ Observe:
o if 07 /0w; > 0, then increasing w; increases J.
o if 0.J/0w; < 0, then increasing w; decreases 7.

@ The following update decreases the cost function:

W-%W-—aa—j
J J aWJ
N

« i i i

= 200 )
i=1

@ « is a learning rate. The larger it is, the faster w changes.
o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001
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Gradient descent

@ This gets its name from the gradient:

oJ
og 7™
ow o7
owp

e This is the direction of fastest increase in J.
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Gradient descent

@ This gets its name from the gradient:

oJ
og 7™
ow o7
owp

e This is the direction of fastest increase in J.

@ Update rule in vector form:

0T
W W—a——

ow
« N : : :

@ Hence, gradient descent updates the weights in the direction of
fastest decrease.
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_
regression.pdf#page=21
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
@ GD can be applied to a much broader set of models
o GD can be easier to implement than direct solutions, especially with
automatic differentiation software
e For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D?) algorithm).
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Feature mappings

@ Suppose we want to model the following data

-Pattern Recognition and Machine Learning, Christopher Bishop.
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-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy
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-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy

@ Do we need to derive a whole new algorithm?
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Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
w(x) = |
X3
@ Polynomial regression model:
y=w'9(x)

CSC 411: 06-Linear Regression



Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
w(x) = |
X3
@ Polynomial regression model:
y=w'9(x)

@ All of the derivations and algorithms so far in this lecture remain
exactly the same!
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Fitting polynomials

y=w
1 M =0 1
o
t
(o] o o)
0 4
(o]
_1 4
0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

Yy =wy+ wix + sz2 + W3x3

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y:W0+W1x+W2x2+W3x3+...+W9x

9

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : model is too simple — does not fit the data.

1 M=0
o
t
° °

j
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Generalization

@ Training and test error as a function of # training examples and #

parameters:

test

error

training
error

test
error

training
error

# training examples

# parameters

>
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Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.
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Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

@ But restricting the size of the model is a crude solution, since you'll
never be able to learn a more complex model, even if the data
support it.
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Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

@ But restricting the size of the model is a crude solution, since you'll
never be able to learn a more complex model, even if the data
support it.

@ Another approach: keep the model large, but regularize it

o Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another
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L? Regularization

Observation: polynomials that overfit often have large coefficients.

_—GZAO -1.5 -1.0 -05 00 05 10 15 20

y =0.1x% 4+ 0.2x* + 0.75x3 — x> = 2x + 2
y = —7.2x% + 10.4x* + 24.5x> — 37.9x% — 3.6x + 12

So let's try to keep the coefficients small.
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L? Regularization

Another reason we want weights to be small:

@ Suppose inputs x; and x» are nearly identical for all training examples.
The following two hypotheses make nearly the same predictions:

w = ! w = -9
1 S \11
@ But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and x; match less closely).
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L? Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = 3wl =5 3" w}.
J

o Note: to be pedantic, the L2 norm is Euclidean distance, so we're really
regularizing the squared L% norm.
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L? Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = 3wl =5 3" w}.
J

o Note: to be pedantic, the L2 norm is Euclidean distance, so we're really
regularizing the squared L% norm.

@ The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights.

A 2
$eg:j+)‘R:j+EZM/j
J

@ Here, X is a hyperparameter that we can tune using a validation set.
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L? Regularization

@ The geometric picture:

loss

regularizer
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L? Regularization

@ Recall the gradient descent update:

oJ

W W—a—

ow

@ The gradient descent update of the regularized cost has an interesting

interpretation as weight decay:

oJ OR
:w—a<aj+)\w>

ow
:(1—a)\)w—ag:z
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L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we'd like to encourage.

wy wo

> @ @
W W
2.5
2.0
Wy Wy
15
10

L2 regularization L1 regularization

_ § : 2 — E
-20 -15 -10 -05 00 05 10 15 2.0 R = Wy R = |U)Z|
i i

— Bishop, Pattern Recognition and Machine Learning
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Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the optimization problem using one of two strategies

o direct solution (set derivatives to zero)
e gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features

improve the generalization by adding a regularizer
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