CSC 411 Lecture 6: Linear Regression

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

UofT CSC 411: 06-Linear Regression 1/37

A Timely XKCD

Uof T

CURVE-FITTING METHODS
PND THE. MESSAGES THEY SEND

| e \/ /
"HEY, I DDA ~I\.APNTED)\CUWED
LINE, 50 I MADE ONE. WERWGOFF"
UITH MATH

“IM SOPHISTICATED, NOT
LIKE THOSE BUMBLING
POLYNOMIAL PEOPLE”

|

“I NEED TO CONNECT THESE “USTEN, SCENCE IS HARD L HAVE A THEORY,
U0 LNES, BUT MY FRST DA BUT TM A SEROUS AND THS 15 THE ONLY

DIDNT HAVE ENOUGH MATH:' PERSON DOING MY BEST." DATA I COULD FIND®

“AS YOU CAN SEE, THIS
MODEL SMOOTHLY FiTS
THE= WAIT MONO DOVT
EXTEND IT ARAARAY"

"I HED AN IDEA FOR HOU/
To CLEAN UP THE DATA.
\JHAT DO YOU THINK?"

“T CLCKED ‘SHO0TH
UNES N EXCEL

CSC 411: 06-Linear Regression

Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging, boosting

UofT CSC 411: 06-Linear Regression 3/37

Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging, boosting

@ For the remainder of this course, we'll take a more modular approach:
o choose a model describing the relationships between variables of

interest

e define a loss function quantifying how bad is the fit to the data

e choose a regularizer saying how much we prefer different candidate
explanations

o fit the model, e.g. using an optimization algorithm

Uof T CSC 411: 06-Linear Regression 3/37

Overview

@ So far, we've talked about procedures for learning.
o KNN, decision trees, bagging, boosting
@ For the remainder of this course, we'll take a more modular approach:

o choose a model describing the relationships between variables of
interest

e define a loss function quantifying how bad is the fit to the data

e choose a regularizer saying how much we prefer different candidate
explanations

o fit the model, e.g. using an optimization algorithm

@ By mixing and matching these modular components, your ML skills
become combinatorially more powerful!

Uof T CSC 411: 06-Linear Regression 3/37

Problem Setup

4.0

35
3.0 o o°

25

15
1.0

0.5

0.0

@ Want to predict a scalar t as a function of a scalar x
o Given a dataset of pairs {(x(), t())}N

o The x(!) are called inputs, and the t() are called targets.

UofT CSC 411: 06-Linear Regression 4 /37

Problem Setup

Data space Weight space
4.0 3.0
35 - 25
3.0 .)?/"/\ 20
25 ° /,:// 15 .
>2.0 > . /MO‘ °
15 /'/] 05
-
10" 4\ 0.0
I
05 o5 TT——— &
0% 1 F] 3 T 5 5 =65 o0 65 10 15 20
X w

@ Model: y is a linear function of x:

y=wx+b

e y is the prediction
o w is the weight
e b is the bias
@ w and b together are the parameters
@ Settings of the parameters are called hypotheses

UofT CSC 411: 06-Linear Regression 5 /37

Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t)=3(y—1)

@ y — t is the residual, and we want to make this small in magnitude

@ The % factor is just to make the calculations convenient.

UofT CSC 411: 06-Linear Regression 6 /37

Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t)=3(y—1)

@ y — t is the residual, and we want to make this small in magnitude

o The % factor is just to make the calculations convenient.
@ Cost function: loss function averaged over all training examples

T(w,b) = — ZN: (y(f) _ t("))2
)TN £
1< . 1\ 2

i=1

UofT CSC 411: 06-Linear Regression 6 /37

Problem Setup

4.0
35 3
3.0 . .
. .
25 residuals I 2
> 2.0 S .
: 1
a
15 *
1.0 0
0.5
0.0 -1
0 1 2 3 4 5 -1.0 -05 0.0 0.5 1.0 15 2.0
X w

@ Right plot is a plot of the contours of the cost function

CSC 411: 06-Linear Regression

Problem setup

@ Suppose we have multidimensional input x = (x1,...,xp). This is
referred to as multivariable regression.

@ This is no different than the single input case, just harder to visualize.

@ Linear model:
y =) wx+b
J

UofT CSC 411: 06-Linear Regression 8 /37

@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]

UofT CSC 411: 06-Linear Regression 9 /37

@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]
@ For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.
_ T _
w=(w,....wp)" x=(x,...,xp)

y:wa—i—b

UofT CSC 411: 06-Linear Regression 9 /37

@ Computing the prediction using a for loop:
Yy =bh
for j in range(M):
y += wlil * x[1]
@ For-loops in Python are slow, so we vectorize algorithms by expressing
them in terms of vectors and matrices.
_ T _
w=(w,....wp)" x=(x,...,xp)

y:wa—i—b

@ This is simpler and much faster:
y = np.dot(w, XJ + b

UofT CSC 411: 06-Linear Regression 9 /37

Why vectorize?

Uof T CSC 411: 06-Linear Regression 10 / 37

Why vectorize?
@ The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!
@ Vectorized code is much faster

o Cut down on Python interpreter overhead
o Use highly optimized linear algebra libraries
e Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Uof T CSC 411: 06-Linear Regression 10 / 37

@ We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.

LT
@7
3T

one feature across
all training examples

810 3 0
=16 |-1] 5 3
25| -2 8

CSC 411: 06-Linear Regression

one training
example (vector)

11 /37

@ We can take this a step further. Organize all the training examples
into the design matrix X with one row per training example, and all
the targets into the target vector t.

one feature across
all training examples

example (vector)

x(DT 80| 3
X=[|x®T| =16 -1 5
x®T 2 5 =2

0
3 one training
8

@ Computing the predictions for the whole dataset:

w'x() +p

Xw + bl =

wa("V) +b

UofT CSC 411: 06-Linear Regression

Y0

11 /37

@ Computing the squared error cost across the whole dataset:

@ In Python:

y = Xw + bl
J = 7||y—t||2

y = np.dot(X, w) + b
cost = np.sum((y - £) ** 2) /(2. * N)

CSC 411: 06-Linear Regression 12 / 37

Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

Uof T CSC 411: 06-Linear Regression 13 / 37

Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

Uof T CSC 411: 06-Linear Regression 13 / 37

Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: minimum of a smooth function (if it exists)
occurs at a critical point, i.e. point where the derivative is zero.

@ Multivariate generalization: set the partial derivatives to zero. We call
this direct solution.

Uof T CSC 411: 06-Linear Regression 13 / 37

Direct solution

o Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

f(x1 4+ h,x2) — f(x1,x2)
h

o = |
0x1 (x1,%2) hlno

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

dy o]

J’

=%
dy o
2 9b [Z""j’xj'”}
j/
=1

Uof T CSC 411: 06-Linear Regression 14 / 37

Direct solution

@ Chain rule for derivatives:

oc _ac oy

8W_,-_dy8w_,-
a i s
= — | Z(y—t . X
= G-
=(y —t)x

9L _ ¢

ab 7

e Cost derivatives (average over data points):

0T 1., A G
awjzﬁz(y()’t())xf“
i=1

N
g 1 P
EPRRRTD D

CSC 411: 06-Linear Regression

Direct solution

@ The minimum must occur at a point where the partial derivatives are

zero.
oF _g 9T _
ow; ob
e If 0J/0w; # 0, you could reduce the cost by changing w;.

0 0.

Uof T CSC 411: 06-Linear Regression 16 / 37

Direct solution

@ The minimum must occur at a point where the partial derivatives are
zero. 07 o7
— =0 — =0.
ow; ob
e If 0J/0w; # 0, you could reduce the cost by changing w;.

@ This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

Optimal weights:
w=(X"X)"1x"t

Uof T CSC 411: 06-Linear Regression 16 / 37

Direct solution

@ The minimum must occur at a point where the partial derivatives are

zero.
oF _g 9T _
ow; ob
e If 0J/0w; # 0, you could reduce the cost by changing w;.

0 0.

@ This turns out to give a system of linear equations, which we can
solve efficiently. Full derivation in the readings.

@ Optimal weights:
w=(X"X)"1x"t

@ Linear regression is one of only a handful of models in this course that
permit direct solution.

Uof T CSC 411: 06-Linear Regression 16 / 37

Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

CSC 411: 06-Linear Regression

Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

CSC 411: 06-Linear Regression

Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

UofT CSC 411: 06-Linear Regression 17 / 37

Gradient descent

@ Observe:

o if 07 /0w; > 0, then increasing w; increases J.
o if 0.J/0w; < 0, then increasing w; decreases 7.

CSC 411: 06-Linear Regression

Gradient descent

@ Observe:
o if 07 /0w; > 0, then increasing w; increases J.
o if 0.J/0w; < 0, then increasing w; decreases 7.

@ The following update decreases the cost function:

W-%W-—aa—j
J J 8WJ
N
a i iy i
:M_Nz(yo_t())xj()
i=1

CSC 411: 06-Linear Regression

Gradient descent

@ Observe:
o if 07 /0w; > 0, then increasing w; increases J.
o if 0.J/0w; < 0, then increasing w; decreases 7.

@ The following update decreases the cost function:

W-%W-—aa—j
J J aWJ
N

« i i i

= 200)
i=1

@ « is a learning rate. The larger it is, the faster w changes.
o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

CSC 411: 06-Linear Regression

Gradient descent

@ This gets its name from the gradient:

oJ
og 7™
ow o7
owp

e This is the direction of fastest increase in J.

Uof T CSC 411: 06-Linear Regression 19 / 37

Gradient descent

@ This gets its name from the gradient:

oJ
og 7™
ow o7
owp

e This is the direction of fastest increase in J.

@ Update rule in vector form:

0T
W W—a——

ow
« N : : :

@ Hence, gradient descent updates the weights in the direction of
fastest decrease.

Uof T CSC 411: 06-Linear Regression 19 / 37

Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_
regression.pdf#page=21

Uof T CSC 411: 06-Linear Regression 20 / 37

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Gradient descent

@ Why gradient descent, if we can find the optimum directly?

Uof T CSC 411: 06-Linear Regression 21 /37

Gradient descent

@ Why gradient descent, if we can find the optimum directly?
@ GD can be applied to a much broader set of models
o GD can be easier to implement than direct solutions, especially with
automatic differentiation software
e For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D?) algorithm).

Uof T CSC 411: 06-Linear Regression 21 /37

Feature mappings

@ Suppose we want to model the following data

-Pattern Recognition and Machine Learning, Christopher Bishop.

Uof T CSC 411: 06-Linear Regression 22 /37

-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy

Uof T CSC 411: 06-Linear Regression 22 /37

-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy

@ Do we need to derive a whole new algorithm?

Uof T CSC 411: 06-Linear Regression 22 /37

Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
w(x) = |
X3
@ Polynomial regression model:
y=w'9(x)

CSC 411: 06-Linear Regression

Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
w(x) = |
X3
@ Polynomial regression model:
y=w'9(x)

@ All of the derivations and algorithms so far in this lecture remain
exactly the same!

CSC 411: 06-Linear Regression

Fitting polynomials

y=w
1 M =0 1
o
t
(o] o o)
0 4
(o]
_1 4
0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.

UofT CSC 411: 06-Linear Regression

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC 411: 06-Linear Regression

Fitting polynomials

Yy =wy+ wix + sz2 + W3x3

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC 411: 06-Linear Regression

Fitting polynomials

y:W0+W1x+W2x2+W3x3+...+W9x

9

-Pattern Recognition and Machine Learning, Christopher Bishop.

CSC 411: 06-Linear Regression

Generalization

Underfitting : model is too simple — does not fit the data.

1 M=0
o
t
° °

j

CSC 411: 06-Linear Regression

Generalization

@ Training and test error as a function of # training examples and #

parameters:

test

error

training
error

test
error

training
error

training examples

parameters

>

CSC 411: 06-Linear Regression

Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

Uof T CSC 411: 06-Linear Regression 30/ 37

Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

@ But restricting the size of the model is a crude solution, since you'll
never be able to learn a more complex model, even if the data
support it.

Uof T CSC 411: 06-Linear Regression 30/ 37

Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

@ But restricting the size of the model is a crude solution, since you'll
never be able to learn a more complex model, even if the data
support it.

@ Another approach: keep the model large, but regularize it

o Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another

Uof T CSC 411: 06-Linear Regression 30/ 37

L? Regularization

Observation: polynomials that overfit often have large coefficients.

_—GZAO -1.5 -1.0 -05 00 05 10 15 20

y =0.1x% 4+ 0.2x* + 0.75x3 — x> = 2x + 2
y = —7.2x% + 10.4x* + 24.5x> — 37.9x% — 3.6x + 12

So let's try to keep the coefficients small.

Uof T CSC 411: 06-Linear Regression 31 /37

L? Regularization

Another reason we want weights to be small:

@ Suppose inputs x; and x» are nearly identical for all training examples.
The following two hypotheses make nearly the same predictions:

w = ! w = -9
1 S \11
@ But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and x; match less closely).

Uof T CSC 411: 06-Linear Regression 32 /37

L? Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = 3wl =5 3" w}.
J

o Note: to be pedantic, the L2 norm is Euclidean distance, so we're really
regularizing the squared L% norm.

Uof T CSC 411: 06-Linear Regression 33 /37

L? Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L? penalty.

1
R(w) = 3wl =5 3" w}.
J

o Note: to be pedantic, the L2 norm is Euclidean distance, so we're really
regularizing the squared L% norm.

@ The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights.

A 2
$eg:j+)‘R:j+EZM/j
J

@ Here, X is a hyperparameter that we can tune using a validation set.

Uof T CSC 411: 06-Linear Regression 33 /37

L? Regularization

@ The geometric picture:

loss

regularizer

Uof T CSC 411: 06-Linear Regression 34 /37

L? Regularization

@ Recall the gradient descent update:

oJ

W W—a—

ow

@ The gradient descent update of the regularized cost has an interesting

interpretation as weight decay:

oJ OR
:w—a<aj+)\w>

ow
:(1—a)\)w—ag:z

Uof T CSC 411: 06-Linear Regression 35 /37

L' vs. L? Regularization

@ The L! norm, or sum of absolute values, is another regularizer that encourages
weights to be exactly zero. (How can you tell?)

@ We can design regularizers based on whatever property we'd like to encourage.

wy wo

> @ @
W W
2.5
2.0
Wy Wy
15
10

L2 regularization L1 regularization

_ § : 2 — E
-20 -15 -10 -05 00 05 10 15 2.0 R = Wy R = |U)Z|
i i

— Bishop, Pattern Recognition and Machine Learning

UofT CSC 411: 06-Linear Regression

Conclusion

Linear regression exemplifies recurring themes of this course:

choose a model and a loss function

formulate an optimization problem

solve the optimization problem using one of two strategies

o direct solution (set derivatives to zero)
e gradient descent

vectorize the algorithm, i.e. represent in terms of linear algebra
make a linear model more powerful using features

improve the generalization by adding a regularizer

Uof T CSC 411: 06-Linear Regression 37 /37

