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Today

Decision Trees

I Simple but powerful learning algorithm

I One of the most widely used learning algorithms in Kaggle competitions

Lets us introduce ensembles (Lectures 4–5), a key idea in ML more broadly

Useful information theoretic concepts (entropy, mutual information, etc.)
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Decision Trees

Yes No 

Yes No Yes No 
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Decision Trees
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Decision Trees

Decision trees make predictions by recursively splitting on different
attributes according to a tree structure.
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Example with Discrete Inputs

What if the attributes are discrete?

Attributes:
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Decision Tree: Example with Discrete Inputs

The tree to decide whether to wait (T) or not (F)
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Decision Trees

Yes No 

Yes No Yes No 

Internal nodes test attributes

Branching is determined by attribute value

Leaf nodes are outputs (predictions)
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Decision Tree: Classification and Regression

Each path from root to a leaf defines a region Rm

of input space

Let {(x (m1), t(m1)), . . . , (x (mk ), t(mk ))} be the
training examples that fall into Rm

Classification tree:

I discrete output

I leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk )}

Regression tree:

I continuous output

I leaf value ym typically set to the mean value in {t(m1), . . . , t(mk )}

Note: We will focus on classification
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Expressiveness

Discrete-input, discrete-output case:

I Decision trees can express any function of the input attributes
I E.g., for Boolean functions, truth table row → path to leaf:

Continuous-input, continuous-output case:

I Can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set w/ one path
to leaf for each example (unless f nondeterministic in x) but it probably
won’t generalize to new examples

[Slide credit: S. Russell]
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How do we Learn a DecisionTree?

How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you
are interested, check: Hyafil & Rivest’76]

Resort to a greedy heuristic:

I Start from an empty decision tree
I Split on the “best” attribute
I Recurse

Which attribute is the “best”?

I Choose based on accuracy?
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Choosing a Good Split

Why isn’t accuracy a good measure?

Is this split good? Zero accuracy gain.

Instead, we will use techniques from information theory

Idea: Use counts at leaves to define probability distributions, so we can measure
uncertainty
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Choosing a Good Split

Which attribute is better to split on, X1 or X2?

I Deterministic: good (all are true or false; just one class in the leaf)
I Uniform distribution: bad (all classes in leaf equally probable)
I What about distributons in between?

Note: Let’s take a slight detour and remember concepts from information theory

[Slide credit: D. Sontag]
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We Flip Two Different Coins

Sequence 1: 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2: 
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16 

2 
8 10 

0	 1	

versus 

0	 1	
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”:

H(X ) = −
∑
x∈X

p(x) log2 p(x)
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9
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9
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≈ 0.99

Measures the information content of each observation

Unit = bits

A fair coin flip has 1 bit of entropy
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Quantifying Uncertainty

H(X ) = −
∑
x∈X

p(x) log2 p(x)
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Entropy

“High Entropy”:

I Variable has a uniform like distribution
I Flat histogram
I Values sampled from it are less predictable

“Low Entropy”

I Distribution of variable has many peaks and valleys
I Histogram has many lows and highs
I Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]
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Entropy of a Joint Distribution

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(x , y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits
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Specific Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = x) = −
∑
y∈Y

p(y |x) log2 p(y |x)

= −24

25
log2

24

25
− 1

25
log2

1

25

≈ 0.24bits

We used: p(y |x) = p(x,y)
p(x) , and p(x) =

∑
y p(x , y) (sum in a row)
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Conditional Entropy

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x , y) log2 p(y |x)
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Conditional Entropy

Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

H(Y |X ) =
∑
x∈X

p(x)H(Y |X = x)

=
1

4
H(cloudy|is raining) +

3

4
H(cloudy|not raining)

≈ 0.75 bits
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Conditional Entropy

Some useful properties:

I H is always non-negative

I Chain rule: H(X ,Y ) = H(X |Y ) + H(Y ) = H(Y |X ) + H(X )

I If X and Y independent, then X doesn’t tell us anything about Y :
H(Y |X ) = H(Y )

I But Y tells us everything about Y : H(Y |Y ) = 0

I By knowing X , we can only decrease uncertainty about Y :
H(Y |X ) ≤ H(Y )
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Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much information about cloudiness do we get by discovering whether it
is raining?

IG (Y |X ) = H(Y )− H(Y |X )

≈ 0.25 bits

This is called the information gain in Y due to X , or the mutual
information of Y and X

If X is completely uninformative about Y : IG (Y |X ) = 0

If X is completely informative about Y : IG (Y |X ) = H(Y )
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Revisiting Our Original Example

Information gain measures the informativeness of a variable, which is exactly
what we desire in a decision tree attribute!

What is the information gain of this split?

Root entropy: H(Y ) = − 49
149 log2( 49

149 )− 100
149 log2( 100

149 ) ≈ 0.91

Leafs entropy: H(Y |left) = 0, H(Y |right) ≈ 1.

IG (split) ≈ 0.91− ( 1
3 · 0 + 2

3 · 1) ≈ 0.24 > 0
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Constructing Decision Trees

Yes No 

Yes No Yes No 

At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision! (choose attribute that gives the textbfest gain)
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Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node

2. split examples into groups based on attribute value

3. for each group:

I if no examples – return majority from parent
I else if all examples in same class – return class
I else loop to step 1
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Back to Our Example

Attributes: [from: Russell & Norvig]
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Attribute Selection

IG (Y ) = H(Y )− H(Y |X )

IG (type) = 1−
[

2

12
H(Y |Fr.) +

2

12
H(Y |It.) +

4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG (Patrons) = 1−
[

2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,

4

6
)

]
≈ 0.541
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Which Tree is Better?
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What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions in
data

Not too big:

I Computational efficiency (avoid redundant, spurious attributes)
I Avoid over-fitting training examples
I Human interpretability

“Occam’s Razor”: find the simplest hypothesis that fits the observations

I Useful principle, but hard to formalize (how to define simplicity?)
I See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

We desire small trees with informative nodes near the root
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Decision Tree Miscellany

Problems:

I You have exponentially less data at lower levels
I Too big of a tree can overfit the data
I Greedy algorithms don’t necessarily yield the global optimum

Handling continuous attributes

I Split based on a threshold, chosen to maximize information gain

Decision trees can also be used for regression on real-valued outputs. Choose
splits to minimize squared error, rather than maximize information gain.
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Comparison to k-NN

Advantages of decision trees over k-NN

Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs

Fast at test time

More interpretable
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Comparison to k-NN

Advantages of k-NN over decision trees

Able to handle attributes/features that interact in complex ways
(e.g. pixels)

Can incorporate interesting distance measures (e.g. shape contexts)

Typically make better predictions in practice
I As we’ll see next lecture, ensembles of decision trees are much

stronger. But they lose many of the advantages listed above.
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