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@ Decision Trees

» Simple but powerful learning algorithm

» One of the most widely used learning algorithms in Kaggle competitions
@ Lets us introduce ensembles (Lectures 4-5), a key idea in ML more broadly

@ Useful information theoretic concepts (entropy, mutual information, etc.)
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Decision Trees
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Decision Trees

Test example
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Decision Trees

@ Decision trees make predictions by recursively splitting on different

attributes according to a tree structure.
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Example with Discrete Inputs

@ What if the attributes are discrete?

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type Est WillWait

X1 Yes| No| No | Yes| Some| $$$ | No | Yes| French| 0-10 | y; = Yes
X3 Yes| No | No | Yes| Full 3 No | No Thai | 30-60 | y,= No
X3 No | Yes| No | No | Some $ No | No | Burger| 0-10 | y3 = Yes
X4 Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | ys = Yes
X5 Yes| No | Yes| No | Full | $$8 | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 38 | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10 | y;= No
Xg No| No | No | Yes| Some| 3§ | Yes| Yes Thai 0-10 | ys= Yes
Xg No | Yes| Yes| No | Full 3 Yes | No | Burger| >60 | y9= No
X190 Yes | Yes| VYes| Yes| Full | $$8  No | Yes| ltalian | 10-30 | yi0= No
X11 No | No | No| No | None 3 No | No Thai 0-10 | y11 = No
X192 Yes | Yes| Yes| Yes Full 3 No No | Burger | 30-60 | y12 = Yes

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

A Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. | | Price: the restaurant's price range ($, $$, $$$)

7. | | Raining: whether it is raining outside.

8. Reservation: whether we made a reservation

9. Type: the kind of restaurant (French, Italian, Thai or Burger)

Attrl butes: 10. | | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
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Decision Tree: Example with Discrete Inputs

@ The tree to decide whether to wait (T) or not (F)

Patrons?

None ome Full

[ WaitEstimate? |

Alternate?
No Yes

| Reservation? || Fri/sat? |
No Yes No Yes

No Yes
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Decision Trees

width > 6.5cm?

height > 9.5cm? height > 6.0cm?
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@ Internal nodes test attributes
@ Branching is determined by attribute value

@ Leaf nodes are outputs (predictions)
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Decision Tree: Classification and Regression

! .
@ Each path from root to a leaf defines a region R, - . -
of input space i ‘3:,;" @
o Let {(x(m) t(m)) . (x(md) t(m))} be the ST
training examples that fall into Ry, . o < s

@ Classification tree:
» discrete output

> leaf value y™ typically set to the most common value in
{tlm) ¢(ma}

@ Regression tree:
» continuous output

> leaf value y™ typically set to the mean value in {t(™) .. t(m)}
Note: We will focus on classification
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Expressiveness

@ Discrete-input, discrete-output case:

» Decision trees can express any function of the input attributes
» E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB
F F F
F T T
T F T
T T F

@ Continuous-input, continuous-output case:
» Can approximate any function arbitrarily closely

@ Trivially, there is a consistent decision tree for any training set w/ one path
to leaf for each example (unless f nondeterministic in x) but it probably
won't generalize to new examples

[Slide credit: S. Russell]
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How do we Learn a DecisionTree?

@ How do we construct a useful decision tree?
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Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you
are interested, check: Hyafil & Rivest'76]

@ Resort to a greedy heuristic:

» Start from an empty decision tree
» Split on the “best” attribute
> Recurse

@ Which attribute is the “best”?

» Choose based on accuracy?
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osing a Good Split

@ Why isn't accuracy a good measure?

@ Is this split good? Zero accuracy gain.

@ Instead, we will use techniques from information theory

Idea: Use counts at leaves to define probability distributions, so we can measure
uncertainty
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Choosing a Good Split

@ Which attribute is better to split on, Xj or X,7

» Deterministic: good (all are true or false; just one class in the leaf)
» Uniform distribution: bad (all classes in leaf equally probable)
» What about distributons in between?

Note: Let's take a slight detour and remember concepts from information theory

[Slide credit: D. Sontag]
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We Flip Two Different Coins

Sequence 1:
0001000000000 00100 ...7

Sequence 2:
1010111010011 0101...°7
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Quantifying Uncertainty

Entropy is a measure of expected “surprise”:

H(X) = =Y p(x)log, p(x)

xeX
8/9 4/9 5/9
e [
| I— 0 1
0 1
8 8 1 1 1 4 4 5 5
—§|og2§f§|0g2§~§ —§Iog2§—§log2§z0.99
@ Measures the information content of each observation

@ Unit = bits
@ A fair coin flip has 1 bit of entropy

Uof T CSC411 2019 Winter Lecture 03 16 / 34



Quantifying Uncertainty

entropy
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@ “High Entropy”:

» Variable has a uniform like distribution
> Flat histogram
» Values sampled from it are less predictable

@ “Low Entropy”

» Distribution of variable has many peaks and valleys
» Histogram has many lows and highs
» Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]

Uof T CSC411 2019 Winter Lecture 03 18 / 34



Entropy of a Joint Distribution

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

HX,Y) = =) ) p(x,y)log, p(x,y)
xeXyeY
o4 24 1, 01 25, 025 50, 50
= 7100 °%2700 100 82700 100 27100 100 82100
~ 1.56bits
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Specific Conditional Entropy

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy [Not Cloudy
Raining 24/100 1/100
Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

@ We used: p(y|x) = p(’&})’)

Uof T

HY|IX =x) =

~
~

p

— > py|x) logz py|x)

yey
24

24 1 1

T ogs —
25 08255 T 95 %8255
0.24bits

, and p(x) =3 p(x,y) (sumina row)
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Conditional Entropy

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ The expected conditional entropy:

H(YIX) = > p()H(Y|X = x)
xeX
= => > p(x,y)log, p(y|x)
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Conditional Entropy

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

H(Y|X) > P)H(YIX = x)

xeX

1
= ZH(cloudy|is raining) + %H(cloudy|not raining)
0.75 bits

Q
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Conditional Entropy

@ Some useful properties:
» H is always non-negative
Chain rule: H(X,Y) = H(X|Y)+ H(Y) = H(Y|X) + H(X)
If X and Y independent, then X doesn't tell us anything about Y-
H(Y|X) = H(Y)
But Y tells us everything about Y: H(Y|Y)=0

By knowing X, we can only decrease uncertainty about Y:
H(Y|X) < H(Y)

v

v

v

v
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Information Gain

Cloudy [Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much information about cloudiness do we get by discovering whether it
is raining?

IG(Y|X) = H(Y)—H(Y|X)
~ 0.25 bits

@ This is called the information gain in Y due to X, or the mutual
information of Y and X

@ If X is completely uninformative about Y: IG(Y|X) =0
@ If X is completely informative about Y: IG(Y|X) = H(Y)
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Revisiting Our Original Example

@ Information gain measures the informativeness of a variable, which is exactly
what we desire in a decision tree attribute!

@ What is the information gain of this split?

@ Root entropy: H(Y) = —1% log,(155) — 199 |og,(193) ~ 0.91

100

@ Leafs entropy: H(Y|left) =0, H(Y|right) ~ 1.
o IG(split) ~ 091 — (042 -1)~0.24>0
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Constructing Decision Trees

iwidth > 6.5cm?

height (cm)
o'
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@ At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose attribute that gives the textbfest gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node
2. split examples into groups based on attribute value

3. for each group:

> if no examples — return majority from parent
> else if all examples in same class — return class
> else loop to step 1
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun | Pat | Price | Rain| Res | Type Est WillWait

X1 Yes No | No| Yes| Some| $$% | No | Yes| French| 0-10 | y; = Yes
Xo Yes | No | No | Yes Full $ No | No Thai 30-60 | y, = No
X3 No | Yes| No | No | Some k) No | No | Burger| 0-10 | y3= Yes
X4 Yes | No | Yes| Yes Full $ Yes | No Thai 10-30 | y4 = Yes
X5 Yes No | Yes| No| Full | $8%3 | No | Yes| French| >60 | ys= No
Xg No | Yes| No| Yes| Some| $$ | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No| No| No| Yes| Some| $$ | Yes| Yes| Thai 0-10 | ys = Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger| >60 yo = No
X10 Yes  Yes| Yes| Yes| Full | $$% | No | Yes| ltalian | 10-30 | 319 = No
X11 No | No | No| No | None $ No | No Thai 0-10 | y11 = No
X19 Yes | Yes | Yes| Yes Full k) No | No | Burger| 30-60 | yi2 = Yes

1 Alternate: whether there is a suitable alternative restaurant nearby.

2, Bar: whether the restaurant has a comfortable bar area to wait in.

3 Fri/Sat: true on Fridays and Saturdays.

4 Hungry: whether we are hungry.

5% Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. Price: the restaurant's price range ($, $$, $$3$).

7. | | Raining: whether it is raining outside.

8, Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger).

Attri butes: 10. | | waitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). [from: Russell & Norvig]
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Attribute Selection

I6(Y) = H(Y) — H(Y|X)

IG(type):l—L22 H(Y|Fe) + 122 (Ye) + — H(Y|Tha1)+12H(Y|Bur)]:0

IG(Patrons) =1 — [ H(0,1) + 12:"/(1 0)+ 15 ° (2 g)
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Which Tree is Better?

Patrons?

French Burger

Patrons?

Full

WaitEstimate?

None

[ Reservation? ][ Fri/saz |

No Yes
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions in
data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ “Occam’s Razor”: find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)

» See Domingos, 1999, “The role of Occam’s razor in knowledge
discovery"”

@ We desire small trees with informative nodes near the root
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Decision Tree Miscellany

@ Problems:

> You have exponentially less data at lower levels
» Too big of a tree can overfit the data
> Greedy algorithms don't necessarily yield the global optimum

@ Handling continuous attributes

» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs. Choose
splits to minimize squared error, rather than maximize information gain.

Uof T CSC411 2019 Winter Lecture 03 32 /34



Comparison to k-NN

Advantages of decision trees over k-NN

@ Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs

Fast at test time

More interpretable
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Comparison to k-NN

Advantages of k-NN over decision trees
@ Able to handle attributes/features that interact in complex ways
(e.g. pixels)
e Can incorporate interesting distance measures (e.g. shape contexts)

o Typically make better predictions in practice

» As we'll see next lecture, ensembles of decision trees are much
stronger. But they lose many of the advantages listed above.
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