CSC 411: Introduction to Machine Learning Lecture 1: Introduction

Mengye Ren and Matthew MacKay

University of Toronto

Course outline

- Broad introduction to machine learning
 - First half: algorithms and principles for supervised learning
 - Nearest neighbors
 - Decision trees
 - Ensembles
 - Linear regression
 - Logistic regression
 - Neural nets
 - SVMs
 - Unsupervised learning:
 - PCA
 - K-means
 - Mixture models
 - Basics of reinforcement learning

Prerequisites

Do I have the appropriate background?

- Linear algebra: vector/matrix manipulations, properties.
- Calculus: partial derivatives/gradient.
- Probability: common distributions; Bayes Rule.
- Statistics: expectation, variance, covariance, median; maximum likelihood.

Course Websites

Course Website:

https://www.cs.toronto.edu/~mren/teaching/csc411_19s/

We will use Quercus for **announcements**. You should all have been automatically signed up.

We will use Piazza for discussions.

- URL: https://piazza.com/utoronto.ca/winter2019/csc411 (Also sent out through Quercus announcement)
- Your grade does not depend on your participation on Piazza. It's
 just a good way for asking questions, discussing with your instructor,
 TAs and your peers

Where and When

Instructors:

- Mengye Ren
 - Lecture: SS2135 1-3 PM Tuesday
 - Office Hour: BA2283 3-4 PM Tuesday (after lecture)
- Matthew MacKay
 - Lecture: SF1105 6-8 PM Thursday
 - Office Hour: BA2283 2-3 PM Monday

Emails for administrative purposes only (e.g. medical documentations). For material-related questions, use Piazza or ask your instructor/ TA in person during class or office hours.

Course Information

- While cell phones and other electronics are not prohibited in lecture, talking, recording or taking pictures in class is strictly prohibited without the consent of your instructor. Please ask before doing!
- http://www.illnessverification.utoronto.ca is the only acceptable form of direct medical documentation.
- For accessibility services: If you require additional academic accommodations, please contact UofT Accessibility Services as soon as possible, studentlife.utoronto.ca/as.

Course Information

Recommended readings will be given for each lecture. But the following will be useful throughout the course:

- Hastie, Tibshirani, and Friedman: "The Elements of Statistical Learning"
- Christopher Bishop: "Pattern Recognition and Machine Learning", 2006.
- Kevin Murphy: "Machine Learning: a Probabilistic Perspective", 2012.
- David Mackay: "Information Theory, Inference, and Learning Algorithms", 2003.
- Shai Shalev-Shwartz & Shai Ben-David: "Understanding Machine Learning: From Theory to Algorithms", 2014.

There are lots of freely available, high-quality ML resources.

Requirements and Marking

- 7-8 "weekly" assignments.
 - Combination of pencil & paper derivations and short programming exercises
 - Equally weighted, for a total of 45%
 - · Lowest homework mark is dropped
- Read some classic papers.
 - Worth 5%, honor system.
- Midterm
 - Tentative: Feb 15 (outside regular lecture hours)
 - Worth 15% of course mark
- Final Exam
 - Three hours
 - Date and time TBA
 - Worth 35% of course mark

More on Assignments

- Collaboration on the assignments is not allowed.
- Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results.
- Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.
- The schedule of assignments will be posted on the course web page.
- Assignments should be handed in by 11:59pm; a late penalty of 10% per day for a maximum of 3 days.
- Extensions will be granted only in special situations
- You will need a Student Medical Certificate or a written request approved at least one week before the due date.

Related Courses

- CSC 421 (neural nets) and CSC 412 (probabilistic graphical models) both build upon the material in this course.
- If you've already taken CSC 321, there will be 3–4 weeks of redundant material.

What is learning?

"The activity or process of gaining knowledge or skill by studying, practicing, being taught, or experiencing something."

Merriam Webster dictionary

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom Mitchell

Applications of machine learning

- For many problems, it's difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech
- Machine learning approach: program an algorithm to automatically learn from data, or from experience
- Why might you want to use a learning algorithm?
 - hard to code up a solution by hand (e.g. vision, speech)
 - system needs to adapt to a changing environment (e.g. spam detection)
 - want the system to perform better than the human programmers
 - privacy/fairness (e.g. ranking search results)

Relations to statistics

- It's similar to statistics...
 - Both fields try to uncover patterns in data
 - Both fields draw heavily on calculus, probability, and linear algebra, and share many of the same core algorithms
- But it's not statistics...
 - Stats is more concerned with helping scientists and policymakers draw good conclusions; ML is more concerned with building autonomous agents
 - Stats puts more emphasis on interpretability and mathematical rigor; ML puts more emphasis on predictive performance, scalability, and autonomy

Relations to Al

- Nowadays, "machine learning" is often brought up with "artificial intelligence" (AI)
- Al does not often imply a learning based system
 - Symbolic reasoning
 - Rule based system
 - Tree search
 - etc.
- Learning based system \to more free learnable parameters \to learned based on the data \to more flexibility, good at solving pattern recognition problems.

Relations to human learning

- It is tempting to imagine machine learning as a component in Al just like human learning in ourselves.
- Human learning is:
 - Very data efficient
 - An entire multitasking system (vision, language, motor control, etc.)
 - Takes at least a few years :)
- For serving specific purposes, machine learning doesn't have to look like human learning in the end.
- It may borrow ideas from biological systems (e.g. neural networks).
- There may also be biological constraints.

What is machine learning?

- Types of machine learning
 - Supervised learning: have labeled examples of the correct behavior
 - **Reinforcement learning:** learning system receives a reward signal, tries to learn to maximize the reward signal
 - **Unsupervised learning:** no labeled examples instead, looking for interesting patterns in the data

History of machine learning

- 1957 Perceptron algorithm (implemented as a circuit!)
- 1959 Arthur Samuel wrote a learning-based checkers program that could defeat him
- 1969 Minsky and Papert's book *Perceptrons* (limitations of linear models)
- 1980s Some foundational ideas
 - Connectionist psychologists explored neural models of cognition
 - 1984 Leslie Valiant formalized the problem of learning as PAC learning
 - 1988 Backpropagation (re-)discovered by Geoffrey Hinton and colleagues
 - 1988 Judea Pearl's book Probabilistic Reasoning in Intelligent Systems introduced Bayesian networks

History of machine learning

- 1990s the "Al Winter", a time of pessimism and low funding
- But looking back, the '90s were also sort of a golden age for ML research
 - Markov chain Monte Carlo
 - Variational inference
 - Kernels and support vector machines
 - Boosting
 - Convolutional networks
- 2000s applied AI fields (vision, NLP, etc.) adopted ML
- 2010s deep learning
 - 2010–2012 neural nets smashed previous records in speech-to-text and object recognition
 - increasing adoption by the tech industry
 - 2016 AlphaGo defeated the human Go champion

History of machine learning

A top ML conference, NeurIPS (used to be called NIPS), sold out the ticket for the meeting happened in December 2018.

Computer vision: Object detection, semantic segmentation, pose estimation, and almost every other task is done with ML.

Instance segmentation - Link

DAQUAR 1553 What is there in front of the sofa? Ground truth: table IMG+BOW: table (0.74) 2-VIS+BLSTM: table (0.88) LSTM: chair (0.47)

COCOQA 5078

How many leftover donuts is the red bicycle holding?

Ground truth: three
IMG+BOW: two (0.51)
2-VIS+BLSTM: three (0.27)
BOW: one (0.29)

Speech: Speech to text, personal assistants, speaker identification...



NLP: Machine translation, sentiment analysis, topic modeling, spam filtering.

Real world example: The New York Times articles:

music	book	art museum show exhibition artist artists paintings painting century works	game	show
band	life		Knicks	film
songs	novel		nets	television
rock	story		points	movie
album	books		team	series
jazz	man		season	says
pop	stories		play	life
song	love		games	man
singer	children		night	character
night	family		coach	know
theater	clinton bush campaign gore political republican dole presidential senator house	stock	restaurant	budget
play		market	sauce	tax
production		percent	menu	governor
show		fund	tood	county
stage		investors	dishes	mayor
street		funds	street	billion
broadway		companies	dining	taxes
director		stocks	dinner	plan
musical		investment	chicken	legislature
directed		trading	served	fiscal

Playing Games

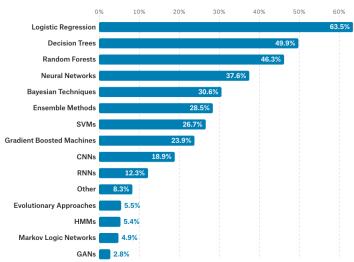
DOTA2 - Link

E-commerce & Recommender Systems : Amazon, netflix,

. . .

Inspired by your shopping trends

Related to items you've viewed see more


Why taking this class?

Why not just learn neural nets first (like CSC 421)?

- The techniques in this course are still the first things to try for a new ML problem.
 - E.g., try logistic regression before building a deep neural net!
- The principles you learn in this course will be essential to really understand neural nets.
 - 3–4 weeks of csc321 were devoted to background material covered in this course!
- A better foundation for CSC 412 (probablistic graphical models)

Why this class?

2017 Kaggle survey of data science and ML practitioners: what data science methods do you use at work?

ML Workflow

ML workflow sketch:

- Should I use ML on this problem?
 - Is there a pattern to detect?
 - Can I solve it analytically?
 - Do I have data?
- Gather and organize data.
- Preprocessing, cleaning, visualizing.
- Establishing a baseline.
- 6 Choosing a model, loss, regularization, ...
- Optimization
- Hyperparameter search.
- Analyze performance and mistakes, and iterate back to step 5 (or 3).

Implementing machine learning systems

- You will often need to derive an algorithm (with pencil and paper),
 and then translate the math into code.
- Array processing (NumPy)
 - vectorize computations (express them in terms of matrix/vector operations) to exploit hardware efficiency
 - This also makes your code cleaner and more readable!

```
Z = W_X + b
```

```
z = np.zeros(m)
for i in range(m):
    for j in range(n):
        z[i] += W[i, j] * x[j]
    z[i] += b[i]
z = np.dot(W, x) + b
```

Implementing machine learning systems

- Neural net frameworks: PyTorch, TensorFlow, Theano, etc.
 - Automatic differentiation
 - Compiling computation graphs
 - Libraries of algorithms and network primitives
 - Support for graphics processing units (GPUs)
- Why take this class if these frameworks do so much for you?
 - Understanding what goes on beneath the hood.
 - You will know what to do if something goes wrong.