
CSC411 Winter 2019 Homework 7

Homework 7

Deadline: Wednesday, Apr. 3, at 11:59pm.

Submission: You need to submit your solutions through MarkUs1 as the PDF file hw7_writeup.pdf.

Neatness Point: One of the 10 points will be given for neatness. You will receive this point as
long as we don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3
days. After that, no submissions will be accepted.

Collaboration. Weekly homeworks are individual work. See the Course Information handout2

for detailed policies.

1. [5pts] Representer Theorem. In this question, you’ll prove and apply a simplified version
of the Representer Theorem, which is the basis for a lot of kernelized algorithms. Consider a
linear model:

z = w>ψ(x)

y = g(z),

where ψ is a feature map and g is some function (e.g. identity, logistic, etc.). We are given
a training set {(x(i), t(i))}Ni=1. We are interested in minimizing the expected loss plus an L2

regularization term:

J (w) =
1

N

N∑
i=1

L(y(i), t(i)) +
λ

2
‖w‖2,

where L is some loss function. Let Ψ denote the feature matrix

Ψ =

ψ(x(1))>

...

ψ(x(N))>

 .

Observe that this formulation captures a lot of the models we’ve covered in this course,
including linear regression, logistic regression, and SVMs.

(a) [2pts] Show that the optimal weights must lie in the row space of Ψ.

Hint: Given a subspace S, a vector v can be decomposed as v = vS+v⊥, where vS is the
projection of v onto S, and v⊥ is orthogonal to S. (You may assume this fact without
proof, but you can review it here3.) Apply this decomposition to w and see if you can
show something about one of the two components.

1https://markus.teach.cs.toronto.edu/csc411-2019-01
2http://www.cs.toronto.edu/~mren/teach/csc411_19s/syllabus.pdf
3https://metacademy.org/graphs/concepts/projection_onto_a_subspace
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(b) [3pts] Another way of stating the result from part (a) is that w = Ψ>α for some vector
α. Hence, instead of solving for w, we can solve for α. Consider the vectorized form of
the L2 regularized linear regression cost function:

J (w) =
1

2N
‖t−Ψw‖2 +

λ

2
‖w‖2.

Substitute in w = Ψ>α, to write the cost function as a function of α. Determine the
optimal value of α. Your answer should be an expression involving λ, t, and the Gram
matrix K = ΨΨ>. For simplicity, you may assume that K is positive definite. (The
algorithm still works if K is merely PSD, it’s just a bit more work to derive.)

Hint: the cost function J (α) is a quadratic function. Simplify the formula into the
following form:

1
2α
>Aα+ b>α+ c,

for some positive definite matrix A, vector b and constant c (which can be ignored).
You may assume without proof that the minimum of such a quadratic function is given
by α = −A−1b.

2. [4pts] Compositional Kernels. One of the most useful facts about kernels is that they can
be composed using addition and multiplication. I.e., the sum of two kernels is a kernel, and
the product of two kernels is a kernel. We’ll show this in the case of kernels which represent
dot products between finite feature vectors.

(a) [1pt] Suppose k1(x, x
′) = ψ1(x)>ψ1(x

′) and k2(x, x
′) = ψ2(x)>ψ2(x

′). Let kS be the
sum kernel kS(x, x′) = k1(x, x

′) + k2(x, x
′). Find a feature map ψS such that kS(x, x′) =

ψS(x)>ψS(x′).

(b) [3pts] Suppose k1(x, x
′) = ψ1(x)>ψ1(x

′) and k2(x, x
′) = ψ2(x)>ψ2(x

′). Let kP be
the product kernel kP(x, x′) = k1(x, x

′) k2(x, x
′). Find a feature map ψP such that

kP(x, x′) = ψP(x)>ψP(x′).

Hint: For inspiration, consider the quadratic kernel from Lecture 20, Slide 11.
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