
The adaptable chromatic number and the chromatic number

Michael Molloy∗

November 10, 2015

Abstract

We prove that the adaptable chromatic number of a graph is at least asymptotic to the
square root of the chromatic number. This is best possible.

Consider a graph G where each edge of G is assigned a colour from {1, ..., k} (this is not
necessarily a proper edge colouring). A k-adapted colouring is an assignment of colours from
{1, ..., k} to the vertices of G such that there is no edge with the same colour as both of its
endpoints. In other words: in conventional graph colouring, each edge forbids its endpoints from
both receiving the same colour, while in adaptable colouring, each edge is given one particular
colour which it forbids its endpoints from both receiving. The adaptable chromatic number, χa(G),
of a graph G is the minimum value of k such that every k-edge colouring of G can be completed
into a k-adapted colouring.

To be clear: an adapted colouring might not be proper. Eg. two adjacent vertices u, v can both
receive the colour Red if the edge uv has a colour other than Red.

It is not surprising that this natural variation on graph colouring has arisen in a variety of
settings. Hell and Zhu[9] were the first to use the terminology adaptable colouring. But it was
introduced independently as split colourings[4], emulsive colourings[2] and chromatic capacity[1].

Greene[7] was the first to conjecture the adaptable chromatic number grows with the chromatic
number. He suggested that possibly χa(G) is always as high as Θ(

√
χ(G)), noting that this would

be best possible up to the multiplicative constant as Erdős and Gyárfás[4] had shown that (1 +
o(1))

√
n ≤ χa(Kn) ≤

√
2n. Huizenga[10] proved that the conjecture holds for almost all graphs.

Zhou[14] proved the conjecture for every graph, showing that χa(G) ≥ Θ(log logχ(G)). Other work
on adaptable colouring can be found in [3, 5, 6, 8, 11, 12, 13, 15].

Here, we give a very short proof of a bound that is tight up to second order terms:

Theorem 1 χa(G) ≥ (1 + o(1))
√
χ(G).

The tightness follows from the main theorem of [12] which showed that if G has maximum
degree ∆ then χa(G) ≤ (1 + o(1))

√
∆, thus improving the constant from the bound in [4] to
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χa(Kn) ≤ (1 + o(1))
√
n. In fact, the bound from [12] applies to the list colouring version of

adapted colouring and so Theorem 1 is also a tight bound on the adaptable list chromatic number.

We use a very nice idea from Zhou[14], whose approach was: take a proper q-vertex colouring of
a graph G with χ(G) = q. Then f(q)-colour the edges of G according to a specific pattern based on
that vertex colouring. Suppose that this can be completed to a f(q)-adapted colouring, and then
use that adapted colouring to obtain a proper (q − 1)-vertex colouring of G. This contradiction
shows that if χ(G) = q then χa(G) > f(q). His edge colouring followed a recursive pattern which
led to f(q) = Θ(log log q); our improvement comes from taking a more balanced pattern.

Given a (not necessarily proper) edge colouring of a graph Kn, we define Hi to be the subgraph
formed by removing every edge of colour i from Kn.

Lemma 2 If Kn has a k-edge colouring for which
∑k

i=1 χ(Hi) < n, then every graph G with
χ(G) = n has χa(G) > k.

Proof Let ψ denote the k-edge-colouring of Kn. Consider any proper n-colouring σ of G,
and identify the colours {1, ..., n} with the vertices of Kn. We k-colour the edges of G according to
ψ; specifically, we give each edge uv the colour ψ(σ(u)σ(v)).

If χa(G) ≤ k then this edge-colouring can be completed to a k-adapted colouring; let Si be
the vertices of colour i in the adapted colouring for i = 1, ..., k. Thus there is no edge of colour i
between any two vertices in Si. It follows that we can properly χ(Hi)-colour the vertices of Si: give
each v ∈ Si the colour that σ(v) gets in a specific proper χ(Hi)-colouring of Hi. If u, v ∈ Si get the
same colour, then σ(u), σ(v) have the same colour in the colouring of Hi. So either (a) σ(u) = σ(v)
or (b) the edge σ(u), σ(v) is not in Hi and hence has colour i in ψ. In case (a), u, v are in the same
colour class of σ and so are not adjacent. In case (b), if there is an edge between u, v then it has
colour i which contradicts the fact that u, v ∈ Si in the adapted colouring. So if u, v ∈ Si get the
same colour then they are not adjacent in G; i.e. this is a proper χ(Hi)-colouring of Si.

Using disjoint sets of χ(Hi) colours for each Si, we obtain a proper colouring of G using∑k
i=1 χ(Hi) < n = χ(G) colours. This contradiction implies that χa(G) > k. 2

We obtain our edge-colouring of Kn using the following well-known construction:

Lemma 3 If there is a projective plane of order r, then we can (r + 1)-colour the edges of Kr2

such that each colour class is the edge-set of the union of r vertex-disjoint copies of Kr.

Proof Let y1, ..., yr+1 be the points of a line, L, in the projective plane. Let u, v be any two
points not on that line. We assign the colour i to the pair {u, v} if the line through u, v intersects
L at yi. Since there are r2 vertices not on L, and each pair lies on a line that intersects L in a
unique point, this provides an edge-colouring of Kr2 . Each colour i is assigned to the edges of the
r copies of Kr formed by each of the other r lines through yi. 2

Remark: Erdős and Gyárfás[4] used a slightly more complicated construction to colour some of
the edges of Kr2+r+1 so that each colour forms r copies of Kr and one copy of Kr+1; using that
colouring would provide a small improvement in the o(1) term of our main theorem.
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Proof of Theorem 1: We begin with the case n = r2 where r is the square of a prime power.
So there is a projective plane of order r, and thus Lemma 3 yields an (r+1)-colouring of the edges of
Kn. We change this to an (r−1)-colouring by arbitrarily recolouring all edges with colour r or r+1.
This yields subgraphs H1, ...,Hr−1 which are easily seen to be properly r-colourable. Therefore,∑k

i=1 χ(Hi) ≤ r(r − 1) < n, and so Lemma 2 shows that if χ(G) = n then χa(G) ≥ r =
√
n. Now

the density of the primes implies that the statement of the theorem holds for all n, where the o(1)
term depends on how much higher χ(G) is than the square of a prime power. 2
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