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1. Introduction

Sampling and counting graph colourings is a fundamental problem in computer science
and discrete mathematics. It is also of fundamental interest in statistical physics: graph
colourings correspond to the zero-temperature case of the antiferromagnetic Potts model, a
model of magnetism on which physicists have performed extensive numerical experiments
(see for instance [11, 18, 17]).

Physicists wish to estimate quantities such as spatial correlations and magnetization,
and to do this they sample random states using Markov chains. This is a general technique
whereby one starts with an arbitrary state, and then repeatedly modifies it using a random
rule. For the zero-temperature Potts model, two standard such rules described below are
Glauber dynamics and Kempe chain flips, also known as the Wang–Swendsen–Kotecký
algorithm. While these algorithms often appear to work well in practice, we would like
to know that their mixing time—i.e., the time it takes them to achieve a nearly uniform
distribution on the set of states—is polynomially bounded as a function of the size of the
lattice. Establishing this rigorously has been a major project in mathematical physics
and theoretical computer science; see for example [3, 13, 15, 20, 24].

Moreover, optimal temporal mixing, i.e., a mixing time of O(n log n), is deeply related
to the physical properties of the system [10]. In particular, under certain conditions on
the Markov chain, it implies spatial mixing, i.e., the exponential decay of correlations,
and thus the existence of a finite correlation length and the uniqueness of the Gibbs
measure. Therefore, optimal mixing of natural Markov chains for q-colourings of the
square lattice is considered a major open problem in physics (see e.g. [23]). Physicists
have conjectured [11, 23] that the q-state Potts model has spatial mixing for q ≥ 4, even
at zero temperature. As we discuss below, previous results [13, 20, 3, 4] have established
this rigorously for q ≥ 7.

Our main result is that the square lattice has strong spatial mixing for q = 6, and
in particular that a natural Markov chain has optimal temporal mixing. We consider the
so-called block heat-bath dynamics, which we call M(i, j). At each step, for fixed integers
i and j, we choose an i × j block S of the lattice G, uniformly at random from among
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all such blocks contained in G. Let C be the set of q-colourings of S which are consistent
with the colouring of G \ S. We choose a uniformly random colouring c ∈ C and recolour
S with c. Our main theorem is:

Theorem 1. M(2, 3) on 6-colourings of the square lattice mixes in O(n log n) time.

We prove theorem 1 for finite rectangular regions with free, fixed, or toroidal boundary
conditions. Our method is similar to that of [3] in that it consists of a computer-assisted
proof of the existence of a path coupling. At the same time, we exploit the specific
geometry of the square lattice to consider a greater variety of neighbourhoods. Moreover,
the calculations necessary to find a good coupling in our setting are far more complicated
than those in [3] and require several new ideas to become computationally tractable.

Using the comparison method of Diaconis and Saloff-Coste [6, 19], theorem 1 implies
that the Glauber and Kempe chain Markov chains also mix in polynomial time:

Theorem 2. The Glauber and Kempe chain Markov chains on 6-colourings of the square
lattice mix in O(n2 log n) time.

Like theorem 1, this result holds on finite rectangular regions with free, fixed, or
toroidal boundary conditions.

To discuss spatial mixing, suppose we have a finite region V and two colourings
C, C ′ of its boundary that differ at a single vertex v, and a subregion U ⊆ V such
that the distance from v to the nearest point u ∈ U is �. Let µ and µ′ denote the
probability distributions on colourings of U , given the uniform distribution on colourings
of V conditioned on C and C ′ respectively. Then we define spatial mixing as follows:

Definition 1 ([10]). We say that q-colourings have strong spatial mixing if there are
constants α, β > 0 such that the total variation distance between µ and µ′ obeys
‖µ − µ′‖ ≤ β|U | exp(−α�).

In other words, strong spatial mixing means that conditioning a uniformly random
colouring of the lattice on the event that particular colours appear on vertices far away
from v has an exponentially small effect on the conditional distribution of the colour of
v. Physically, this means that correlations decay exponentially as a function of distance,
and that the system has a unique Gibbs measure and no phase transition.

The following recent result of Dyer et al [10] (see also the lecture notes by
Martinelli [15]) relates optimal temporal mixing with spatial mixing: if the boundary
constraints are permissive, i.e., if a finite region can always be coloured no matter how
we colour its boundary, and if the heat-bath dynamics on some finite block mixes in
O(n log n) time, then the system has strong spatial mixing. As they point out, q-colourings
are permissive for any q ≥ ∆ + 1. Therefore, theorem 1, which states that M(2, 3) has
optimal temporal mixing, implies the following result about spatial correlations.

Corollary 1. The uniform measure on the set of q-colourings of the square lattice, or
equivalently the zero-temperature antiferromagnetic q-state Potts model on the square
lattice, has strong spatial mixing for q ≥ 6.

As mentioned above, physicists conjecture spatial mixing for q ≥ 4. In the last section
we discuss to what extent our techniques might be extended to q = 4, 5.
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1.1. Markov chains, mixing times, and earlier work

Given a Markov chain M , let π be its stationary distribution and P t
x be the probability

distribution after t steps starting with an initial configuration x. Then, for a given ε > 0,
the ε-mixing time of M is

τε = max
x

min{t : ‖P t
x − π‖ < ε}

where ‖P t
x − π‖ denotes the total variation distance

‖P t
x − π‖ = 1

2

∑

y

|P t
x(y) − π(y)|.

In this paper we will often adopt the common practice of suppressing the dependence on
ε, which is typically logarithmic, and speak just of the mixing time τ for fixed small ε.
Thus the mixing time becomes a function of n, the number of vertices, alone. We say
that a Markov chain has rapid mixing if τ = poly(n), and optimal (temporal) mixing if
τ = O(n log n).

The most common Markov chain for the Potts model is Glauber dynamics. There are
several variants of this in the literature, but for colourings we fix the following definition,
which applies at zero temperature. At each step, choose a random vertex v ∈ G. Let S
be the set of colours, and let T be the set of colours taken by vs neighbours. Then choose
a colour c uniformly at random from S \ T , i.e., from among the colours consistent with
the colouring of G − {v}, and recolour v with c.

Independently, Jerrum [13] and Salas and Sokal [20] proved that for q-colourings on
a graph of maximum degree ∆ the Glauber dynamics (i) is ergodic for q ≥ ∆ + 2 (this
holds for fixed boundary conditions as well) and (ii) has optimal mixing for q > 2∆. For
q = 2∆, Bubley and Dyer [2] showed that it mixes in O(n3) time and Molloy [16] showed
that it has optimal mixing. Since the square lattice has ∆ = 4, these results imply optimal
mixing for q ≥ 8.

Dyer and Greenhill [8] considered a ‘heat-bath’ Markov chain which updates both
end-points of a random edge simultaneously, and showed that it has optimal mixing for
q ≥ 2∆. By widening the updated region to include a vertex and all of its neighbours,
Bubley et al [3] showed optimal mixing for q ≥ 7 for triangle-free graphs with maximum
degree 4, which includes the square lattice.

Another commonly used Markov chain is the Kempe chain algorithm, known in
physics as the zero-temperature case of the Wang–Swendsen–Kotecký algorithm [25, 26].
It works as follows. We choose a random vertex v and a colour b which differs from
vs current colour a. We construct the largest connected subgraph containing v which
is coloured with a and b, and recolour this subgraph by switching a and b. In a major
breakthrough, Vigoda [24] showed that a similar Markov chain has optimal mixing for
q > (11/6)∆, and that this implied that the Glauber dynamics and the Kempe chain
algorithm both have rapid mixing for q ≥ (11/6)∆. However, for the square lattice this
again gives only q ≥ 8.

For q = 3 on the square lattice, Luby et al [14] showed that a Markov chain including
‘tower moves’ has rapid mixing for any finite simply connected region with fixed boundary
conditions, and Randall and Tetali [19] showed that this implies rapid mixing for the
Glauber dynamics as well. Recently Goldberg et al [12] proved rapid mixing for the
Glauber dynamics on rectangular regions with free boundary conditions, i.e., with no fixed
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colouring of the vertices on their boundary. Unfortunately, the technique of [14, 12] relies
on a bijection between 3-colourings and random surfaces through a ‘height representation’
which does not hold for other values of q.

2. Coupling

We consider two parallel runs of our Markov chain, M(2, 3), with initial colourings X0, Y0.
We will couple the steps of these chains in such a way that (i) each chain runs according
to the correct distribution on its choices and (ii) with high probability, Xt = Yt for some
t = O(n log n). A now standard fact in this area is that this implies that the chain mixes
in time O(n log n), i.e. this implies theorem 1; this fact was first proved by Aldous [1] (see
also [9]).

Bubley and Dyer [2] introduced the very useful technique of path coupling, via which
it suffices to do the following: consider any two colourings X, Y which have a Hamming
distance one, i.e., which differ on exactly one vertex, and carry out a single step of the chain
on X and on Y , producing two new colourings X ′, Y ′. We will prove that we can couple
these two steps such that (i) each step is selected according to the correct distribution,
and (ii) the expected Hamming distance between X ′ and Y ′ is at most 1 − ε/n for some
constant ε > 0. Thus the expected change in the Hamming distance between the two
colourings is negative, −ε/n. See, e.g., [9] for the formal (by now standard) details as to
why this suffices to prove theorem 1.

We perform the required coupling as follows. Let X and Y be two arbitrary 6-
colourings which only disagree at one vertex. We pick a uniformly random 2 × 3 block
S, and let CX and CY denote the set of permissible recolourings of S according to X, Y
respectively. For each c ∈ CX , we define a carefully chosen probability distribution pc

on the colourings of CY . We pick a uniformly random colouring c1 ∈ CX and in X we
recolour S with c1 to produce X ′. We then pick a random colouring c2 ∈ CY according to
the distribution pc1 and in Y we recolour S with c2 to produce Y ′. Trivially, the marginal
distribution 〈S, c1〉 is uniform on S and CX . In order to ensure that the same is true of
〈S, c2〉, we must have the following property for the set of distributions {pc : c ∈ CX}:

for each c2 ∈ CY ,
1

|CX|
∑

c∈CX

pc(c2) =
1

|CY |
. (1)

Suppose that v is the vertex on which X, Y differ. If v ∈ S then CX = CY , so we
can simply define c2 = c1 (i.e., pc(c) = 1 for each c) and this ensures that X ′ = Y ′. If S
does not contain v or any neighbour of v, then again CX = CY and by defining c2 = c1

we ensure that X ′, Y ′ differ only on v. If v is not in S but is adjacent to a vertex in S,
then CX �= CY and so, depending on our coupling, it is quite possible that c2 �= c1 and so
X ′, Y ′ will differ on one or more vertices of S as well as on v.

For any pair CX , CY , we let H(CX , CY ) denote the expected number of vertices in S
on which c1, c2 differ. For every possible pair CX , CY we obtain a coupling satisfying (1)
and

H(CX , CY ) < 0.52. (2)

Thus the expected change in the Hamming distance between the two colourings is −1 if
v ∈ S and less than 0.52 if v is adjacent to S.
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Proof of theorem 1. As described above, it suffices to prove that for any choice of X, Y
differing only at v, the expected Hamming distance between X ′ and Y ′ is less than 1−ε/n
for some ε > 0, or equivalently that the expected change in the Hamming distance is less
than −ε/n.

Let us consider toroidal boundary conditions first; there are n possible blocks from
which the algorithm will choose, one for each vertex. Each vertex is contained in 6 blocks
and is adjacent to 10 blocks, so v ∈ S, or v is adjacent to S, with probability 6/n or 10/n
respectively. Thus the expected change in the Hamming distance is less than

−1 × 6

n
+ 0.52 × 10

n
= −0.8

n
.

For rectangular regions with free boundary conditions the situation is a little more
complicated. A natural extension of the basic procedure is to chose any block that lies
entirely in the region. This, however, means that a region of height h and width w with
n vertices will only have n − 2h − w + 2 possible 2 × 3 blocks; furthermore, when the
distinguished vertex v is on or close to the boundary, the number of blocks containing v
is less than the six that we have when v is snugly in the interior, thereby lowering our
chances of decreasing the Hamming distance.

It turns out that if we are dealing with free boundary conditions the natural extension
will work anyway, since then the maximum expected change in the Hamming distance
when v is on or close to the boundary and adjacent to our block is low enough to counteract
the reduced chance that our choice of block will contain v. In particular, we obtained these
values for the expected change in the Hamming distance when v is adjacent to the block:

v is on boundary, block is not: < 0.52 i.e., the interior case

block is on boundary, v is not: < 0.503

both v and block are on boundary: < 0.390.

As an example, when v is in the corner of the lattice we have one choice of a block
containing v, and two choices of a block adjacent to v; both of the adjacent blocks are
also on the boundary too, so the expected change in the Hamming distance is less than

−1 × 1

n − 2h − w + 2
+ 0.39 × 2

n − 2h − w + 2
= − 0.22

n − 2h − w + 2
.

It can be easily verified that in the other cases where v is on or close to a free boundary
the values given above are also well within what we need for rapid mixing.

If we have to deal with fixed, arbitrary boundary conditions—that is, a fixed proper
colouring of the sites just outside the region—applying our Markov process directly will
not give us the same result. The problem is that the ratio between the number of blocks
containing v and adjacent to v is the same as in the free boundary case, but the expected
change in Hamming distance for any block adjacent to v is the same as in the toroidal
case, as opposed to the lower values we obtain for free boundary conditions above.

An alternative modification of our basic Markov process that will work is to choose
any block that contains any vertex in the region, and then (properly) recolour all the
vertices in that block which are also in the region. For a lattice of height h and width
w with n vertices this gives us n + 2h + w + 2 possible 2 × 3 blocks to chose from; more
importantly, for every vertex in the lattice there are six available blocks which contain it.
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The expected change in the Hamming distance when the block is on the boundary
but fully contained in the lattice is now no different than the expected change for a block
on the interior, but we do have to deal with cases where the block may be partially outside
the lattice. When this happens we can merely treat the sub-block that we do recolour
in exactly the same manner as we would treat a smaller block being recoloured on the
interior (that is, we reduce the size of the block to contain only the recolourable part).
The calculations for smaller blocks adjacent to v were of course already done in order to
confirm previous results or rule out the possibility of rapid mixing for block sizes below
2 × 3, and the results were:

Sub-block size Maximum expected change

1 × 1 ≤0.50
2 × 1 or 1 × 2 <0.524
1 × 3 <0.514
2 × 2 <0.508
2 × 3 <0.52 (i.e. the interior case)

As an example, when v is in the corner of the lattice we now have six choices of a
block containing v, and five choices of a block adjacent to v; two of these choices are full
2 × 3 blocks, and the remaining choices have sub-block sizes of 2 × 1, 2 × 2, and 1 × 3
respectively. Hence the expected change in the Hamming distance is less than

−1 × 6

n + 2h + w + 2
+

0.52 × 2 + 0.524 + 0.508 + 0.514

n + 2h + w + 2
= − 3.414

n + 2h + w + 2
.

We could work out the cost explicitly for the rest of the cases where the distinguished
vertex v is on or near the boundary, but it is easier just to note that in no case can the
expected cost of colouring a block adjacent to v be more than 0.524, and there can never
be more than 10 adjacent blocks to choose from, so the expected change in the Hamming
distance can never be more than

− 0.76

n + 2h + w + 2
.

	

Of course, we still need to prove that the desired couplings exist for each possible

CX , CY . These couplings were found with the aid of computer programs. In principle, for
any pair CX , CY , searching for the coupling that minimizes H(CX, CY ) subject to (1) is
simply a matter of solving a linear program and so can be done in polynomial time.
However, the number of variables is |CX||CY | which, a priori, can be roughly (56)2.
Furthermore, the number of possible pairs X, Y is roughly 610, and even after eliminating
pairs which are redundant by symmetry, it is enormous. To deal with this combinatorial
explosion we designed a fast heuristic which, rather than finding the best coupling for a
particular pair, simply finds a very good coupling; i.e., one that satisfies (2). The code
used can be found at www.cs.toronto.edu/∼fvb We provide a more detailed description
in the next section.

3. The programs used

Method of the computation. Let R denote the rim vertices, that is, those vertices which
are adjacent to but outside of the block S. We call a colouring of the vertices of R a
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rim colouring. For each possible pair of rim colourings X, Y which differ only at a vertex
v ∈ R, we need to find a coupling between the extensions CX and CY of X, Y to S,
such that the couplings satisfy (1) and (2). These couplings were found with a small
suite of programs working in two phases. In the first phase, exhaustive lists of pairs of
rim colourings (reduced by equivalence with respect to allowable block colourings) were
generated. In the second phase, for each pair X, Y , we generated CX , CY separately;
these were then coupled, satisfying (1), in a nearly optimal way to obtain a bound on
H(CX , CY ) that satisfies (2).

Implementation. All programs take the following parameters: number of colours,
block dimensions, and an integer denoting the position of the distinguished vertex v with
respect to the block (0 if adjacent to the corner, +i if adjacent to the ith vertex along
the top of the block, and −i if adjacent to the ith vertex along the side of the block). We
assume that v has colour 0 in X and 1 in Y . Thus, if one specifies a rim colouring X and
the position of v, then this determines Y . For each colouring X we determined a good
coupling for each non-equivalent position of v.

By default the programs generate rim colourings and couplings on the assumption
that the block is not on the boundary of the lattice (i.e., all rim vertices potentially
constrain the allowable block colourings). Free boundary cases, however, can easily be
simulated by using values in the rim colourings that are outside the range determined
by the number-of-colours parameter. These were only checked when the analysis of the
non-boundary blocks yielded promising values. As mentioned above, the fixed arbitrary
boundary cases required no new calculations, since from the block’s ‘point of view’ there
is no difference (in the worst case) between being on an arbitrarily coloured boundary
and being in the interior. Thus, we simply reused previously calculated values for smaller
blocks on the interior to verify that the modified Markov process would work.

Generating rim colourings. Since the calculations required for phase 2 were much
more time-consuming than those for phase 1, the rim colouring generation procedure
was designed to minimize the number of colourings output rather than the time used
generating them. A rim colouring is represented by a vector of colours used on the rim,
starting from the distinguished vertex v and going clockwise around the block. If the set
of colours is {0, . . . , 5}, we can assume by symmetry that vs colour is 0 in X and 1 in Y .
The following reductions were applied to avoid equivalent rim colourings: reduction by
colour isomorphism (colours 2 and above), by exchange of colours 0 and 1, by exchange
of colours of vertices adjacent to the corners of the block, and by application of flip
symmetries where applicable.

Finding a coupling for particular rim colourings. Two programs were used for each
rim colouring X, and position i of v. In each, the initial operation is the generation of all
compatible lattice colourings; this is done separately for col(v) = 0 and col(v) = 1 (i.e.,
for CX and CY ). The first program creates a set of linear programming constraints that
is readable by the program lp-solve (by Michel Berkelaar of the Eindhoven University
of Technology; it is available with some Linux distributions). As mentioned above, time
and space requirements made use of this procedure feasible only for checking individual
rim colourings, and even then the block size had to be fairly modest.

The second program calculates an upper bound on the optimal cost using a greedy
algorithm to create a candidate coupling. Given sets of colourings CX and CY of size mX

and mY respectively, the algorithm starts by assigning ‘unused’ probabilities of 1/mX and
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1/mY respectively to the individual colourings. Then, for each distance d = 0, 1, . . . , 6,
for each colouring c1 in CX it traverses CY looking for a colouring c2 which differs from c1

on exactly d vertices. When such an c2 is found it removes the colouring with the lower
unused probability p from its list and reduces the unused probability p′ of the other to
p′ − p; the distance d · p is added to the total distance so far. The order in which the lists
of colourings CX and CY is traversed does affect the solution, so an optional argument is
available that allows the user to select one of several alternatives.

This heuristic does not guarantee an optimal solution, and with some blocks and
particular rim colourings the coupling it generates is far from the best. However, for the
rim colourings we are most interested in (ones where H(CX, CY ) is high for all couplings)
it seems to consistently give results that are optimal or very close (within 2%). We cannot
give a rigorous bound on the running time, but a cursory analysis and empirical evidence
suggest that it runs in roughly O(m log m) time, where m is the number of compatible
block colourings. Because the heuristic is so much faster than the LP solver, our general
procedure was as follows. (1) Use the heuristic with the default traversal order to calculate
bounds on the expected distance for all the rim colourings generated in phase one. (2)
When feasible, use the LP solver on those rim colourings that had the highest value of
H(CX , CY ), to obtain an exact value for their maximum. (3) For larger blocks or more
colours than could be comfortably handled by the LP solver, use all available traversal
orders on those rim colourings that had the maximum value of H(CX, CY ) to obtain as
tight a bound as possible within a feasible time.

Results of the computations. Computations were run on various block sizes and
numbers of colours in order to check the correctness of the programs, and also to collect
data which could be used to estimate running times and maximum expected distance
for larger block dimensions. For 7- and 8-colourings our results corresponded well with
previous work on the problem (e.g. [2]).

For 6-colourings, we checked 1× k blocks for k ≤ 5, as well as 2× 2 and 2× 3 blocks.
For all but the last of these the maximum expected distance we obtained was too large to
give us rapid mixing. The 2× 3 subgrid has two non-equivalent positions with respect to
the rim: the corner (to which eight rim vertices are adjacent) and the middle of the top
or bottom side (to which two rim vertices are adjacent). Denote these positions 1 and 2
respectively. For each X, Y with v in position 1, we obtained a coupling satisfying

H(CX , CY ) ≤ 0.511 830 9760.

For each X, Y with v in position 2, we obtained a coupling satisfying

H(CX , CY ) ≤ 0.483 786 3092.

Thus, in each case we satisfy (2) as required.
A slightly stronger output. By examining the problem a bit more closely, we see

that condition (2) is sufficient, but not necessary, for our purposes. Let Hi denote the
maximum of H(CX, CY ) over the couplings found for all pairs X, Y where v is in position
i, and let multi denote the number of rim vertices adjacent to position i. Then, being
more careful about the calculation used in the proof of theorem 1, and extending it to a
general a × b block, we see that the overall expected change in the Hamming distance is
at most (in, say, the toroidal case where the number of possible blocks is n)

−1 × ab

n
+

∑

i

multi ×
Hi

n
,
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a smaller value than that used in the proof of Theorem 1, where we (implicitly) used
(maxi Hi) ×

∑
i multi rather than

∑
i multi × Hi. Our programs actually compute this

smaller value. Even so, we could not obtain suitable couplings for any block size smaller
than 2 × 3.

4. Rapid mixing: Glauber and Kempe chain dynamics

In this section we prove theorem 2, showing rapid mixing for the Glauber and Kempe
chain dynamics, by following the techniques and presentation of Randall and Tetali [19].

Suppose P and P̃ are two Markov chains on the same state space with the same
stationary distribution π, and that we already have a bound on the mixing time of P̃
while we would like to obtain a bound for that of P . Let E(P ) and E(P̃ ) denote the
edges of these Markov chains, i.e., the pairs (x, y) such that the transition probabilities
P (x, y) and P̃ (x, y), respectively, are positive. Now, for each edge of P̃ , i.e., each
(x, y) ∈ E(P̃ ), choose a fixed path γx,y using the edges of P : that is, choose a series
of states x = x0, x1, x2, . . . , xk = y such that (xi, xi+1) ∈ E(P ) for 0 ≤ i < k. Denote the
length of such a path as |γx,y|. Furthermore, for each (z, w) ∈ E(P ), let Γ(z, w) ⊆ E(P̃ )
denote the set of pairs (x, y) such that γx,y uses the edge (z, w). Finally, let

A = max
(z,w)∈E(P )



 1

π(z)P (z, w)

∑

(x,y)∈Γ(z,w)

|γx,y|π(x)P̃ (x, y)



 .

Note that A depends on our choice of paths.
By combining bounds on the mixing time in terms of the spectral gap [7, 22, 21] with

an upper bound on P ’s spectral gap in terms of P̃ ’s due to Diaconis and Saloff-Coste [6],
we obtain the following upper bound on P ’s mixing time:

Theorem 3. Let P and P̃ be reversible Markov chains on q-colourings of a graph of n
vertices whose unique stationary distribution is the uniform distribution. Let λ1(P̃ ) be
the largest eigenvalue of P̃ ’s transition matrix smaller than 1, let τε and τ̃ε denote the
ε-mixing time of P and P̃ respectively, and define A as above. Then for any ε ≤ 1/4,

τε ≤
4 log q

λ1(P̃ )
Anτ̃ε.

We omit the proof. The reason for the additional factor of n is the fact that the upper
and lower bounds on mixing time in terms of the spectral gap are log 1/π∗ apart, where
π∗ is the minimum of π(x) taken over all states x. Since π in this case is the uniform
distribution and there are at most qn colourings, we have log 1/π(x) ≤ n log q. On the
square lattice, it is easy to see that there are an exponentially large number of q-colourings
for q ≥ 3, so removing this factor of n would require a different comparison technique.

Now suppose that P̃ is the block dynamics and P is the Glauber or Kempe chain
dynamics. We wish to prove theorem 2 by showing that τε = O(nτ̃ε). By adding self-
loops with probability greater than 1/2 to the block dynamics, we can ensure that the
eigenvalues of P̃ are positive with only a constant increase in the mixing time. Therefore, it
suffices to find a choice of paths for which A is constant. Since, for all three of these Markov
chains, each move occurs with probability Θ(1/n), if |γx,y| and |Γ(z, w)| are constant then
so is A.
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In fact, for q ≥ ∆ + 2, we can carry out a block move on any finite neighbourhood
with Glauber moves. We need to flip each vertex u in the block to its new colour;
however, u’s flip is blocked by a neighbour v if v’s current colour equals u’s new colour.
Therefore, we first prepare for u’s flip by changing v to a colour which differs from u’s new
colour as well as that of v’s ∆ neighbours. If the neighbourhood has m vertices, this gives
|γx,y| ≤ m(∆+1), or |γx,y| ≤ 30 for M(2, 3). (With a little work we can reduce this to 13.)

For the Kempe chain dynamics, recall that each move of the chain chooses a vertex v
and a colour b other than v’s current colour. If b is the colour which the Glauber dynamics
would assign to v, then none of v’s neighbours are coloured with b, and the Kempe chain
move is identical to the Glauber move. Since this happens with probability 1/q, the above
argument applies to Kempe chain moves as well, and again we have |γx,y| ≤ m(∆ + 1).
Moreover, we only need to consider moves that use Kempe chains of size 1.

Finally, since each vertex appears in only m = 6 blocks, the number of block moves
that use a given Glauber move or a given Kempe chain move of size 1 is bounded above
by m times the number of pairs of colourings of the block. Thus |Γ(z, w)| ≤ m(qm)2, and
we are done.

An interesting open question is whether we can prove optimal temporal mixing for
the Glauber or Kempe chain dynamics. One possibility is to use log-Sobolev inequalities
as in [5]. We leave this as a direction for further work.

5. Conclusion: larger blocks and smaller q?

We have run our programs on 2×4 and 3×3 blocks to see whether we could achieve rapid
mixing on five colours, but in both cases the largest values of H(CX , CY ) were too high.
It may be that rapid mixing on five colours is possible by recolouring a 3× 4 block, based
on the decrease of the ratio of maxH(CX , CY ) · |R| to |S| as the dimensions increase;
similar reasoning leads us to believe that rapid mixing using a 2× k block is possible, but
we would probably need a 2× 10 block or larger to achieve success. Unfortunately, doing
the calculations for 3 × 4 blocks is a daunting proposition. The problem is exponential
in two directions at once (number of rim colourings, and number of block colourings for
each rim colouring), so this would require a huge increase in the running time.
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