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On the edge-density of 4-critical graphs

Babak Farzad Michael Molloy

Abstract

Gallai conjectured that every 4-critical graph on n vertices has at

least 5
3n − 2

3 edges. We prove this conjecture for 4-critical graphs in

which the subgraph induced by vertices of degree 3 is connected.

1 Introduction

For a graph G = (V, E), let |G|, ‖G‖, χ(G) denote the number of vertices,

the number of edges and the chromatic number of G, respectively. Also,

let degG(v) denote the degree of vertex v in G. The set of neighbours of

a vertex v in G is denoted by NG(v). More generally for U ⊆ V , the set

of neighbours in V \U of vertices in U is denoted by N(U). A graph G is

called critical if χ(H) < χ(G) for every proper subgraph H of G; it is called

k-critical if it is critical and χ(G) = k. In 1963, Gallai [Gal63] conjectured

the following:

Conjecture 1.1 For each k ≥ 4, for every k-critical graph G,

‖G‖ ≥ k − 1
2

|G|+ (k − 3)(|G| − k)
2(k − 1)

.

For k = 4, this conjecture states that every 4-critical graph G has at

least 5
3 |G| − 2

3 edges.

The low-vertex subgraph of a k-critical graph is the subgraph induced by

the vertices of degree k − 1, i.e. the vertices of minimum degree. The
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low-vertex subgraph was defined by Gallai in his first study of critical

graphs [Gal63] where he proved the important structural result that ev-

ery block of the low-vertex subgraph is either a complete graph or an odd

cycle. It has since become a crucial part of the study of critical graphs.

For example, most known lower bounds on the number of edges in k-critical

graphs are based on Gallai’s characterization of the low-vertex subgraph.

In this paper, we prove Gallai’s conjecture for every 4-critical graph

whose low-vertex subgraph is connected:

Theorem 1.2 For every 4-critical graph G with a connected low-vertex sub-

graph, ‖G‖ ≥ 5
3 |G| − 2

3 .

1.1 Related work

The lower bound from Conjecture 1.1 is the best possible. One can see this

by applying Hajos’ Construction (see [Kri98]) to make an infinite family

F of k-critical graphs, k ≥ 3, for which the bound is tight. We start by

F = {Kk} for which it is easy to see that the the bound is tight. Repeatedly,

we extend F in the following way. Let G1 = (V1, E1) and G2 = (V2, E2) be

two disjoint copies of k-critical graphs in F , and let e1 = (u1, v1) ∈ E1 and

e2 = (u2, v2) ∈ E2. Denote by G the graph obtained from G1 and G2 by

applying Hajos’ Construction as follows: (i) delete e1 and e2; (ii) identify u1

and u2; (iii) join v1 and v2 by an edge. It is easy to see that G is k-critical

and that the lower bound from Conjecture 1.1 is tight for G. Thus we add

G to F .

In the remainder of this section, we will assume that n is the number of

vertices of the critical graph and that k ≥ 4, as 1-, 2- and 3-critical graphs

3



have a very simple structure.

The fact that every vertex of a k-critical graph has degree at least k− 1,

easily implies that every k-critical graph has at least (k−1)n
2 edges. Brooks’

Theorem strengthens this slightly to (k−1)n
2 + 1

2 when the graph is not Kk,

since at least one vertex has degree at least k. Dirac [Dir57] proved that

every k-critical graph, other than Kk, the complete graph on k vertices, has

at least (k−1)n
2 + k−3

2 edges. This bound is tight, as the following example

shows: consider a graph consisting of a (k− 2)-clique, A, a (k− 1)-clique, B

and two non-adjacent vertices u, v which are both adjacent to every vertex

in A, and whose neighbourhoods in B define a non-trivial partition of B.

Weinstein [Wei75] gave a shorter proof for Dirac’s lower bound by show-

ing that any counterexample is (k− 1)-regular and thus contradicts Brooks’

Theorem.3 Later, Mitchem [Mit78] gave another proof for this bound where

he also showed that the only graphs for which it is tight have the same

structure as the example given above. Dirac [Dir74] extended his bound by

showing that for k ≥ 5, if a k-critical graph is not Kk or one of those with

the same structure as the example above, then it has at least (k−1)n
2 + k−1

2

edges. Kostochka and Stiebitz [KS99] strengthened this to (k−1)n
2 + (k − 3)

for any k ≥ 4, so long as the graph is not Kk and n 6= 2k − 1.

As an easy implication of his characterization of the low-vertex subgraph,

Gallai (see [JT95]) proved that if a k-critical graph is not Kk, then it has

at least (k−1)n
2 + (k−3)n

2(k2−3)
edges. In particular, the number of edges in a 4-

critical graph (other than K4) is at least 20
13n. Kostochka and Stiebitz [KS98]

3A completely different proof was given later by Kronk and Mitchem [KM72] which

was motivated by Melnikov and Vizing’s proof of Brooks’ theorem.
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improved that bound, in the case where n 6= 2k−1, to (k−1)n
2 + (k−3)n

2(k2−3)
+ k−4

2 .

Krivelevich [Kri98] improved it further to (k−1)n
2 + (k−3)n

2(k2−2k−1)
(even when

n = 2k − 1). For k = 4 then Krivelevich’s bound is 11
7 n which is currently

the best known.

Recently, Kostochka and Stiebitz [KS03] proved that for k ≥ 6, every

k-critical graph other than Kk has at least (k−1)n
2 + (k−3)n

2((k−c)(k−1)+k−3) edges

where c = (k − 5)(1
2 − 1

(k−1)(k−2)). This improves Krivelevich’s bound for

k ≥ 6.

The high-vertex subgraph of a k-critical graph is the subgraph induced

by the vertices of degree at least k; i.e. it is what remains after deleting the

low-vertex subgraph. A key ingredient in Krivelevich’s proof is the following

theorem of Stiebitz [Sti82], which was first conjectured by Gallai.

Theorem 1.3 In every k-critical graph with at least one vertex of degree

k− 1, the low-vertex subgraph has at least as many components as the high-

vertex subgraph.

This immediately implies the following lower bound on eH , the number

of edges in H, the high-vertex subgraph. We use r to denote the number of

components of the low-vertex subgraph:

‖H‖ ≥ |H| − r. (1)

Any improvement on (1) will yield an improvement on Krivelevich’s

bound. Most of the work in this paper can be viewed as obtaining sub-

stantial improvement for the case r = 1, i.e. when the low-vertex subgraph

is connected.
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1.2 Definitions and preliminaries

It is easy to see that every vertex of a k-critical graph has degree at least

k−1. The vertices of a k-critical graph G whose degrees are k−1 are called

low vertices, and the others are called high vertices. The subgraphs of G

induced by the set of low vertices and the set of high vertices are called the

low-vertex subgraph L(G) and the high-vertex subgraph H(G), respectively.

Define a block to be a maximal 2-connected subgraph of a graph G. A

connected graph all of whose blocks are either complete graphs or odd cycles

is called a Gallai tree. A graph all of whose components are Gallai trees is

called a Gallai forest. A k-Gallai tree (forest) is a Gallai tree (forest) in

which all vertices have degree at most k − 1. Gallai [Gal63] proved the

following important structural result on critical graphs.

Theorem 1.4 If G is a k-critical graph then the low-vertex subgraph of G

is a k-Gallai forest.

Consider any k-colouring φ of A ⊂ G and any B ⊆ G−A. A k-colouring of

A ∪B is an extension of φ if it agrees on A. A vertex v of a 4-Gallai tree L

is called a d-vertex if it is contained in no cycle in L.

Gallai’s proof of Theorem 1.4 implies a more general statement:

Lemma 1.5 Suppose that L is a connected subgraph of an arbitrary graph

G induced by a subset of the vertices of degree k − 1 (in G). If there is a

(k − 1)-colouring of G− L that has no extension to L, then L is a k-Gallai

tree. Moreover, if k = 4 and B is any component of what remains of L after

deleting all of the d-vertices then all vertices of N(B) in G − L have the

same colour.
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We use L and H instead of L(G) and H(G), respectively, when there

is no ambiguity. Let nd denote the number of d-vertices. Also, let ‖L,H‖
denote the number of edges with exactly one endpoint in L.

For the remainder of this section, we will assume that G is a 4-critical

graph with a connected low-vertex subgraph.

Lemma 1.6 If |H| ≥ 1 then ‖L‖+ ‖L,H‖ ≥ 5
3 |L|+ 1 + nd

3 .

Proof. Let c denote the number of cycles in L. Since L is a 4-Gallai tree

other than K4, we know that ‖L‖ = |L| − 1 + c. Moreover, ‖L,H‖ =
∑

v∈V (L) degG(v)−∑
v∈V (L) degL(v) = |L|+2− 2c. This implies that ‖L‖+

‖L,H‖ = 2|L|+ 1− c ≥ 2|L|+ 1− |L|−nd

3 = 5
3 |L|+ 1 + nd

3 .

Let a >3-cycle denote a cycle of length at least four. The above proof

shows that the bound in the lemma is tight iff there is no >3-cycle in the low-

vertex subgraph. In fact, Construction 1.8 below shows that for 4-critical

graphs, this bound is tight in the sense that from any 4-critical graph G with

>3-cycles in its low-vertex subgraph, we can get another 4-critical graph G′

with H(G) = H(G′) where L(G′) has no >3-cycle, and ‖G‖ ≥ 5
3 |G| − 2

3 if

‖G′‖ ≥ 5
3 |G′|− 2

3 . This indicates that obtaining the appropriate lower bound

on the number of edges of the high-vertex subgraph, ‖H(G)‖, is the main

bottleneck in getting to Gallai’s Conjecture. Since by the classical theorem

of Brooks, K4 is the only 4-critical graph with empty high-vertex subgraph,

an immediate implication of Lemma 1.6 is

Corollary 1.7 If |H| ≤ 1 then ‖G‖ ≥ 5
3 |G| − 2

3 .

In order to prove Theorem 1.2, considering Lemma 1.6 and Corollary 1.7,
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Figure 1: Replacing a (2m + 1)-cycle C in L(G) with a sequence of 2m− 1

3-cycles. u1, . . . , u2m+1 are neighbours (some may be identical) of C.

it would suffice to show that if |H| > 1 then

‖H‖ ≥ 5
3
|H| − 5

3
− nd

3
. (2)

Thus, the following sections are devoted, very roughly speaking, to

studying the structure of H(G) in order to prove the lower bound in (2).

The following construction shows that to prove Theorem 1.2, we only

need to consider 4-critical graphs with no >3-cycle in their connected low-

vertex subgraph.

Construction 1.8 For every (2m + 1)-cycle C in L(G) (m ≥ 2) repeat the

following operation. Replace C with a sequence of 2m−1 3-cycles to obtain

another 4-critical graph G′ as shown by the example in Figure 1. Graph

G′ has 4m − 4 more vertices and 6m − 6 more edges than graph G. Thus,

‖G‖ ≥ 5
3 |G| − 2

3 if ‖G′‖ ≥ 5
3 |G′| − 2

3 . The 4-criticality of G′ is easy to see by

observing that a 3-colouring of the rest of G (or G′) cannot be extended to

C (or to the sequence of 3-cycles) iff u1, . . . , u2m+1 have the same colour. It

is clear that this operation does not create new >3-cycles in the low-vertex

subgraph.
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2 Proof outline

We begin by proving a special case of the theorem which gives the reader a

taste of the complete proof.

Special Case 2.1 If G is a 4-critical graph where L(G) is connected and

has no d-vertex then ‖G‖ ≥ 5
3 |G| − 2

3 .

It suffices to prove Inequality (2), which with nd = 0, states that

‖H‖ ≥ 5
3
|H| − 5

3
. (3)

We may assume that L 6= ∅ as otherwise Inequality (2) follows from the

fact that every vertex of H has degree at least 4. By Corollary 1.7, we may

also assume that |H| ≥ 2. Since every 4-critical graph is 2-connected, this

implies |N(L)| ≥ 2.

The most useful implication of G having no d-vertices is that in every

colouring of H, all vertices in N(L) have the same colour by Lemma 1.5.

Among all possible 3-colourings of H, we pick the one that minimizes the

number of vertices with the same colour as those in N(L); suppose that

colour is 1. This minimality, and the fact that |N(L)| ≥ 2, implies that

every vertex of colour 1 has at least one neighbour of each of the colours 2

and 3.

Now, we count the number of edges in H in two ways:

‖H‖ ≥ |N(L)|+ 2|H\N(L)|. (4)

Proof of (4): For every vertex v ∈ H\N(L), degH(v) ≥ 4, and for every

vertex v ∈ N(L), degH(v) ≥ 2 since it has at least one neighbour of each of

colours 2 and 3.
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We next prove:

‖H‖ ≥ 2|N(L)|+ 3
2
|H\N(L)| − 2. (5)

This will prove Special Case 2.1 as using the lower bounds on ‖H‖ given

by Inequalities (4) and (5), we have

‖H‖ ≥ 1
3
(|N(L)|+ 2|H\N(L)|) +

2
3
(2|N(L)|+ 3

2
|H\N(L)| − 2) >

5
3
|H| − 5

3

as we required.

Proof of (5): Let H1,2 and H1,3 be the subgraphs of H induced by the

vertices of colours 1 and 2 and by the vertices of colours 1 and 3, respectively.

Let P2 (or P3) be the set of vertices in H1,2 (or H1,3) that do not have

any neighbour of colour 3 (or colour 2). Let HN(L),2 be a component of

H1,2 − P2 that intersects N(L). If HN(L),2 does not contain all of N(L),

then by colouring all vertices in P2 with colour 3 and swapping the colours

on HN(L),2, we obtain a 3-colouring of H in which not all vertices of N(L)

have the same colour. By Lemma 1.5, this can be extended to a 3-colouring

of G, thus contradicting the choice of G. So, HN(L),2 must contain all of

N(L). Similarly, let HN(L),3 be the component of H1,3 − P3 that contains

N(L). Let Q be the subgraph obtained by deleting all edges of HN(L),2 and

HN(L),3 from H.

In the following argument, for H ′ ⊆ H, let (H ′)i denote the set of vertices

of H ′ of colour i. Then, every vertex in exactly one of (HN(L),2\N(L))1 and

(HN(L),3\N(L))1 has degree at least 1 in Q since it is adjacent to vertices of

both colours 2 and 3. Also, every vertex in (HN(L),2)2 and (HN(L),3)3 has

degree at least 1 in Q since no such vertex lies in P2 and P3. Finally, every
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vertex in H− (V (HN(L),2)∪V (HN(L),3)) has degree at least four in Q. This

yields

‖H‖ = ‖HN(L),2‖+ ‖HN(L),3‖+ ‖Q‖

≥ (|HN(L),2| − 1) + (|HN(L),3| − 1) +
1
2

∑

v∈V (Q)

degQ(v)

≥ (|N(L)|+ |(HN(L),2\N(L))1|+ |(HN(L),2)
2| − 1) +

(|N(L)|+ |(HN(L),3\N(L))1|+ |(HN(L),3)
3| − 1) +

1
2
(|(HN(L),2\N(L))14(HN(L),3\N(L))1|

+|(HN(L),2)
2|+ |(HN(L),3)

3|+ 4|H\(V (HN(L),2) ∪ V (HN(L),3))|)

≥ 2|N(L)|+ 3
2
|(HN(L),2 ∪HN(L),3)\N(L)| − 2 + 4|H − (V (HN(L),2) ∪ V (HN(L),3))|

≥ 2|N(L)|+ 3
2
|H\N(L)| − 2

as required.

Remark 2.2 It is valuable to note that the -2 in (5) corresponds to the

number of components of H1,2 −P2 and H1,3 −P3 that contain all of N(L).

The proof of Inequality (2), basically, follows the same idea; however, a

naive extension of the above proof will not work. The main difficulty is that,

in the presence of d-vertices, vertices in N(L) are not necessarily of the same

colour. This has a few repercussions: N(L) may intersect many different

components of H1,2 and H1,3 (and H2,3 which will be defined similarly). It

is not very hard to show that the number of components of H1,2, H1,3 and

H2,3 that intersect N(L) is at most nd +2 and this is sharp. Thus, recalling

Remark 2.2, with a bit more work, this allows us to replace (5) by

‖H‖ ≥ 2|N(L)|+ 3
2
|H\N(L)| − (nd + 2). (6)
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But this, with (4), is not enough to prove Inequality (2). So, we have

to focus more closely on the degrees in H of the vertices in N(L). Let α,

β and γ denote the number of vertices in N(L) with at least three, exactly

two and exactly one neighbour(s) in H, respectively. So, (4) becomes:

‖H‖ ≥ 2|H\N(L)|+ 3
2
α + β +

1
2
γ. (7)

Unfortunately, (6) and (7) are not enough to yield (3), which we need.

Roughly speaking (see below), by being much more careful, we can im-

prove (6) to:

‖H‖ ≥ 2|N(L)|+ 3
2
|H\N(L)| − (nd − β − 2γ + 5). (8)

Inequalities (7) and (8) imply Inequality (2) and hence our main theorem,

as follows:

‖H‖ ≥ 2
3
(2|H\N(L)|+ 3

2
α + β +

1
2
γ) +

1
3
(2|N(L)| − (nd − β − 2γ + 5) +

3
2
|H\N(L)|)

≥ 11
6
|H\N(L)|+ 2

3
|N(L)|+ (α + β + γ)− 1

3
nd − 5

3

≥ 5
3
(|N(L)|+ |H\N(L)|)− nd

3
− 5

3

≥ 5
3
|H| − nd

3
− 5

3
.

Actually, Inequality (8) does not hold for every 4-critical graph. Therefore,

for technical reasons, we work with pruned L-critical graphs - a class of

graphs which we define in Section 4. Lemmas 5.2 and 5.3, the analogues

of Inequalities (7) and (8), show that Inequality (2) holds for pruned L-

critical graphs which satisfy specific degree constraints, and thus implying

Theorem 1.2 for that class of graphs. In Section 4, we prove that if Theo-

rem 1.2 holds for such graphs then it holds for every 4-critical graph whose

low-vertex subgraph is connected (see Lemma 4.2 and Construction 4.3).
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3 A generalized structure

Our proof of Lemma 5.1, the main ingredient for Lemma 5.3, is by induction.

When carrying out our induction, it is problematic to show that the graphs

we reduce to remain 4-critical. We overcome this problem by extending our

setting to a broader class of graphs, which we call L-critical.

Let L be a 4-Gallai tree, and let F be a graph that contains L as an

induced subgraph such that degF (v) = 3 for every vertex v ∈ V (L). We say

F is L-critical if χ(F ) = 4 and χ(F − L) ≤ 3. Thus, a 4-critical graph G

with a connected low-vertex subgraph is L(G)-critical. Define H(F ), or H

when there is no ambiguity, to be the graph F − L. F is not necessarily

4-critical, and in particular, possibly some vertices of H have degree 0, 1, 2

or 3.

For any Gallai tree L and any L-critical graph F , we have the following

two observations.

Observation 3.1 If L′ ⊆ L is connected, then for any vertex v ∈ L′, any

3-colouring of F − L′ has an extension to L′ − v.

Observation 3.2 If u ∈ N(L) then degF (u) ≥ 3. Moreover, if u ∈ N(L)

and degF (u) = 3, then L ∪ {u} is also a 4-Gallai tree, and F is (L ∪ {u})-
critical.

For an L-critical graph F , define ‖L,H‖, d-vertices and nd analogously

to the definitions in Section 1. The proofs of Lemma 3.3 and Corollary 3.4

below are exactly the same as the proofs of Lemma 1.6 and Corollary 1.7.

Lemma 3.3 ‖L‖+ ‖L,H‖ ≥ 5
3 |L|+ 1 + nd

3 .
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Corollary 3.4 If ‖H‖ ≤ 1 then ‖F‖ ≥ 5
3 |F | − 2

3 .

Let φ be a 3-colouring of H. Let Pφ consist of every vertex v ∈ H\N(L)

such that only one colour appears in NH(v). Roughly speaking, Pφ cor-

responds to vertices in P2 and P3 in Section 2. For every vertex v ∈ Pφ,

there is an available colour (other than its own colour) that can be assigned

to v without violating the properness of the 3-colouring. In fact, we can

recolour any independent set of Pφ, without violating the properness of the

3-colouring. However, when we recolour a vertex v ∈ Pφ, graph H obtains

a new colouring, say φ′, and thus Pφ′ can be different from Pφ.

We will need to focus on possible ways to recolour the vertices of N(L).

One way is to do so using traditional kempe chains. But such switches will

not suffice for our purposes. Instead we need to consider a combination of

recolouring an independent set of Pφ and then switching on a kempe chain.

In what follows, we will define sets of vertices in N(L) whose colours can be

switched in this manner. We will denote such sets by kempes.

Let I be a maximal independent subset of Pφ. Define H1,2 to be the

set of the components of the subgraph of H\I induced by the vertices of

colours 1 or 2 that intersect N(L). The set of vertices of N(L) in a particular

component of H1,2 is called a (1, 2)-kempe. Let Ω1,2 denote the set of (1, 2)-

kempes. More formally, let Ω1,2 = {h ∩ N(L) : h is a component in H1,2}.
Define (1, 3)-kempes, (2, 3)-kempes, Ω1,3 and Ω2,3, similarly. Then, Ω =

(Ω1,2,Ω1,3,Ω2,3) is called a valid collection of kempes for φ. A kempe is an

(i, j)-kempe for any 1 ≤ i < j ≤ 3. Thus, every vertex in N(L) belongs to

two kempes; e.g., a vertex in N(L) of colour 1 belong to one (1, 2)-kempe

and one (1, 3)-kempe.

14



Note that for an L-critical graph F , we may have many different collec-

tion of kempes depending on our choice of the 3-colouring φ and the set I.

From the 3-colouring φ of H we can obtain another 3-colouring of H, say

φ′, by performing a switch on a kempe ω as follows.

Suppose that ω ∈ Ω1,2 where ω = Q ∩ N(L) and Q is a component of

H1,2(φ). We would like to obtain a new 3-colouring of H in which every

vertex in N(L), except for those in ω, still has its original colour, and the

vertices in ω have swapped their colours. This can be done as follows.

Switch: For every vertex v ∈ I ∩N(Q): if the colour of v is not 3, then

it can be switched to 3; make that switch. Now, every vertex in N(Q) has

colour 3. Then, we switch the colours in Q, i.e. recolour the vertices of

colour 1 with colour 2 and those of colour 2 with colour 1, without violating

the properness of the 3-colouring of H.

Note that it is possible that ω ⊆ N(L) represents two different kempes;

e.g. a (1, 2)-kempe and a (1, 3)-kempe (in this case, every vertex in ω must

be of colour 1). Then, there are two possible switches that can be performed

on ω.

4 Pruned critical graphs and credits

As we said in Section 2, the proof of the inequality in Lemma 5.3, the

analogue of Inequality (8), involves some technicality: (i) obtaining nd −
β − 2γ + 5, the analogue of the −2 term in Remark 2.2, requires working

with pruned L-critical graphs - a subclass of L-critical graphs that we define

below; (ii) obtaining the coefficients 3
2 and 5

3 requires, roughly speaking,

15



specific degree constraints on vertices of H.

Suppose that L is a 4-Gallai tree and F is an L-critical graph. A con-

nected subgraph W of L induced by a subset of d-vertices is called a wing if

the subgraph has at most one neighbour in L−W . We observe that wings

have no cycles. If vertex v of a wing W is adjacent to a vertex in L −W

then v is called the root of W . A wing W is called pendant if the root of W

is adjacent to a cycle in L−W .

Next, we extend the definition of α, β, γ from Section 2 to this setting.

Let Nα denote the subset of N(L) with exactly one neighbour in L, let Nβ

denote the subset of N(L) with at least two neighbours in L and at least

two neighbours in F − L, and let Nγ denote the subset of N(L) with at

least two neighbours in L and at most one neighbour in F − L. Again, we

emphasize that in an L-critical graph, vertices of F − L may have degree

< 4. So {Nα, Nβ, Nγ} is a partition of N(L). Let α = |Nα|, β = |Nβ| and

γ = |Nγ |.

Lemma 4.1 Suppose that v ∈ Nγ, and that W is a wing in L. If v has

exactly three neighbours in L, then at least one of them is in L−W .

Proof. Assume otherwise, and let x1, x2 and x3 be the three neighbours

of v in W . Let y ∈ W be the common vertex among the three paths in

R that join pairs of x1, x2 and x3, and let R be the subgraph consisting of

the three disjoint paths from v to y in W ∪ {v}. By Observation 3.1, we

can consider a 3-colouring of F − R. Since v ∈ Nγ , degH(v) ≤ 1. Also,

for all u ∈ R\v, degF (u) = 3. Thus, every vertex of R has at most one

coloured neighbour, and moreover, y has no coloured neighbours. A simple
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case analysis shows that the 3-colouring can be extended to R (details of

this case analysis appear in [Far05]). Contradiction.

Definition 1 Suppose that L is a 4-Gallai tree. An L-critical graph F is

called pruned if (i) L is a 3-cycle and |N(L)| = 1 or (ii) F has the following

properties:

(P1) L has no >3-cycle.

(P2) No vertex in H of degree 3 has exactly two neighbours in L.

(P3) Every vertex in H that is adjacent to a cycle in L belongs to Nα.

(P4) Every pendant wing W is adjacent to a vertex in Nα.

4.1 Pruning a critical graph

As we explained at the beginning of Section 4, we also require some de-

gree constraints on the vertices of a pruned L-critical graph. Instead of

considering a simple edge-count, it will be convenient to consider a more

general notion: We will define the credit of vertex v which we denote by

credit(v) to be a nonnegative real value. The credit of a graph G is defined

to be ‖G‖+
∑

v∈V (G) credit(v). If L is a 4-Gallai tree and F is an L-critical

graph, then F meets degree criteria if for every vertex v ∈ H(F ):

(Q0) If v /∈ N(L) then degF (v)
2 + credit(v) ≥ 5

3 ;

(Q1) If v /∈ N(L) then degF (v) ≥ 3;

(Q2) If v ∈ N(L) then degF (v) ≥ 4.

Lemma 4.2 If G is a 4-critical graph where L(G) is connected and |H(G)| >
1, then we can form a new 4-Gallai tree L and a pruned L-critical graph F

that meets degree criteria such that:
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(R) If credit(F ) ≥ 5
3 |F | − 2

3 then ‖G‖ ≥ 5
3 |G| − 2

3 .

This will be shown by the following construction.

Construction 4.3 We present the following operations ZQ1, ZQ2, ZP1,

ZP3, and ZP4 which can be applied if properties (Q1), (Q2), (P1), (P3),

and (P4), respectively, do not hold. These operations are listed in order

of their priorities. Thus, e.g. if we perform operation ZP3, then we must

not be able to carry out ZQ1, ZQ2 or ZP1, and so we know that the graph

satisfies properties (Q1), (Q2) and (P1). Notice that (Q2) implies (P2), and

so we do not have an operation specifically for (P2).

Performing these operations does not necessarily reduce the number of

violations of our properties. While eliminating one violation, we might in-

troduce others. However, after every operation either (i) |H| decreases, or

(ii) |H| does not change but the number of >3-cycles in L decreases, or

(iii) |H| does not change but |L| decreases and the number of >3-cycles in

L does not increase. So, after finitely many operations, we will reach a state

where none of them can be applied. Then the resulting graph will be pruned

and will meet degree criteria.

We begin with F = G and L = L(G), and note that trivially, (Q0)

and (R) both hold for this graph. We show that every operation preserves

properties (Q0) and (R). This allows us to assume that (Q0) and (R) always

hold when we carry out our operations. In what follows, we use L and F to

denote the 4-Gallai tree and the L-critical graph before an operation, and L′

and F ′ to denote the new 4-Gallai tree and the new L′-critical graph after

the operation takes place. Therefore, in order to show that F ′ satisfies (R), it
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would suffice to show that if credit(F ′) ≥ 5
3 |F ′|−2

3 then credit(F ) ≥ 5
3 |F |−2

3 ,

since F satisfies (R).

Operation ZQ1. If for a vertex v /∈ N(L), degF (v) ≤ 2 then obtain F ′

from F as follows (i) delete vertex v from F , and (ii) for each u ∈ N(v)\N(L)

give 1
6 credit to u if degF ′(u) = 3 and 1

2 if degF ′(u) ≤ 2. In this operation,

L′ remains the same as L, and clearly F ′ is L′-critical. Neighbours of v are

the only vertices whose degree and credit are affected by this operation; it

is easy to see that since these vertices satisfied (Q0) in F , they satisfy (Q0)

in F ′. For (R), since credit(v) ≥ (5
3 − deg(v)

2 ), if credit(F ′) ≥ 5
3 |F ′| − 2

3 then

credit(F ) ≥ credit(F ′) + deg(v) + credit(v)− deg(v)
2

≥ 5
3
(|F | − 1)− 2

3
+

5
3

=
5
3
|F | − 2

3
.

Remark 4.4 Note that the above inequality is tight only if we give 1
2 edge

credit to every neighbour of v, i.e. if all neighbours of v have no neighbour in

L and are of degree ≤ 3. Otherwise, we could give at least 1
3 edge credit to

another vertex in F ′ without violating (R). We need this observation later

in Operation ZP4.

Operation ZQ2. If degF (v) ≤ 3 for a vertex v ∈ N(L), then by

Observation 3.2, degF (v) = 3 since F is L-critical. We move vertex v to

L, i.e. L′ = L ∪ {v}. In this operation, F ′ remains the same as F . By

Observation 3.2, L′ is a 4-Gallai tree, and F is L′-critical. Also, the degree

and the credit of no vertex in F is changed. So, F ′ satisfies (Q0) and (R).

Operation ZP1. If L has a >3-cycle, we perform Construction 1.8 in

which L′ and F ′ are obtained from L and F by replacing the >3-cycle by
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a sequence of 3-cycles. F ′ is easily seen to be L′-critical iff F is L-critical.

Moreover, the degree and the credit of no vertex in H was changed, and so

F ′ satisfies (Q0). Also, since the edge credit of no vertex was changed, the

argument in Construction 1.8 shows that F ′ satisfies (R).

Operation ZP3. If a vertex v ∈ H(F ) is adjacent to at least two

vertices of L then at least one of them is in a 3-cycle C in L as by the

priorities of the operations, F satisfies (P1). Let u1 and u2 be the other two

neighbours of C. Now, L′ (or F ′) is the graph spanned by the vertices of L

(or F ) without the vertices of cycle C and adding the edge (u1, u2). It is easy

to see that L′ is a 4-Gallai tree and that F ′ is L′-critical. In particular, if

χ(F ′) ≤ 3, then F ′ has a 3-colouring in which u1 and u2 must have different

colours. Thus, F − C has a 3-colouring in which u1 and u2 have different

colours. So, cycle C can be coloured accordingly. Contradiction. It is also

easy to see that F ′ satisfies (Q0) (notice that degL′(v) ≥ 1). For (R), if

credit(F ′) ≥ 5
3 |V (F ′)| − 2

3 then

credit(F ) ≥ credit(F ′) + 5 ≥ 5
3
(|F | − 3)− 2

3
+ 5 =

5
3
|F | − 2

3
.

Operation ZP4. Suppose that there is a pendant wing W that has no

neighbour in Nα. Suppose that u is the root of W and that u is adjacent

to a cycle C in L, and let u1 and u2 be the other two neighbours of C.

Operation ZP4 consists of at most two steps.

Step 1. Let L′ (or F ′) be the graph obtained by removing the vertices

of wing W and cycle C from L (or F ) and adding the edge (u1, u2). Now, if

a vertex v had a neighbour in L but has no neighbour in L′, then we give 1
6 ,

2
3 , or 11

6 credit to v if it becomes a vertex of degree 3, 2, or 1, respectively.
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Therefore, F ′ satisfies (Q0). (Later on we see that v cannot become a vertex

of degree 0.)

Claim 4.5 In Step 1, the total credit given to vertices is at most |W |+1
3 .

Proof. By (Q2), suppose that for every edge between W and H we give at

most 1
3 credit to the endpoint in H (or 1

6 credit if it becomes a vertex of

degree 3) unless it has a neighbour in L′. So, if a vertex in Nβ or Nγ has no

neighbour in L′, then it has at least two or at least four neighbours in W

(by Lemma 4.1), and it gets at least 2
3 or 11

3 credit, respectively, as required

in any operation. Since there are |W |+ 1 edges between W and H, at most
|W |+1

3 credit is given to vertices.

It is easy to see that L′ is a 4-Gallai tree and that F ′ is L′-critical. In

particular, if χ(F ′) ≤ 3, then F ′ has a 3-colouring in which u1 and u2 must

have different colours. Thus, F − {C,W} has a 3-colouring in which u1

and u2 have different colours. By Observation 3.1, the colouring can be

extended to W . Now, since u1 and u2 have different colours, the colouring

can be extended to C. Contradiction.

The argument in Claim 4.5 implies that in the following Case 1 and

Case 2, at most |W |
3 credit is given to the vertices. Operation ZP4 ends after

Step 1 in these two cases.

Case 1: At least one vertex in NH(W ) has a neighbour in L′ or remains

a vertex of degree ≥ 4.

Case 2: At least two vertices of NH(W ) have no neighbour in L′ and

have degree ≥ 3.
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Now, it is easy to see that F ′ satisfies (R): If credit(F ′) ≥ 5
3 |F ′|− 2

3 then

credit(F ) = credit(F ′) + 2|W |+ 5− |W |
3

≥ 5
3
(|F | − |W | − 3)− 2

3
+

5|W |
3

+ 5 =
5
3
|F | − 2

3
.

Case 3: Neither Case 1 nor Case 2 holds.

Consider an extension of a 3-colouring of H to L− C. Since χ(F ) = 4,

vertices u, u1 and u2 must get the same colour, say 1. Let F (u, 2) denote

the component of F −C on vertices of colours 1 and 2 that contains vertex

u. Recolour vertices of colours 1 and 2 in F (u, 2) with colours 2 and 1,

respectively. Now, vertex u has colour 2, and consequently, the colour of

vertices u1 and u2 must have been changed to colour 2, as otherwise C can be

coloured. This implies that F (u, 2) contains both vertices u1 and u2. Thus,

by the tree structure of wing W , there is a vertex v1 ∈ F (u, 2)∩NH(W ) that

is connected via a path p1 ⊆ F (u, 2) to a vertex in H that has a neighbour in

L−W . By considering F (u, 3), which is defined similarly, the same argument

proves that there exists a vertex v2 ∈ F (u, 3)∩NH(W ) (notice that possibly

v1 = v2) that is connected via a path p2 ⊆ F (u, 3) to a vertex in H that

has a neighbour in L −W . All vertices in p1 have colours 1 and 2 and all

vertices in p2 have colours 1 and 3, and so, p1 and p2 are edge disjoint. Let

v′i be the closest vertex on pi to vi that has degree ≥ 4. Such a vertex exists

since pi connects vi to a vertex that has a neighbour in L−W , and such a

vertex has degree ≥ 4 by (Q2) and the fact that Case 1 does not hold. Since

Case 2 does not hold, at least one of v1 and v2, say v1, becomes a vertex of

degree ≤ 2 with no neighbour in L′. Let p1 = (v1 = v1
1, v

1
2, . . . , v

1
k, v

′
1, . . .).

Notice that if v1 = v2, then degH(v1) ≥ 4, and so Case 1 holds. Let v1
k′ be
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the closest vertex to v1 on p1 that is adjacent to v′1. So, k′ ≤ k.

Then we carry out Step 2 which calls Operation ZQ1 as a subroutine.

Step 2. We will apply Operation ZQ1 on vertices v1
1, v

1
2, . . . , v

1
k′ in that

order. Since v′1 is the first vertex along the path to have degree ≥ 4, v1
i

becomes a vertex of degree ≤ 2 after the deletion of vertex v1
i−1, and so we

can apply Operation ZQ1 each time. When we reach v1
k′ , vertex v′1 still has

degree ≥ 4 by the choice of v1
k′ . So, when we apply Operation ZQ1 on vertex

v1
k′ , by Remark 4.4, we will get an extra 1

3 credit. We use this extra 1
3 credit

to balance out the credit that we spend in Step 1.

In the following argument, L′ and F ′ denote the 4-Gallai tree and the

L′-critical graph after Step 1, and L′′ and F ′′ denote the 4-Gallai tree and

the L′′-critical graph after Step 2. After Step 2, by the proof of Operation

ZQ1, it is clear that L′′ is a 4-Gallai tree, F ′′ is L′′-critical, and F ′′ satisfies

(Q0).

Thus, it remains to prove that F ′′ satisfies (R). If credit(F ′′) ≥ 5
3 |F ′′|− 2

3

then

credit(F ′) ≥ credit(F ′′)− 5k

3
− 1

3
≥ 5

3
(|F ′| − k)− 2

3
− 5k

3
+

1
3

=
5
3
|F ′| − 1

3
.

By Claim 4.5, in Step 1, we give at most |W |+1
3 credit to the vertices. If

credit(F ′) ≥ 5
3 |F ′| − 1

3 then

credit(F ) ≥ (credit(F ′) + 2|W |+ 5− |W |+ 1
3

)− 5k

3

≥ 5
3
(|F | − |W | − 3)− 1

3
+

5|W |
3

− 1
3

+ 5 =
5
3
|F | − 2

3
.

Thus, if credit(F ′′) ≥ 5
3 |F ′′| − 2

3 then credit(F ) ≥ 5
3 |F | − 2

3 .
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5 The formal versions of Inequalities (7) and (8)

For a valid collection of kempes Ω = (Ω1,2, Ω1,3, Ω2,3) define |Ω| = |Ω1,2| +
|Ω1,3| + |Ω2,3|. Recall the definitions of nd, β and γ from Section 3. We

provide the proof of the following key lemma in the next subsection.

Lemma 5.1 Let F be a pruned L-critical graph for a 4-Gallai tree L. Let

φ be a 3-colouring of H, and let Ω = (Ω1,2, Ω1,3, Ω2,3) be a valid collection

of kempes for φ. Then |Ω| ≤ nd − β − 2γ + 5.

Define H+ = {v ∈ H\N(L) : credit(v) > 0}. We are now ready to state our

formal versions of Inequalities (7) and (8).

Lemma 5.2 If F is a pruned L-critical graph that meets the degree criteria,

then credit(H) ≥ 2|H\N(L)−H+|+ 5
3 |H+|+ 3

2α + β + 1
2γ.

Proof. Since F meets the degree criteria, if v ∈ H(F ) and credit(v) = 0

then deg(v) ≥ 4. As credit(H) =
∑

v∈H(degH(v)
2 + credit(v)), recalling the

definitions of α, β and γ and applying (Q4), we only need to show that if

v ∈ Nγ then degH(v) 6= 0. Assume otherwise and consider a 3-colouring

of H. Let R be the minimal connected induced subgraph of L that spans

NL(v). By (P3), v is not adjacent to any vertices of 3-cycles in L, and so

R has a vertex y with degR(y) = 1 that is a neighbour of v. Let z be the

other neighbour of y outside of R. Consider any 3-colouring of F −R. Since

v has no neighbour in F − R, we can change the colour of v to the colour

of z. Now, y has two neighbours of the same colour. So we can extend

the colouring to R by colouring its vertices one-at-a-time, ending with y.

Contradiction.
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Lemma 5.3 If F is a pruned L-critical graph that meets the degree criteria,

then credit(H) ≥ 2|N(L)| − (nd − β − 2γ + 5) + 3
2 |H\N(L)−H+|+ 5

3 |H+|.

Proof. Let φ be a 3-colouring of H and I be a maximal independent set of

Pφ. Lemma 5.1 implies that a valid collection of kempes has at most nd−β−
2γ+5 kempes. Let H1,2 be those components of H\I on vertices of colours 1

and 2 that intersect N(L). Define H1,3 and H2,3 similarly. Recall that there

is a one-to-one correspondence between the components of H1,2, H1,3 and

H2,3 and the kempes. Also, let Q be the subgraph obtained by deleting all

edges of H1,2, H1,3 and H2,3 from H. credit(H) = ‖H1,2∪H1,3∪H2,3‖+‖Q‖+
∑

v∈V (H) credit(v). Let T0, T1 and T2 be the set of vertices in H\N(L) that

are in none, one and two components of H1,2,H1,3 and H2,3, respectively. So,

‖H1,2∪H1,3∪H2,3‖ ≥ 2|N(L)|+|T1|+2|T2|−(nd−β−2γ+5) as every vertex in

N(L) appears in exactly two kempes, and thus, in exactly two components.

Every vertex in T1 has an edge to a vertex in I or has an edge to a vertex

of the third colour. Furthermore,
∑

v∈V (H) credit(v) ≥ 2
3 |H+|. Therefore,

‖Q‖ = 1
2

∑
v∈V (H) degQ(v) ≥ 1

2(4|T0−H+|+ |T1−H+|+ 2|T+− T0|). Thus,

credit(H) ≥ 2|N(L)| − (nd − β − 2γ + 5) + 3
2 |H\N(L)−H+|+ 5

3 |H+|.
Proof of Theorem 1.2 By Lemma 4.2, it would suffice to prove that

for any 4-Gallai tree L, if F is a pruned L-critical graph that meets the

degree criteria, then credit(F ) ≥ 5
3 |F | − 2

3 . We will use an argument like

the one at the end of Section 2: By Lemmas 5.2 and 5.3,

credit(H) ≥ 2
3
(2|H\(N(L) ∪H+)|+ 5

3
|H+|+ 3

2
α + β +

1
2
γ)

+
1
3
(2|N(L)| − (nd − β − 2γ + 5) +

3
2
|H\(N(L) ∪H+)|+ 5

3
|H+|)

≥ 11
6
|H\(N(L) ∪H+)|+ 5

3
|H+|+ 5

3
|N(L)| − nd

3
− 5

3
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≥ 5
3
|H| − nd

3
− 5

3
.

Now, by Lemma 3.3, credit(F ) = ‖L‖+ ‖L,H‖+ credit(H) ≥ 5
3 |F | − 2

3 , as

we required.

5.1 Proof of Lemma 5.1

First, we review some properties of L-critical graphs and their valid collec-

tions of kempes. Let L be a 4-Gallai tree, F be an L-critical graph, and φ be

a 3-colouring of H. Suppose that Ω = (Ω1,2, Ω1,3, Ω2,3) is a valid collection

of kempes for φ.

Let C be a cycle in L, and let N be the neighbours in H of cycle C.

From Lemma 1.5, we know that in any 3-colouring of H, including φ and

those obtained by performing a switch on φ, all vertices in N have the same

colour. Thus,

Observation 5.4 All vertices in N belong to the same kempes of Ω. More-

over, if L−C 6= ∅ and no vertex in N is adjacent to a vertex in L−C, then

N is not a kempe.

Now, suppose that v is a d-vertex with two neighbours u1 and u2 in H.

In any 3-colouring of F\v, including the extension of φ to L\v and those

obtained by performing a switch on φ and then extending to L\v, vertices

u1 and u2 must have different colours - otherwise there would be a colour

available for v and hence a 3-colouring of F . Thus,

Observation 5.5 Let c1 and c2 be the colours of u1 and u2, respectively.

Then, u1 and u2 belong to the same kempe of Ωc1,c2. Moreover, neither {u1}
nor {u2} is a kempe.
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Proof of Lemma 5.1. We prove this lemma by induction on |L|.
Base cases:

Case 1: |L| = 1. Then, α = 3, β = γ = 0 and nd = 1. It can be easily

seen that |Ω| = 3 < 5 = nd − β − 2γ + 5.

Case 2: L is a 3-cycle. Then, by Observation 5.4, we know that all

vertices in N(L) are of the same colour, say 1; and they belong to the same

kempes of Ω. Also, Ω2,3 is empty. So, |Ω| = 2. Furthermore, F is pruned,

and so β = 0 and γ ≤ 1. Thus, |Ω| = 2 < nd − β − 2γ + 5.

Induction step:

If L is a 4-Gallai tree that does not match with any of the base cases,

then (i) L has a cycle c that contains exactly one cut-vertex of L and c 6= L

or (ii) L has a wing W and W 6= L.

Case 1. L has a cycle C that contains exactly one cut-vertex of L and

c 6= L. By (P1), C is a 3-cycle. Let c = [v1, v2, v3], where degL(v1) = 3. Also,

let a and a′ be the vertices in H that are adjacent to v2 and v3, respectively.

By (P3), a, a′ ∈ Nα (and so they are distinct). By Lemma 1.5, vertices

a, a′ have the same colour, say 1. Now, we consider a smaller 4-Gallai

tree L′ = L − {v1, v2, v3}, and we extend the colouring of H to v1, v2, v3

by assigning colours 1, 2 and 3 to v1, v2 and v3, respectively, to obtain a

colouring φ′ of F − L′.

It is easy to see that F is a pruned L′-critical graph: v1 ∈ Nα since it

has exactly one neighbour in L′, and so we do not violate (P2) and (P3),

and furthermore, any new pendant wing must be adjacent to v1 which is in

Nα, and so, (P4) is not violated.

We define Ω′ = (Ω′1,2, Ω
′
1,3, Ω

′
2,3) to be a collection of kempes for φ′ as
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follows: Initially, let Ω′ = Ω. Vertices a and a′ belong to the same kempes in

Ω′1,2 and Ω′1,3. Now, (1) considering the path v1, v2, a on vertices of colours 1

and 2, we add v1 to the kempe in Ω′1,2 which contains a and a′, and remove

a and a′ from it; (2) considering the path v1, v3, a
′ on vertices of colours 1

and 3, we add v1 to the kempe in Ω′1,3 which contains a and a′, and remove a

and a′ from it. Since both a and a′ were in the same kempes in Ω, they have

neighbours of both colour 2 and 3, and thus, a, a′ /∈ Pφ. This guarantees

that Ω′ is a valid collection of kempes for φ′.

In the above procedure, nd, β and γ are not changed, and no kempe was

eliminated. So, |Ω| = |Ω′| ≤ nd − β − 2γ + 5.

Case 2: L has a wing W 6= L. If L has no cycle, then we let W = L−v0

where degL(v0) = 1. Otherwise, by (P4), let W ⊂ L be a wing that has a

neighbour in Nα and is minimal with respect to this property.

It is easy to see that F is a pruned L′-critical graph: the root of W is in

Nα since it has exactly one neighbour in L′, and so we do not violate (P2)

and (P3), and furthermore, any new pendant wing must be adjacent to the

root of W which is in Nα, and so, (P4) is not violated.

Consider an ordering of vertices in W , say u1, u2, . . . , u|W |, such that

every vertex ui has exactly two neighbours in H ∪ {u1, . . . , ui−1}, for 1 ≤
i ≤ |W |. We notice that u|W | is the root of W . By the following operation

MOVE-UP, we obtain a colouring φ′ of H ∪W (which is an extension of φ

to W ) and a valid collection of kempes Ω′ for φ′.

Operation MOVE-UP: Initially, Ω′ = Ω. We colour ui’s in the above

order as follows: Let v1 and v2 be the two already coloured neighbours of ui.

Vertices v1 and v2 have different colours as otherwise after any extension of
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the colouring to F − ui, we can colour ui since it has at most two colours in

its neighbourhood. So, without loss of generality, assume that v1 has colour

1 and v2 has colour 2. Colour ui with colour 3, and remove it from L. Now,

we (i) Add ui to the kempe in Ω′2,3 which contains v2. (ii) Add ui to the

kempe in Ω′1,3 which contains v1. (iii) If any of v1 and v2 has no neighbour

in L anymore, then we delete it from the kempes.

Now, we make the following observations from Operation MOVE-UP.

First we define the Ω-graph of F as follows: The vertex set of the kempe

graph is the set of vertices in N(L), and there is an edge between two such

vertices if they share a kempe. Let Ω[W ] denote the subgraph of the Ω-graph

of F induced by the vertices that have at least one neighbour in W .

Lemma 5.6 Ω[W ] is connected. Moreover, it has at least one edge to the

rest of the Ω-graph of F or there is a vertex in Ω[W ] that has a neighbour

in L−W .

Proof. We prove this lemma by induction on |W |. First, consider the

case when |W | = 1, and let v be the only vertex in W . Observation 5.5(a)

implies that Ω[W ] is connected. Moreover, Observation 5.5(b) implies that

each neighbour of v in H has a neighbour in L−W or it belongs to a kempe

that is not contained in Ω[W ], and so Ω[W ] has an edge to the rest of the

Ω-graph.

Now, consider the case |W | > 1. Let ul and ur be the two neighbours

of the root of W , i.e. vertex u|W |, in H ∪W . Since |W | > 1, by symmetry

we can assume that ul ∈ W . Let Wl denote the wing whose root is ul.

Now, consider an extension of the 3-colouring to L− u|W |. Without loss of

generality and by symmetry assume that ul and ur receive colours 1 and 2,
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respectively. So, the third neighbour of u|W |, i.e. the neighbour of u|W | in

L−W , receives colour 3. It is straightforward to show that there are unique

paths on vertices of colours 1 and 2 from ul and ur to H. Let vl and vr be

the other end of those two paths.

Notice that if ur ∈ H, then vr = ur. Uncolour the vertices of W , and

make a switch on the kempe in Ω1,2, namely ω, that contains vl. Again,

we extend the colouring to L− u|W |. By the choice of vl, in this extension,

vertex ul receives colour 2. Consequently, in this extension, the colour of

vertex ur must be changed to colour 1 or else u|W | can be coloured. So,

kempe ω contains both vl and vr. We consider the following two cases:

Case 1: ur ∈ H. By the induction hypothesis, Ω[Wl] is connected. Now,

Ω[W ] is connected since V (Ω[W ]) = V (Ω[Wl])∪{ur} and kempe ω contains

both ur and vl which is adjacent to Wl.

Case 2: ur ∈ W . Let Wr denote the wing whose root is ur. By the

induction hypothesis, Ω[Wl] and Ω[Wr] are connected. Now, Ω[W ] is con-

nected since V (Ω[W ]) = V (Ω[Wl]) ∪ V (Ω[Wr]) and ω contains both vl and

vr which are adjacent to Wl and Wr, respectively.

Finally, by considering the unique path on vertices of colours 1 and 2

from ul to H, the same argument proves that there is a kempe that contains

a vertex that is adjacent to W and a vertex that is adjacent to L−W (which

implies that Ω[Wl] has at least one edge to the rest of the Ω-graph), or there

is a vertex in H that has neighbours in both W and L−W .

Let βi and γi be the number of vertices in Nβ and in Nγ , respectively,

with exactly i neighbours in W before Operation MOVE-UP. Let α1 denote

the number of vertices in Nα with (exactly) one neighbour in W before
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Operation MOVE-UP. The tree structure of W implies that

α1 +
∑

i≥1

i(βi + γi) = |W |+ 1. (9)

We observe that vertices in Nβ with < 2 neighbours in W and those

in Nγ with < 4 neighbours in W have neighbours in L −W (by (P2) and

Lemma 4.1), and so, will not be deleted from the collection of kempes. Let k

be the number of kempes deleted during operation MOVE-UP. Notice that

a vertex in Nγ with exactly one neighbour in W will be moved to Nβ after

operation MOVE-UP. Now, by the induction hypothesis, we have

|Ω| = |Ω′|+ k

≤ (nd − |W |)− (β + γ1 −
∑

i≥1

βi)− 2(γ −
∑

i≥1

γi) + 5 + k

≤ nd − β − 2γ +
∑

i≥1

βi + γ1 + 2
∑

i≥2

γi − |W |+ 5 + k

≤ nd − β − 2γ + 5 + k − (α1 − 1 +
∑

i≥2

(i− 1)βi +
∑

i≥3

(i− 2)γi) (10)

where the last inequality is obtained by applying (9). Then it suffices to

show that

k ≤ α1 − 1 +
∑

i≥2

(i− 1)βi +
∑

i≥3

(i− 2)γi. (11)

In order to prove (11), we use what we call the deletion graph of W .

The vertex set of the deletion graph is the set of vertices that belong to at

least one deleted kempe. There is an edge between two such vertices if they

share a deleted kempe. Two vertices have two edges between them when

they share both their (deleted) kempes.

The right hand side of (11) is a trivial upper bound on the number of

vertices of the deletion graph minus 1. To get a feeling for the deletion graph,
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we first show that it is fairly easy to prove a relaxed version of (11). Let M be

a component of the deletion graph. Let βi(M) and γi(M) denote the number

in M of vertices in Nβ and in Nγ , respectively, with exactly i neighbours

in W before Operation MOVE-UP. Let α1(M) denote the number in M of

vertices in Nα with (exactly) one neighbour in W before Operation MOVE-

UP. Similarly, let k(M) be the number of kempes that are deleted during

Operation MOVE-UP and consist only of vertices in M .

k(M) ≤ |M |+ 1 ≤ α1(M) +
∑

i≥2

βi(M) +
∑

i≥4

γi(M) + 1. (12)

To see the right hand side inequality, notice that to count the number

of deleted kempes after W to H, we only need to consider those kempes

that contain only vertices which have no neighbours in L − W . So, those

kempes that contain vertices that are counted in β1, γ1, γ2 or γ3 (by (P2),

and Lemma 4.1) will not be deleted. To see k(M) ≤ |M | + 1, we consider

a rooted spanning tree of M . The root of the tree may be involved in at

most two deleted kempes. Now, each child of the root is also involved in at

most two deleted kempes. However, since it has an edge to its parent, one

of the child’s kempes is in common with its parent and has already been

considered. So, the child adds only one to the number of deleted kempes.

Similarly, every vertex other than the root adds at most one to the number

of deleted kempes, and this implies (12).

Now, consider a less relaxed version of (12):

k(M) ≤ α1(M) +
∑

i≥2

(i− 1)βi(M) +
∑

i≥3

(i− 2)γi(M). (13)

(12) is tight only if every kempe that intersects with the vertices of M

is deleted. Since M is a component of the deletion graph of W , no vertex
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of M has a neighbour in L −W . Now, since W ⊂ L, by Lemma 5.6, there

is an edge in the kempe graph that intersects M but is not in M . Thus, M

is a proper subgraph of the Ω-graph, and so, (13) is proved.

Remark 5.7 In fact, we just proved that k(M) ≤ |M |. Since k(M) ≤
α1(M)+

∑
i≥2 βi(M)+

∑
i≥3 γi(M), inequality (13) is tight only if βi(M) = 0

and γi(M) = 0 for all i > 2.

Now, by summing up (13) over all the components of the deletion graph

of W , we obtain

k ≤ α1 +
∑

i≥2

(i− 1)βi +
∑

i≥3

(i− 2)γi. (14)

Remark 5.8 To complete the proof of (11) it suffices to show that (13) is

not tight for at least one of the components of the deletion graph.

Now, we complete the proof of Lemma 5.1 by considering each possible

choice of W .

Case i: W = L − v0 where degL(v0) = 1. By (14), we get k ≤ α1 +
∑

i≥2(i − 1)βi +
∑

i≥3(i − 2)γi. So, we have |Ω| = |Ω′| + k ≤ 3 + k ≤
3+α1 +

∑
i≥2(i−1)βi +

∑
i≥3(i−2)γi where the first inequality is from Case

1 of the base cases. Now, let β(W ) =
∑

i≥2 βi and γ(W ) =
∑

i≥3 γi. The

two neighbours of v0 in H are the only two vertices that may have more

neighbours in L than what they have in W . So, we have β + 2γ ≤ β(W ) +

2γ(W )+2. Thus, by (9) we get |Ω| ≤ 3+|W |+1−β−2γ+2 = nd−β−2γ+5

since nd = |W |+ 1.

Recall that by the choice of W , if W does not satisfy Case i, then W

has a neighbour in Nα and is minimal with respect to this property. So, we
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have one of the following two cases:

Case ii: W is adjacent to two vertices in Nα. By the minimality of W , we

have |W | = 1. More precisely, W is a single vertex which is adjacent to two

vertices in Nα. Thus, Operation MOVE-UP does not change β and γ, and

will delete at most one kempe. So, |Ω| ≤ |Ω′|+1 ≤ (nd−1)−β−2γ+5+1 ≤
nd − β − 2γ + 5 by the induction hypothesis.

Case iii: W is adjacent to exactly one vertex in Nα. Recall from Re-

mark 5.8 that in order to prove (11), it suffices to prove that for at least one

of the components of the deletion graph of W , (13) is not tight. Let M be

the component of the deletion graph that contains the vertex in Nα, say v.

Recall that by Remark 5.7, inequality (13) is tight for M only if M does not

contain any vertex other than v or those counted in β2(M) (i.e. if α = 1,

βi(M) = 0 and γi(M) = 0 for all i > 2). Now, let ω be a deleted kempe that

contains v. (If there is no such kempe then we are already done since v forms

a component M where k(M) = 0, and so (13) is not tight.) We claim that

the number of edges from the vertices in ω to the wing W was even before

the operation. We show this by proving that Operation MOVE-UP does not

change its parity: in Operation MOVE-UP, steps (i) and (ii) do not change

the number of edges from the vertices in ω to the wing W . Moreover, if v is

deleted from the kempes, then Observation 5.5 implies that it does not form

a kempe on its own. Therefore, step (iii) eliminates ω only if ω = {v, v′}
where v, v′ ∈ Nα at the beginning of the iteration, and so, step (iii) deducts

exactly 2 from ω. This is not possible if v ∈ ω and the rest of the vertices of

ω have exactly two neighbours in W . Thus, at least one vertex of ω other

than v has odd number of neighbours in W , and so βi(M) > 0 or γi(M) > 0
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for some i > 2. So, (13) cannot be tight for M . This implies (11).

6 Extending our main theorem

We believe that, with sufficient labour, the proof of Theorem 1.2 can be

extended to k-critical graphs with connected low-vertex subgraphs for k = 5

and perhaps for greater values of k. However, a more important goal would

be to extend Theorem 1.2 to 4-critical graphs with disconnected low-vertex

subgraphs, and thus prove Gallai’s Conjecture for the case k = 4. The main

difficulty is that when L has more than one component, we don’t have nearly

as much control on the colours that can appear on the vertices of N(L) (i.e.

those adjacent to L) in 3-colourings of H.

For example, in the simplified setting of Special Case 2.1, i.e. where every

vertex of L lies in a cycle of L, it was easy to show that in any 3-colouring

of H, the vertices adjacent to L all have the same colour. However, for

disconnected L, it is only true that the vertices adjacent to one component

of L must all have the same colour.

Our restrictions on the permissable colourings of N(L) allowed us (es-

sentially) to say something about the extent to which the vertices of N(L)

must be joined by kempe chains, and those kempe chains contributed many

edges to H. The lack of similar restrictions has thus far prevented us from

extending these arguments to the case where L is disconnected.

On the other hand, we close with an observation that may make things

a bit simpler for the case where L is disconnected: In that case, we can

assume that we are in the simplified setting of Special Case 2.1. In fact,
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using the Hajos Construction, one can show that we only need to consider

Gallai forests where each component consists of two triangles joined by an

edge.
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