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Abstract—Support Vector Machine (SVM) are widely used in data-
mining and big data applications. In recent years, SVM has been used in
High Performance Computing (HPC) for power/performance prediction,
auto-tuning, and runtime scheduling. However, to avoid runtime training
overhead HPC researchers can only afford to apply offline model training.
This often leads to loosing prediction accuracy because no runtime
information is available. Advanced multi- and many-core architectures
offer massive parallelism with complex memory hierarchies which makes
runtime training possible, but efficiently parallelizing the SVM algorithm
on these architectures is challenging.

To address the challenges above, we have designed and implemented
MIC-SVM, a highly efficient parallel SVM for x86 based multi-core and
many-core architectures, such as the Intel Ivy Bridge CPUs and Intel
Xeon Phi co-processor (MIC). We propose various novel analysis methods
and optimization techniques to fully utilize the multilevel parallelism
provided by these architectures. The proposed techniques serve as general
optimization methods for other machine learning tools.

MIC-SVM achieves 4.4-84x and 18-47x speedup against the popular
LIBSVM, on MIC and Ivy Bridge CPUs respectively, for several real-
world data-mining datasets. Compared to GPUSVM, ran on a modern
NVIDIA k20x GPU, the performance of our MIC-SVM is competitive.
We also conduct a cross-platform performance comparison, focusing on
Ivy Bridge CPUs, MIC, and GPUs. We also provide insights on how to
select the most suitable architecture for individual algorithms and input
data patterns.

Index Terms—Support Vector Machine; Multi- & Many-Core architec-
tures; Parallelization; Optimization Techniques; Performance Analysis

I. INTRODUCTION

Support Vector Machine (SVM) [1] shown in Figure 1 is a
classification method that has been widely used in text categorization
[2], financial analysis [3], bioinformatics [4] and many other fields.
SVM has been used in the advanced databases like Oracle (10g, 11g,
12¢) [5] as a major data mining technique as companies increasingly
rely on their analytic capabilities. However, time-consuming training
processes greatly limit the efficiency of SVM. This concern is likely
to increase with the growing volume of data in big data computations.
This issue is also exacerbated by the limits in increasing clock
frequency and the rise of multi- and many-core architectures, whose
massive parallelism and complex memory hierarchies form a barrier
to efficient parallel SVM design. While programmers in the past could
depend on the ready-made performance improvement that comes
from a faster clock frequency, now they are faced with the challenge
of scaling performance over tens or even hundreds of cores within a
single chip [6]. One of the most representative architectures is Intel
Xeon Phi (MIC) [7].

SVMs are recently being used in HPC for performance and power
prediction during runtime at the system and compiler level for design
space exploration [8] [9]. Common approaches in current work train
the SVM model offline and then apply the static model for online
prediction to avoid significant performance overheads. However, this
dramatically reduces the flexibility of the runtime system; it may also
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Fig. 1. The figure shows Support Vector Machines, whose decision boundary
is decided by Support Vectors (SVs).The left-lower dots represent the -1 class
and the right-upper dots represent +1 class. These two classes are classified
by the the decision boundary (the dashed lines in this figure). We can observe
that the classification result is decided by the six Support Vectors.

increase the chance of model misprediction due to the lack of runtime
behavior information. In order to use SVM at runtime for dynamic
modeling and scheduling in HPC, we need to accelerate its training
phase on advanced multi- and many-core architectures.

Previous work either focused on designing SVM tools for CPUs
with relatively few cores and simple memory hierarchies, such as
the serial LIBSVM [10] or [11], or creating techniques to accelerate
SVM on GPUs such as GPUSVM [12]. However, there has been
no efficient SVM tool designed for advanced x86 based multi- and
many-core architectures such as Ivy Bridge CPUs and Intel Xeon
Phi (MIC), even though they have already gained popularity on
recent TOP500 list [13]. Also there are several design deficiencies
(i.e. no adaptive runtime support for efficient memory management
and data parallelism) within the existing tools such as LIBSVM and
GPUSVM, that will ultimately limit the performance improvements
for future architectures.

In this paper, we present MIC-SVM, a highly efficient parallel
support vector machine designed for x86 based multi-core and
many-core architectures such as Ivy Bridge CPUs and Intel Knight
Corner(KNC) MIC [14]. We design and implement an open-source
SVM Library that is not only highly efficient but can also be easily
adopted to the existing runtime systems or software. We want to
create methods and techniques general enough to be applied to
optimize similar machine learning models.

The contributions of this work include:

o Designing and implementing MIC-SVM (open-source libraries),
a highly efficient parallel support vector machine for x86 based
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Fig. 2. General flow for parallelizing and optimizing MIC-SVM.
TABLE I
STANDARD KERNEL FUNCTIONS
Linear Kernel(X;, X;) = X; X
Polynomial Kernel(X;, X;) = (aX; X; +7)¢
Gaussian Kernel(X;, X;) = —||1Xs — X2
Sigmoid Kernel(X;, X;) = tanh(aX; X; +r)

multi- and many-core architectures such as MIC.

« Proposing novel analysis methods and optimization techniques
(i.e. adaptive support for input patterns and data parallelism) to
fully utilize the multi-level parallelism provided by the studied
architectures.

« Exploring and improving the deficiencies of the current SVM
tools such as LIBSVM and GPUSVM.

o Providing insights on how to select the most suitable architec-
tures for specific algorithms and input data patterns to achieve
best performance.

Our experiments show that our proposed MIC-SVM can achieve
4.4-84x and 18-47x speedups against the widely-used LIBSVM
on MIC and Ivy Bridge CPUs respectively, for several real-world
data-mining datasets. Even compared with the highly optimized
GPUSVM, the performance of our MIC-SVM is still very competi-
tive.

II. BACKGROUND

Support Vector Machines (SVMs) (shown in Fig. 1) consist of two
major phases: training and classification. The user obtains the model
file through the training process and uses it to make predictions in
the classification process. Based on our performance profiling, the
majority of SVM execution time is spent on the training phase which
makes training the major performance bottleneck in SVM.

A. SVM Training Phase

In this work, we focus on binary-class SVMs since multi-class
SVMs are generally implemented as several independent binary-class
SVMs. The multi-class SVMs can be easily processed in parallel
once the binary-class SVMs are available. The training data of SVMs
contains two parts: X;,¢ € 1,2,...,n and y;,¢ € 1,2,...,n. Each
X is a training sample that contains many features. Each y; is the
sample label that corresponds to one and only one training sample
Xi. n denotes the number of the training samples (and the sample
labels).

SVM training can be presented as a linear-constraint convex
Quadratic Programing (QP) problem (shown in Equation (1) and
Equation (2)), where C represents the regularization constant that
balances the generality and accuracy, «; is the Lagrange multiplier,
and Kernel denotes the Kernel function. C can be set by users and
each «; is related to a specific training sample. The standard Kernel
functions in SVM are shown in Table I.

B. Sequential Minimal Optimization (SMO)

To make a large scale SVM training problem practical, several
algorithms have been proposed, including chunking [15], decompo-
sition [16], and caching/shrinking [17]. These algorithms generally
decompose a large QP problem into several small QP problems
and solve one small problem at each step. Each small QP problem
corresponds to one working set and the size of a working set is the
number of training samples it contains.

To minimize the size of the working set in the training phase,
Sequential Minimal Optimization (SMO) algorithm has been pro-
posed [18] [19] and implemented in several popular SVM tools
including LIBSVM [10]. In this work, we focus on providing various
optimization strategies to accelerate SMO algorithm (designed for
serial processor) in the SVM training phase based on features of
modern advanced multi-core and many-core architectures. Eventually,
we will conduct cross-platform performance comparison analysis
using our proposed MIC-SVM Library (Section 1V).

A brief outline of the commonly used SMO (serial code) algorithm
is presented in Algorithm 1. All the mathematical derivations of the
major parameters in Algorithm 1 are shown in equation (3)-(11).
Specifically, f; (i € {1,2,...,n}) represents the discrepancy between
the calculated objective value and the real objective value (Equation
(3)) for each point. The update of all f; (Equation (6)) at each
step requires access to all the training samples, which costs more
than 90% of the total time in the entire SMO algorithm. Therefore,
accelerating f; updates is our top priority for optimization. Algorithm
parallelization and detailed optimization methodologies will be shown
in Section III.

Two popular optimization techniques have been applied to the
training phase of previous SVM tools such as LIBSVM: Caching and
Shrinking. The Caching technique is proposed to store the computed
kernel elements (K ernel(X;, X;)) in the remaining memory through
the least-recent-use (LRU) strategy—to decrease the number of kernel
evaluations efficiently by avoiding constantly accessing the training
samples. The Shrinking method has been employed to remove the
bounded elements such as o; and C in order to reduce the size of
the optimization problem and the amount of calculations. However,
when designing a parallel SVM tool for advanced multi- and many-
core architectures, these optimization techniques may lead to negative
performance. For instance, if the algorithm is memory bound, the
caching strategy may not bring any performance benefits for these
architectures due to higher memory access cost, memory contention
from multi-threading and limited bandwidth. In Section III, we will
show how these traditional optimizations may not be suitable for our
parallel MIC-SVM tool designed based on the features of modern
multi- and many-core architectures.

III. METHODOLOGY FOR MIC-SVM

In this section, we will briefly describe several important design
methods and optimization details for our proposed MIC-SVM on
parallelizing and accelerating SVM method on Intel Ivy Bridge CPUs
and Intel Xeon Phi coprocessor (MIC). Since Ivy Bridge CPUs
and MIC share many similarities in architecture, we employ several
similar optimization techniques for them. Figure 2 shows the general
flow for parallelizing and optimizing our MIC-SVM, which can
also be applied to optimize similar machine learning methods. The
contents of this section will follow this flow as well. Our MIC-SVM
tool can be downloaded at [20].
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Algorithm 1 The Original SMO Algorithm

0: Start

1: Input the training samples X; and pattern labels y;, Vi € {1,2,...,n}.
2: Initializations, a; =0, f; = —y;, Vi € {1,2,...,n}.

3: Initializations, bpign, = —1, thign = min{i : y; = —1}, bjow = 1,
ow = max{i Y, = 1}.

4: Update apign, and oo, according to Equation (4) and (5).

5: If Kernel(Xpigh,X;) is not in memory, then compute
Kernel(Xpign, X;) and cache Kernel(Xpign,X;) in  memory
using the LRU strategy.

6: If Kernel(Xjow,X;) 1is mnot in memory, then compute

Kernel(Xjon,X;) and cache Kernel(Xj,qy,X;) in memory through
LRU strategy.

7: Update f; according to Equation (6), Vi € {1,2,...,n}

8: Compute ipighs tows Phighs and by, according to Equation (9) and
(10).

9: Update apign, and oo, according to Equation (4) and (5).

10: If iterations meet certain number, then do shrinking.

11: If bjow > bpign + 2 X tolerance, then go to Step 5.

12: End

A. Analysis of the Algorithm and Architecture

As mentioned in Section II-B, the updates of f; (i € {1,2,...,n})
at each step is the most time consuming phase in the SMO algorithm
because it needs access to all the training samples. Fortunately,
for any pair of 4,5 € {1,2,...,n}, the updates of f; and f; are
independent of each other. Therefore, we can convert the serial form
(Equation (6)) to the parallel form (Equation (11)) :

131 = F+(dhigh_ahigh)yhithighKernEZ"’_(é‘low_alow)ylowLOWKeTREZ

11

where F', HighKernel, and LowKernel are vectors.
According to Equation (6)) and (11)), we can easily get
F(i) = fi, HighKernel(i) = Kernel(Xnign,X;), and

X1 X2 Xi Xn X (high)

nDim e I

Fig. 3. This figure corresponds to the computation of HighKernel
(used in Equation (11)). HighKernel is a vector, and HighKernel(i) =
Kernel(Xpigh, X;). From this figure we can see that the evaluation of
HighKernel need to access all the training samples. The computation of
LowKernel can be accomplished in the same way.

LowKernel(i) = Kernel(Xiow, X;). Figure 3 illustrates the com-
putation of HighKernel used in Equation (11)). LowKernel can
be processed in the same fashion.

In order to effectively analyze and optimize the parallel SMO
algorithm in MIC-SVM, we need to analyze on the gap between
algorithmic features and characteristics of the underlying architec-
tures. Here, we define the Ratio of Computation to Memory Access
(RCMA) to describe SMQ’s algorithmic feature (shown in Equation
(12)):

ROMA — number_of_comp_flops

12
number_of_memory_access_bytes (12

According to Figure (3) and Equation (11), we take the single
precision case as an example: the total bytes of memory access of
the algorithm can be estimated as n X nDim X 4 where n is the



TABLE II
RCMB VALUES FOR EVALUATED ARCHITECTURES IN THIS PAPER

Architecture Ivy Bridge MIC  Fermi  Kepler
Frequency (GHz) 2.20 1.09 1.50 0.73
Peak Performance

Double (Gflops) 422 1010 515 1320
Peak Performance

Single (Gflops) 844 2020 1030 3950
Theoretical Memory

bandwidth (GB/s) 128 352 192 250
RCMB

Single (Gflops/GB) 6.59 5.74 5.36 15.8
RCMB

Double (Gflops/GB) 3.30 2.87 2.68 5.28

number of training samples and nDim is the maximal number of
features in one training sample. In order to obtain HighKernel
and LowKernel, we need to conduct 2n kernel evaluations (Figure
3). Take the Gaussian kernel for example (shown in Table I), each
kernel evaluation requires nDim subtraction operations, (nDim-+1)
multiplication operations and (nDim — 1) addition operations. In
total, the computations of HighKernel and LowKernel require
2 xn x 3 x nDim floating point operations. According to equation
(12), the RCMA (Ratio of Computation to Memory Access) of SMO
in MIC-SVM is about 1.5 for processing single precision Gaussian
kernels (theoretical lower bound).

To compare with the algorithmic bound of parallel SMO, we use
the Ratio of Peak Computation to Peak Memory Bandwidth (RCMB)
to describe the theoretical architectural bound. RCMB can be defined
as (13):

theoretical_peak_per formance
theoretical_bandwidth

All the RCMB values of the evaluated architectures in this paper
are shown in Table II (both single and double precisions). Take the
single precision case for example, the RCMA of the SMO algorithm
is around 1.5 (discussed previously), which is lower than all the
RCMBs of the evaluated architectures. This indicates that the limited
memory bandwidth of the evaluated architectures may not match the
high processing power required for accelerating the parallel SMO.
Therefore, improving data reuse is very necessary to reduce the
impact of the bandwidth constraint.

RCMB =

13)

B. Adaptive Heuristic Support for Input Datasets

In MIC-SVM, we provide methodology for more efficiently pro-
cessing different types of input datasets (sparse and dense), which
has not been well addressed in the previous SVM tools such as
LIBSVM and GPUSVM. For instance, in order to reduce the memory
requirement, LIBSVM applies sparse data format for processing input
datasets. However, certain sparse format can limit the parallelism
greatly on specific architectures such as MIC. Moreover, the AOS
(array of structure) method used in data processing phase of LIBSVM
can lead to noncontinuous memory access, which may be very
expensive due to high memory access latency and contention.

On the other hand, GPUSVM applies dense format for efficient
data processing. However, this may make GPUSVM difficult for
handling some sparse datasets. For example, a training phase that can
be completed on a single CPU chip by LIBSVM may require several
GPU cards. Take one of our test datasets sraa [21] for example, it only
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Fig. 4. The figure shows our adaptive support for different types of datasets
in our MIC-SVM. The pre-generated classifier is trained through N (N >
100) different real-world datasets which cover a variety of patterns.
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Fig. 5. Abstract Diagrams of two evaluated architectures: MIC and Ivy
Bridge CPU.

requires 27 megabytes in sparse format. While in dense format, 11.6
gigabytes are required. This large data size in dense format would
make the training process impossible to run on a single GPU card.

To address the issues above, we apply adaptive support for handling
different types of datasets in our MIC-SVM. Figure 4 illustrates the
process flow. We construct a classification model (or classifier) from
the information of training N (N >100) different real-world datasets,
which could cover a variety of data patterns. Then any given dataset
will be classified as +1 or -1 by the pre-generated classifier according
to its features such as n, nDim, and density. After that, our MIC-
SVM Library will select either dense or sparse method to process
the +1 and —1 dataset respectively. The classification model and
the original training data will also be provided to users. Users have
the flexibility to add new training samples to update the classifier.
Additionally, unlike LIBSVM, we use SOA (structure of array)
instead of AOS (array of structure) for continuous memory access
in the data processing phase. The adaptive support for input patterns
is necessary for achieving efficient parallelism for dense datasets and
reduce memory requirement for extremely sparse datasets.

C. Two-Level Parallelism

The growing concern of power dissipation [22] has moved the
focus of modern processors from increasing clock rate to increasing
parallelism to improve peak performance without drastic power
increment. All our experimental architectures (i.e. MIC and Ivy
Bridge abstract architectures are shown in Figure 5) employ two-
level parallelism: task and data parallelism.

For Ivy Bridge and MIC, the task parallelism is achieved by utiliz-
ing multiple hardware threads. For MIC, the data parallelism benefits
from on-core VPU (Vector Processing Unit) and SIMD. For Fermi
and Kepler, the task parallelism comes from the independent warps
that are executed by different SMs. In each warp, the data-parallelism
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Fig. 6. Results for strong scaling test of MIC-SVM on Intel Xeon Phi using
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of cores.

is achieved by the computations performed by the different CUDA
cores within the SM. In order to get satisfactory performance, fully
utilizing the two-level parallelism and improving the occupancy rate
of the computing resources are crucial.

1) Task Parallelism: As mentioned in Section III-A, the evaluation
of a given element in HighKernel (the same with LowKernel)
is independent from any other element (Figure 3). Each kernel-
evaluation (e.g. HighKernel(i)) needs to access one specific train-
ing sample (e.g. X;) and Xpign (shared by all). Therefore, each
kernel-evaluation needs to access 2 X nDim floating points, which
can be categorized as a coarse-granularity operation. In short, the
independent computation, independent memory requirement, and
coarse parallel granularity will make kernel evaluation a good can-
didate for task parallelism. For our case, the efficient techniques of
task parallelism contain the configuration of proper thread number
and balanced utilization of cores and threads.

The proper number of threads: For both CPUs and MIC, each
independent hardware device owns a specific amount of physical
resources, which provides an inherent task parallelism. Hence, for
taking full advantage of this mechanism, a practical way is to set
the number of threads according to the number of physical resources
in each device. Taking MIC as an example, according to Figure 6,
our MIC-SVM implementation shows decent strong scalability even
though the performance does not have a significant increment from
60 threads to 240 threads due to physical resource limitation and
memory contention from multi-threading.

Load balancing: In our case, we use affinity models (shown in
Figure 7) to facilitate load balancing. The affinity models provide
different ways to allocating the virtual threads to the proper cores
for better performance and resource utilization. The affinity model
can have a significant impact on overall performance when using
less than maximum number of threads. For instance, Figure 8 shows
the performance speedup of using “’balanced” mode over “compact”
mode when running our MIC-SVM on Intel Xeon Phi with various
types of datasets. This is because each MIC core supports 4 hardware
threads and using compact mode reduces the actual number of
physical cores used. Therefore, on MIC, we use “balanced” mode
for our MIC-SVM. In this way, tasks can be decomposed into
small portions and distributed across all the physical devices evenly.
Balanced mode also works for Ivy Bridge CPUs because only one
hardware thread is supported per core.
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Fig. 7. Three affinity models for load balancing. 1) compact mode: the new
thread will be firstly allocated to one core until the core reaches its maximum
load; 2) scatter mode: the new thread will be firstly allocated to the core that
has the lightest load; 3) balanced mode: it not only assigns the new thread
to the core that has the lightest load but also tries to assign the neighboring
threads to the same core.
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Fig. 8. Performance speedup of using "balanced mode” over "compact mode”
when running MIC-SVM on Intel Xeon Phi with various types of datasets.

2) Data Parallelism: After accomplishing efficient task paral-
lelism, another concern is how to achieve data parallelism within
each hardware thread for the data-wise operations in individual kernel
evaluation. One possible solution to this is applying Single Instruction
Multiple Data (SIMD) mechanism, which is supported by both Ivy
Bridge CPU and Intel MIC. Additionally, MIC provides VPU (Vector
Processing Unit) for more efficient vectorization. MIC also supports
512-bit instruction, which means 16 single-precision or 8 double-
precision operations can be executed at one time. We use the Cilk [23]
array notation to achieve the data parallelism explicitly rather than
applying the implicit compiler model. The explicit data parallelism
will help to unleash vectorization by providing context information.
To achieve better performance, we apply memory alignment so that
vectorization can use aligned load instructions.

Adaptive support for data parallelism: As for some extreme
cases, the number of non-zero elements in one training sample (e.g.
< 8) is too few to take any advantage of the SIMD instruction. Under
such circumstances, both the vectorization and hardware threads are
dedicated to task parallelism, which means each kernel evaluation is
processed serially. Similar to the adaptive support for data patterns
(discussed in Section III-B), our MIC-SVM Library will make the
decision on whether employing data parallelism within each kernel
evaluation through a trained classifier based on both features of inputs
and underlying architectures. This functionality is very useful because
it will not discriminate inputs that have already been processed as
”sparse” from being vectorized for best performance. Section IV-D(1)
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on Intel Xeon Phi (MIC) and Ivy Bridge CPUs under increasing caching size.

will use sraa dataset as an example to illustrate that this functionality
is critical at selecting the most suitable parallel granularity for
performance.

D. Removing Caching and Reduce Shrinking Frequency

As discussed in Section II-B, in theory, caching strategy can
effectively reduce the number of kernels being evaluated. However,
it also requires more memory access. Since our parallel SMO is
more likely memory bound on our evaluated architectures, applying
caching may affect the performance negatively due to high memory
access latency, memory contention from multithreading, and limited
bandwidth. Figure 9 confirms our assumption that memory activities
rise significantly when increasing the caching size for MIC. Figure 10
illustrates the caching effects on overall execution time when running
our MIC-SVM on the MIC and Ivy Bridge architectures. It shows that
using no additional caching strategy (0 MB) achieves the best overall
performance for both cases. Based on similar experiments, we elimi-
nate the caching optimization in our MIC-SVM because it generally
brings no performance benefits on the evaluated architectures.

The purpose of shrinking is to get rid of the bounded elements
in order to reduce the size of optimization problem (Section II-B).
However, the shrinking strategy requires index rearrangement, data
marshaling and reconstruction. These operations will incur significant
overheads since serial processing, memory allocation and deallocation
greatly limits the performance on the low-frequency processors
(i.e.MIC cores). Moreover, in order to achieve load balancing, the
data has to be scattered and gathered, which increases the overheads
for data movements. Therefore, the performance loss may outweigh
the gain when shrinking is frequently invoked. We use a trained SVM
regression model to predict the best frequency of shrinking based on

the information of datasets and the program parameters. Therefore,
the general focus has been switched from maximally shrinking the
iterations for convergence, which may encounter higher overhead, to
reducing the time of each iteration.

E. Reducing the Gap Between RCMA and RCMB

The two-level parallelism requires a large amount of data dur-
ing a short period of time, which may be beyond the capacity
of peak memory bandwidth. This bottleneck indeed is caused by
the significant gap between algorithmic RCMA and architectural
RCMB (Section III-B), which may further limit the improvement in
performance. Therefore, together with load balancing, we employ the
OpenMP [24] SCHEDULE technique (static type, default chunk size)
to distribute the training samples (one training sample corresponds to
one iteration) to all hardware threads evenly. Along with prefetching,
this method not only eliminates the overheads of data communication
between different hardware threads (through avoiding scatter/gather
operation), but also better utilizes abundant caches provided by the
CPUs and MIC. In this way, we can effectively reduce the discrepancy
between the algorithmic RCMA and architectural RCMB through
data reuse.

FE. Other Optimization Techniques

In order to further improve the performance, we supplement
other useful techniques such as exploring the proper granularity of
parallelism by configuring the data sizes for two-level parallelism,
minimizing the threads’ creation and destroy to reduce synchroniza-
tion overhead, and maximizing the TLB page size to 2MB to obtain
significantly more memory coverage when the datasets require more
than 16MB memory. Other optimization details can be found in the
SVM-MIC open-source Library.

To sum up, a skeleton parallel SMO algorithm in MIC-SVM is
described in Algorithm 2 where 7" is the number of hardware threads,
t is the thread ID, and F, Y are the vector forms of f; and y;
(Vi € {1,2,...,n/T}) respectively. It is only a skeleton algorithm
without addressing every individual optimization method.

Algorithm 2 Parallel SMO Algorithm

0: Start

1: Input the training samples X; and pattern labels y;, Vi € {1,2,...,n}.
Applying adaptive heuristic support to decide how to process input
datasets (sparse or dense) and whether to vectorize the kernel or not.

2: Map all the X;, y;, and «a; (Vi € {1,2,...,n}) to all the hardware
threads evenly through static SCHEDULE.

3: Initializations, for all hardware threads concurrently, o =0, ?t =
~Yivte{1,2,.,T}.

4: Initializations, bpign = —1, ipign = min{i :
llow = max{i:y; = 1}.

5: Check the thread Affinity to keep load balancing.

6: Update arp;gn, and oo, according to Equation (4) and (5).

7: If kernel is vectorized, then do each kernel evaluation in each hardware
thread through vectorization. Update F'; according to Equation (6)
through task parallelism, V¢ € {1,2,...,T}

8: If kernel is un-vectorized, then do each kernel evaluation in each
hardware serially. Update ?t according to Equation (6) through the
combination of task parallelism and data parallelism, V¢ € {1,2,...,T}
9: Local reduce to obtain ip;gn, 410w, Phigh, and bjo,, according to
Equation (9) and (10) in each hardware thread.

10: Global reduce to obtain ipigh, i1ows Phighs and by, according to
Equation (9) and (10).

11: Update apigp and o according to Equation (4) and (5).

12: If byowy > bpign + 2 X tolerance, then go to Step 5.

13: End

Yi = 71}, biow = 1,




TABLE III
RELATED PARAMETERS OF ARCHITECTURES

Architecture Ivy Bridge KNC Fermi Kepler
Cores 24 61 448 2496
L1 cache (KB) 64/core 64/core 64/SM 64/SM
L2 cache (KB) 256/core 512/core  768/card  1536/card
L3 cache (MB) 30/socket 0 0 0
Coherent cache L3 L2 L2 L2
Memory type DDR3 GDDRS5 GDDRS5 GDDRS5
Memory size (GB) 64 8 6 6
Measured Memory
bandwidth (GB/s) 68 159 97 188
TABLE IV
THE TEST DATASETS
Dataset n nDim  Density Cost Gamma
epsilon [25] 27,000 2,000 1.0000 1.0 0.08000
gisette [26] 6,000 5,000 0.9910 1.0 0.00020
forest [27] 12,000 54 0.2386 10000  0.00010
usps [28] 266,079 675 0.1497 1.0 0.03125
adult [18] 32,561 123 0.1128 0.1 0.06250
sraa [21] 72,309 20,958  0.0024 1.0 0.03125

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Setup

The architecture details of the four evaluated architectures in this
paper can be found in Table III and Table II. For the purpose of cross-
platform performance evaluation, we further optimized the traditional
GPUSVM tool and port it to the new NVIDIA Kepler k20x GPU.

B. Test Datasets

We select several popular real-world datasets (i.e. data mining,
digital recognition, aviation,etc) to evaluate MIC-SVM on the eval-
uated architectures. Their features are shown in Table IV, where n
is the number of training samples, nDim is length of each training
sample, and density is the ratio of the number of non-zero elements
to the total number of elements. We use the Gaussian Kernel for our
experiments since it is the most widely-used kernel function. The
parameters for Gaussian Kernel (Cost and Gamma) are also shown
in Table IV. In order to make n and nDim more representative, we
reduce the number of training samples for two datasets (epsilon and
forest) without modifying the contents of the corresponding training
samples.

C. Correctness Validation for MIC-SVM

We select LIBSVM, which is a widely-used standard SVM library,
as baseline to validate the correctness of our implementations. TableV
shows the classification accuracy and two impacting factors (b and
SVs) of different implementations on the evaluated architectures.

The classification accuracy can be used to describe how close a new
implementation to the baseline (e.g.LIBSVM) in terms of prediction
accuracy. b is treated as the factor of convergence condition. The
support vectors (SVs) can be interrupted as following: Each training
sample has its own alpha (Algorithm 2). If a training sample’s alpha
is not zero after the training process, then this training sample is
a support vector. Only support vectors can impact the predication
accuracy in the classification process.

From Table V, we can observe that only the result based on gisette
dataset has a 0.1% discrepancy with LIBSVM for classification
accuracy (comparing the accuracy between the elements in the same
row). The accuracy results based on other test datasets are totally
identical with LIBSVM. Due to the differences in implementations,
there are some small discrepancies in terms of the value of b and
the number of Support Vectors. However, they almost have no effect
on the classification accuracy. The training process for sraa dataset
can not be converged through GPUSVM because it will require 11.6
gigabytes storge for dense format, which is beyond the memory
capacity of a single GPU card.

D. Comparisons and Analysis

In this section, we will provide a cross-platform performance
comparison analysis between our proposed MIC-SVM and previous
tools including LIBSVM (serial) and optimized GPUSVM. Another
important objective is to provide insights for users on how to choose
the most suitable architecture towards a specific implementation and
input data pattern.

Table VI shows the speedups of different implementations on
various architectures over LIBSVM (baseline). The results marked
bold represent the best speedup achieved by this implementation on
such architecture for this specific input dataset. We can observe that
our proposed MIC-SVM achieves 4.4 - 84 x and 18 - 47x speedups
over the serial LIBSVM through Intel Knights Corner MIC and Ivy
Bridge CPUs respectively. Figure 11 shows the speedups of MIC-
SVM and GPUSVM over LIBSVM on one single iteration (instead
of the total execution time) for various input patterns (shown in Table
III). This shows the performance gaps among different scenarios
more clearly without the interference of the iterations. We argue
that speedup is a combination factor of implementation, architecture
and input data pattern. From Table VI and Figure 11, we conduct
the following analysis to help us understand how to choose suitable
implementation and architecture for a specific input data pattern.

1) MIC-SVM on CPUs vs. MIC-SVM on MIC: MIC is suitable
for dense high-dimension datasets. From Figure 11, we can observe
that the speedup achieved using MIC-SVM on MIC is about twice
(1.8 and 2.1x) of that on Ivy Bridge CPUs for the high dimension
datasets (Table III) such as epsilon (2000d) and gisette (5000d). Even
for the medium dimension dataset like usps (675d), the performance
of MIC is still better (1.1x) than that of CPUs. Although sraa has
a high dimension (20.958d), it is indeed a low dimension dataset
because it is so sparse (density: 0.0024) that our Library automatically
process it in sparse method (20958d x 0.0024 = 54d).

Since both epsilon and gisette are dense datasets, MIC-SVM
Library automatically applies data parallelism to process each kernel
evaluation (involving two training samples) through vectorization
(SIMD). Ivy Bridge CPUs are based on Advanced Vector Extensions
(AVX) instruction set, which has a 256-bit SIMD register file.
However, the SIMD width (512 bits) of Knights Corner MIC is twice
of that on CPUs. Therefore, the high-dimension dense dataset is more
likely to benefit from the powerful vectorization scheme on MIC than
CPUs.

Ivy Bridge CPUs are suitable for coarse-grained parallel
processing. Figure 11 shows that MIC-SVM on CPUs outperforms
MIC-SVM on MIC by a large margin for adult and sraa datasets.
There are several reasons behind this. First, based on our adaptive
support for input data patterns (shown in Section III-B), our MIC-
SVM Library will automatically process both adult (0.1100) and sraa
(0.0024) with sparse method. As for the adult dataset, the MIC-SVM
Library does not apply vectorization within each kernel evaluation



TABLE V
THE CLASSIFICATION ACCURACY, THE VALUE OF B AND THE NUMBER OF SUPPORT VECTORS.

Datasets LIBSVM MIC-SVM on KNC MIC  MIC-SVM on Ivy Bridge GPUSVM on Kepler GPUSVM on Fermi
Accuracy—b-SVs Accuracy—b-SVs Accuracy-b-SVs Accuracy—b-SVs Accuracy-b-SVs
epsilon 87.5%-0.0200-18116 87.5%-0.0200-18114 87.5%-0.0200-18113 87.5%-0.0200-18113 87.5%-0.0200-18113
gisette 97.7%—-—0.0034-1666 97.6%——0.0033-1665 97.6%—-—0.0033-1665 97.6%—-—0.0036-1665 97.6%——0.0036-1665
forest 82.2%-0.0120-11612 82.2%-0.0120-11609 82.2%—-0.0120-11610 82.2%-0.0120-11610 82.2%—-0.0120-11610
usps 99.2%——0.9464-39570  99.2%——0.9464-38596 99.2%——0.9464-38589 99.2%——0.9464-38581  99.2%——0.9464-38581
adult 84.4%—0.576-12281 84.49%—0.576-12273 84.4%—0.577-12273 84.49%—0.576-12278 84.4%—0.576-12278
sraa 97.0%——1.33-24430 97.0%——1.33-24392 97.0%——1.33-24395 misconvergence misconvergence
TABLE VI
ITERATIONS, TRAINING TIME AND SPEEDUPS.
Datasets LIBSVM MIC-SVM on MIC MIC-SVM on Ivy Bridge GPUSVM on Kepler GPUSVM on Fermi
Iterations—Time(s)-Speedup ~ Iterations—Time(s)-Speedup  Iterations—Time(s)-Speedup  Iterations—Time(s)-Speedup  Iterations—Time(s)-Speedup
epsilon 11040-2959-1 x 11686-35.1-84 x 11616-64.2-46 % 11537-38.6-76x 11537-46.1-64 x
gisette 1938-117.8-1x 1887-2.75-43 x 1872-5.68-21x 1894-5.46-22x 1894-7.65-15x
forest 23520-77.2-1x 28912-17.6-4.4 % 28983-2.14-36 % 29018-2.04-38 x 28946-5.10-15x
usps 34992-21945-1x 47201-806-27 x 47173-884-25% 47195-239-92 x 47195-429-51x
adult 8028-84.1-1 % 8092-14.5-5.8 % 8150-2.14-39 x 8097-2.41-35x 8097-5.67-15x
sraa 14802-1128-1 % 13687-81.3-14 % 13676-24.9-45 x misconvergence misconvergence
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Fig. 11. This figure shows the speedups over LIBSVM based on the time of each iteration (rather than the whole time), n is the number of training samples,

nDim is the dimension of each training sample, and density represents the sparseness of a given dataset. All the results data shown in this figure are the

average of many runs.

because the dimension (123d x 0.11 = 15d) is too low to fully
take advantage of the SIMD instruction (discussed in Section III-
C(2)). In this situation, both the vectorization and hardware threads
are dedicated to the task parallelism and letting each kernel process
serially. Consequently, each CPU hardware thread corresponds to 8
%) kernel evaluations while each MIC hardware thread corresponds
to 16 (%) kernel evaluations. Besides, MIC has 240 hardware
threads while the Ivy Bridge CPUs in this experiment are only
equipped with 24 hardware threads. In other words, the parallelism
of MIC is 20 times (%) that of CPUs. However, MIC-SVM on
CPUs achieves a 7x speedup (Figure 11) over that on MIC, which
means each serial kernel evaluation on MIC is 140x slower than that

on CPUs.

There are several factors that may lead to the huge performance
difference for serial processing between MIC and Ivy Bridge: 1)
the difference in clock rate (Table II); 2) each instruction of MIC

can not be executed in the consecutive two cycles; 3) MIC core
does not support out-of-order execution instruction; 4) CPUs provide
additional L3 cache; 5) a MIC core (original Pentium) is composed of
much less computational/logical units compared with an Ivy Bridge
core.

The coarse-grained parallel processing (often required by high-
degree sparse high-dimension datasets) demands many serial pro-
cesses and abundant local storages, which is in favor of Ivy Bridge
CPUs because they are equipped with more functional on-chip buffers
and cores with faster clock frequency compared to MIC and GPUs
(Table II).

As discussed in Section III-C(2), although the sraa dataset is
automatically processed by the sparse method, the heuristic sup-
port for data parallelism in our MIC-SVM Library classify sraa
as being suitable for vectorization within each kernel evaluation
(unlike for adult) because the heuristic still decides its dimension
is big enough for some kind of speedup through vectorization



TABLE VII
THE SPEEDUPS OF GPUSVM ON KEPLER OVER MIC-SVM oN MIC

Dataset gisette  epsilon  usps  forest
Dimension 5,000 2,000 123 54
Speedup 0.5 0.9 3.4 8.7

(20958d x 0.0024 = 54d). Even though the data parallelism still
can not meet the requirement of the wide MIC SIMD, it does help
reduce the performance discrepancy (from 7X to 3x) between MIC
and CPUs (Figure 11). This example clearly proves the importance
of the adaptive support for data parallelism.

2) MIC-SVM on MIC vs. GPUSVM on GPUs: In Figure 11,
both GPUSVM and MIC-SVM apply the dense method to process
epsilon, gisette, forest, and usps datasets, of which epsilon (205
MB) and usps (685 MB) require the largest memory. For these four
datasets, GPUSVM and MIC-SVM have employed similar processing
techniques: using one thread to handle one training sample each time.
Additionally, Table VII also shows that as the dimension of dataset
decreases, the speedup of GPUSVM on Kepler over MIC-SVM on
MIC increases. This suggests that the architectural differences in
granularity of two-level parallelism could be the major reason causing
the performance variation with different sample number, dimension
and density.

GPUs employ the SIMT (Single Instruction Multiple Thread)
architecture. The multiprocessor creates, schedules, and executes a
group of threads concurrently. Similarly, MIC is based on the SIMD
architecture, which is the foundation for vectorization scheme on
MIC. Although both SIMD and SIMT are useful for enhancing
parallelism, there are essential differences between them in terms of
the granularity of parallelism: (1) SIMD: one MIC thread executes
one 512-bit instruction. Therefore, one MIC thread corresponds
to 16 single precision operations and 32 single precision floating
points (or 8 double precision operations and 16 double precision
floating points); (2) SIMT: 32 threads (a warp) execute the same
32 instructions concurrently. Thus, one thread corresponds to one
operation and 2 single precision floating points.

In terms of the core architecture, a MIC core is composed of more
complicated units (i.e. code cache, instruction decode, scalar and
vector units, and L1 cache) than a GPU core. Therefore, the GPU
thread is more lightweight and provides finer-grain parallelization
compared to a MIC thread.

For gisette and epsilon datasets, due to their high dimensions
(5000d and 2000d) and density (0.99 and 1.0), the efficient data
parallelism on MIC can benefit from the large number of non-zero
elements in each training sample. The powerful MIC instruction
is well utilized through efficient vectorization. For usps and forest
dataset, due to their high sample number, low dimensions and density
(Table IV), SVM on GPU can achieve a better speedup over that on
MIC because its large number of training samples (i.e. 266,079) can
provide enough parallelism for millions of GPU lightweight threads
without suffering from low data-level parallelism.

With the additional performance discrepancies (i.e. different thread
switching speed, clock frequency, memory bandwidth, and mech-
anism to control cache), the analysis above is still in line with
our experimental results. To sum it up, we have the following
conclusions: (1) With powerful SIMD mechanism (512 bits), MIC is
a good candidate for the dense high-dimension datasets with modest
number of training samples because data parallelism can be achieved
efficiently through vectorization; (2) Equipped with sufficient caches

and high clock frequency, Ivy Bridge CPUs are suitable for sparse
high-dimension datasets since these datasets often require coarse-
grained parallel processing; (3) GPUs are proper for the datasets with
large number of training samples and low dimension because they
are more likely to benefit from millions of fine-grained lightweight
threads (under resource limitation though). Additionally, in order to
make GPUSVM practical for all cases including the extremely sparse
datasets like sraa, the adaptive support for input patterns and data-
parallelism is very necessary.

V. RELATED WORK

In the last twenty years, continuous efforts have been made to
improve the performance of SVM. Some pioneers proposed strategies
for faster serial algorithms such as dataset decomposition technique
[16], points shrinking, caching [17], minimal working set [18], and
second order working set selection [29]. Most of these techniques
have already been adapted in the widely used LIBSVM [10], which
is designed for serial processing. Others have tried to parallel SVM
on distributed memory systems ([30], [31], [32]) without considering
underlying architecture details.

Since 2008, there have been some existing efforts for accelerating
the time-consuming training phase in SVM on many-core GPUs.
Almost all of them have been focusing on using GPUs to accelerate
the SMO [18] algorithm. Catanzaro [12] first proposed the GPUSVM
for binary classification problem and achieved speedup of 9-35x over
LIBSVM. Herrero-Lepez then [33] improved Catanzaro’s work by
adding the support for Multiclass classification. Tsung-Kai Lin [34]
applied sparse format for data processing on GPU without providing
implementation details, source code or Library. All of the above
are based on older generations of GPUs (before Kepler) so many
new architectural improvements are not considered for optimization.
They all lack dynamic adaptive support for input data patterns and
data parallelism, which can dramatically reduce performance and
practicality of the implementation. For the purpose of comparison
and analysis, we further optimize the existing GPUSVM for Kepler
and compare its performance with our MIC-SVM.

Since the emerging of the Intel MIC architecture, there have been
a few work on applying MIC to solve data-intensive applications
such as sorting [35], data mining [36], and ray tracing [37]. All
of these work are based on the older version of the Knights Ferry
MIC (KNF) rather than the more advanced Knights Corner MIC
(KNC) [14]. To authors’ knowledge, our proposed MIC-SVM is
the first trail for designing a highly efficient SVM for advanced
multi- and many-core architectures such as Ivy Bridge CPUs and
Intel KNC MIC. Our approach also provides methodologies and
techniques such as adaptive support for data patterns and parallelism
that can be generalized to optimize similar machine learning methods.
Additionally, we also provide insights on how to select the most
suitable architecture for a specific implementation and input data
pattern, which has not been addressed in the previous work.

VI. CONCLUSION

In this work, we propose MIC-SVM, a highly efficient parallel
support vector machine for x86 based multi-core and many-core
architectures such as Intel Ivy Bridge CPUs and Intel KNC MIC.
We propose various novel analysis and optimization strategies that
are general and can be easily applied to accelerate other machine
learning methods. We also explore and improve the deficiencies of
the current SVM tools. Finally, we provide insights on how to map the
most suitable architectures to specific data patterns in order to achieve



the best performance. In future, we plan to extend the current MIC-
SVM to distributed memory environment using multiple MICs. We
also intend to employ MIC-SVM at runtime for dynamic modeling
and scheduling.
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