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Abstract—ParSy is a framework that generates parallel code
for sparse matrix computations. It uses a novel inspection strategy
along with code transformations to generate parallel code for
shared memory processors that is optimized for locality and
load balance. Code generated by existing automatic parallelism
approaches for sparse algorithms can suffer from load imbalance
and excessive synchronization, resulting in performance that does
not scale well on multi-core systems. We propose a novel task
coarsening strategy that creates well-balanced tasks that can
execute in parallel. ParSy-generated code outperforms existing
highly-optimized sparse matrix codes such as the Cholesky
factorization on multi-core processors with speed-ups of 2.8× and
3.1× over the MKL Pardiso and PaStiX libraries respectively.

I. INTRODUCTION

Sparse matrix computations are an important class of
algorithms frequently used in scientific simulations. The
performance of these simulations relies heavily on the parallel
implementations of sparse matrix computations used to solve
systems of linear equations. Data dependence information re-
quired for parallelizing sparse codes is dependent on the matrix
structure, so parallel codes may use more synchronization
than necessary; in addition, to achieve high parallel efficiency,
the work must be evenly distributed among cores, but this
distribution also depends on the matrix structure.

A large number of parallel sparse libraries, such as In-
tel’s Math Kernel Library (MKL) [56], Pardiso [56], [47],
PaStiX [23], and SuperLU [32], provide manually-optimized
parallel implementations of sparse matrix algorithms and are
some of the most commonly-used libraries in simulations using
sparse matrices. These libraries differ in the kind of numerical
methods they support and use numerical-method-specific code
at runtime, during a phase called symbolic factorization,
to determine data dependencies. Based on this dependence
information, different libraries implement different forms of
parallelism. For example, PaStiX uses static scheduling of
a fine-grained task graph based on empirical measurements
of expected runtime for each task; in contrast, MKL Pardiso
implements a form of dynamic scheduling for its fine-grained
task graph.

Previous work has extended compilers to resolve memory
access patterns in sparse codes by building runtime inspectors to
examine the nonzero structure and using executors to transform
code execution and implement parallelism [54], [45], [59].

Inspectors use runtime information to build directed acyclic
graphs (DAGs) that expose data dependence relations. The
DAGs are traversed in topological order to create a list of level
sets that represent iterations that can execute in parallel; this is
known as wavefront parallelism. Synchronization between level
sets ensures the execution respects data dependencies. However,
synchronization between levels in wavefront parallelism can
lead to high overheads since the number of levels increases with
the DAG critical path. For sparse kernels such as Cholesky with
non-uniform workloads, wavefront methods can additionally
lead to load imbalance. Frameworks such as Sympiler [9]
have demonstrated the value of creating specializations of
sparse matrix methods for exploiting specific matrix structure.
However, this approach has only been demonstrated for single-
threaded implementations.

In this work, we present an inspection strategy for parallelism
on multi-core architectures for sparse matrix kernels. Our
proposed inspector applies a novel Load-Balanced Level
Coarsening (LBC) algorithm on the data dependence graph to
create well-balanced coarsened level sets, which we call the
hierarchical level set (H-Level set), mitigating load imbalance
and excessive synchronization present in wavefront parallelism.
This inspector is implemented in a framework called ParSy,
which uses information from the matrix sparsity and the
numerical method to obtain data dependencies. The inspector in
ParSy can be used for sparse linear algebra libraries, inspector-
executor compiler methods, or from within sparsity-specific
code generators such as Sympiler.

Our primary focus is complex sparse matrix algorithms where
loop-carried data dependencies make efficient parallelization
challenging, such as sparse triangular solve, as well as matrix
methods that introduce fill-ins (nonzeros) during computation,
such as Cholesky factorization. The main contributions of this
work include:
• A new LBC strategy that inspects sparse kernel data depen-

dence graphs for parallelism while maintaining an efficient
trade-off between locality, load balance, and parallelism by
coarsening level sets from wavefront parallelism.

• A novel proportional cost model included in LBC that creates
well-balanced partitions for sparse kernels with irregular
computations such as sparse Cholesky.

• Implementations of the new parallel inspection strategies and



code transformations for sparse triangular solve and Cholesky
factorization, in a framework called ParSy. For evaluation, the
proposed implementations are built within the open-source
Sympiler infrastructure, but with all Sympiler optimizations
disabled. The performance of ParSy is evaluated against
MKL Pardiso and PaStiX, and shows that the partitioning
strategy in ParSy outperforms the state-of-the-art by 1.4×
on average and up to 3.1×.

II. PARSY OVERVIEW

ParSy consists of the H-Level inspector and code transfor-
mations to generate parallel code for sparse matrix methods.
Example input code to ParSy is shown in Listing 1, where the
user provides the numerical method, matrix sparsity pattern, and
additional information about the desired level of parallelism.
ParSy builds a DAG representing data dependencies in the
sparse kernel for the given sparsity pattern. Then, the H-Level
inspector uses a Load-Balanced Level Coarsening algorithm to
create a schedule from the DAG of the kernel. To parallelize the
original code and take advantage of the schedule, the numerical
method code must be transformed. This section describes the H-
Level inspector and discusses code transformations to support
the parallel schedule, using sparse Cholesky factorization as
an example.

Listing 1: ParSy input code
int main() {
Sparse A(type(float,64),"Matrix.mtx");
Cholesky chol(A);
chol.generate_c("chol",k); }

Input : DAG G, k, thresh, win, agg
Output : H-LevelSet

1 [vertexCost,edgeCost] = computeCost(G)
2 [H-LevelSet]=LBC(G,vertexCost,edgeCost, k, thresh, win, agg)
3 return H-LevelSet

Algorithm 1: ParSy’s H-Level inspector.

A. H-Level Inspector

The goal of ParSy’s inspector is to statically partition the
DAG of a specific numerical method applied to a specific
sparse matrix while creating an efficient load balance with low
synchronization cost and high locality. Wavefront parallelism
approaches [31], [38], typically used in code transformation
frameworks to generate parallel sparse codes, can create load
imbalance and excessive synchronizations since sparse kernels
like Cholesky have imbalanced workloads for column-based
and column-block-based implementations. ParSy’s H-Level
inspector resolves this issue by creating partitions with coarser
tasks while ensuring good balance between execution threads.

Algorithm 1 shows the basic outline of ParSy’s inspector.
Line 2 shows the LBC phase, where the DAG along with
the number of processor cores (k in Algorithm 1), the com-
putational efficiency of a single core (thresh), and two tuning
parameters win and agg related to balancing and coarsening
of the levels, are the inputs. The LBC algorithm uses a kernel-
specific cost model for vertices and edges, which is used for

load balance. With this information the DAG is partitioned
into l-partitions that partition the DAG into coarsened levels,
and into k or fewer w-partitions each executed on a single
core within each l-partition (see Section III for more details).

Example. Cholesky factorization is commonly used in direct
linear solvers and is used to precondition iterative solvers. The
algorithm factors a Hermitian positive definite matrix A into
LLT , where matrix L is a sparse lower triangular matrix. We
use the left-looking Cholesky variant. To compute the factors
for a column j in L the algorithm visits all columns i that
contain a nonzero in row j of L with i < j and then applies
the contributions of columns i to column j [11]. Dependencies
between each column-computing iteration are represented by
a DAG called the elimination tree (etree) [34], [42]. In an
etree each node represents a column and each directed edge
denotes that the destination depends on the source. To improve
the performance of sparse Cholesky by using dense BLAS
operations, columns with similar nonzero patterns are merged to
form a block or supernode of columns. Dependencies between
column blocks are represented using a modified version of the
etree called the assembly tree, where nodes represent column
blocks. For Cholesky factorization, using the etree does not
create coarse enough nodes to parallelize and thus in most
available software [15], [23], [48], [3] the assembly tree is
used as the baseline dependency DAG for Cholesky. Figure 1a
is an example assembly tree that we will use to demonstrate
how ParSy creates an H-Level set.

Wavefront parallelism techniques [54], [45] first create a
topologically-ordered level set, shown in Figure 1a and then
execute nodes within each level in parallel. However, this often
leads to higher-than-necessary overhead, because it requires
synchronization between each level. Furthermore, the work per
node varies depending on the non-zero structure, often resulting
in poor load balance in each level. Our Load-Balanced Level
Coarsening (LBC) algorithm, described in detail in Section III,
partitions the assembly tree with the objective of facilitating
efficient parallel execution while producing a good balance
between load and locality. Our partitioning works in two stages;
the first partitions the DAG by level to create topologically-
ordered l-partitions. In the second phase, the disjoint sub-DAGs
inside each level are divided into k or fewer equally-balanced
w-partitions, where k is the number of cores. The H-Level
set improves locality compared to the wavefront approach and
also reduces inter-level synchronizations from six to two for
this example. Furthermore, the LBC algorithm balances the
workload of each partition by packing enough independent
sub-DAG into each w-partition. This packing approach is
important in sparse Cholesky factorization where the workload
for each column block differs from other blocks. Finally, each
w-partition does not communicate with any other w-partition
in the same level, since each consists of disjoint sub-DAGs.

B. Parallel Code Transformation

To utilize the H-Level set to efficiently execute the schedule,
the original code must be transformed for parallelism. Figure 2
shows how the H-Level transformation modifies Cholesky
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Fig. 1: (a) An example DAG, in this case an assembly tree where nodes represent column blocks and edges show the dependencies
between columns during factorization. Wavefront methods create a level set, represented by node coloring; nodes with the same
color can be executed in parallel. (b) The H-Level set created by LBC from G in (a).

factorization1. As shown, the outermost loop in line 2 of
Figure 2a is transformed to lines 1–5 in Figure 2b. Since in the
left-looking Cholesky algorithm the nodes do not write to other
nodes, the loop body does not change because no critical region
is required. The OpenMP pragma enables parallelism over
sub-DAGs, executing dependent nodes within the same thread,
which increases locality. For the example DAG in Figure 1a,
the outer loop in the code of Figure 2b executes only one
iteration, resulting in a single synchronization, compared to
the six synchronizations required by wavefront parallelism.

The available parallelism in a sparse algorithm is not
uniform and typically different approaches for parallelism
must be used to efficiently exploit the underlying parallel
architecture. For example, l-partition 1 in the partitioned DAG
in Figure 1b benefits from tree parallelism; however, the nodes
in l-partition 2, which contains the sync node (the node with
no outgoing edges), have no tree parallelism but such nodes
can be repartitioned to increase data parallelism within their
corresponding dense computations [23]. The last iteration,
which corresponds to the last partition of the H-Level set,
is peeled and optimized differently. For such nodes, ParSy
enables using the parallel BLAS for each operation in the node;
however, ParSy can be extended to support more advanced
specialization techniques such as repartitioning.

C. Implementation

We have implemented ParSy in the open-source Sympiler [9]
framework. Even though ParSy can be implemented at run-time
similar to library-based approaches, we build on top of Sympiler
to ease implementation and for potential future benefits of
integrating ParSy with sparsity-specific code generation from
Sympiler. Because of using Sympiler, the inspectors in ParSy
are executed at compile time and their information is used to
automatically transform the code. The following provides a

1For space, we provide the general form of the transformation in Appendix A.

short overview of the Sympiler framework and illustrates how
ParSy is implemented using Sympiler.

Overview of Sympiler. Sympiler is a domain-specific com-
piler that generates specialized code for sparse matrix methods
on single-core architectures. Given the numerical method and
input matrix stored in compressed sparse column (CSC) format,
Sympiler uses a symbolic inspector to generate inspection
sets to guide code transformations. The numerical solver is
internally represented using a domain-specific abstract syntax
tree (AST) and is annotated with potential transformations.
The lowered code is also annotated with hints for low-level
transformations which are used in the transformation phase
for sparsity-specific code specialization. In the transformation
phase, the inspection sets are used to lower the annotated code
to apply inspector-guided and low-level transformations and
output transformed C source code.

To implement ParSy, the inputs to Sympiler are extended to
provide information that the H-Level inspector requires. The
H-Level inspector and H-Level transformation are implemented
as additional stages in the inspection and transformation
phases of Sympiler respectively. The inspector creates the
data dependence graph based the input numerical method and
the sparsity pattern. ParSy uses the created data dependence
graph and creates a coarsened level set that later will be
used as an input to the generated code. Sympiler’s low-level
transformations are disabled in the current version of ParSy,
so we do not specialize code for a specific sparsity pattern; we
intend to explore this feature in future releases of ParSy. This
paper considers solely the impact of the H-Level inspector.

III. LOAD-BALANCED LEVEL COARSENING (LBC)

ParSy utilizes the Load-Balanced Level Coarsening (LBC)
algorithm to partition the DAG that describes the dependencies
of the computation. LBC statically creates a set of partitions that
minimize load imbalance and communication while attempting
to maximize available parallelism and locality. In this section,



1 H-Level:

2 for (int i=0; i<blockNo; ++i){

3 b1 = block2col[i]; b2 = block2col[i+1];

4 f = A(:,b1:b2);

5 // Update phase

6 for(block r=0 to i-1 L(i,r)!=0){
7 f-=GEMM(L(b1:n,r),transpose(L(i,r)));}
8 // Diagonal operation

9 L(b1:b2,b1:b2)=POTRF(f(b1:b2));

10 // Off-diagonal operations

11 for(off-diagonal elements in f){
12 L(b2+1:n,b1:b1) =

13 TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2)); } }

(a) Serial blocked left-looking Cholesky

1 for(every l-partition i){
2 #pragma omp parallel for private(f){

3 for(every w-partition j){
4 for(every v ∈ HLevelSet[i][j]){

5 int i = v;
6 b1 = block2col[i];b2 = block2col[i+1];

7 f = A(:,b1:b2);

8 for(block r=0 to i-1 L(i,r)!=0){
9 f-=GEMM(L(b1:n,r),transpose(L(i,r)));}

10 L(b1:b2,b1:b2)=POTRF(f(b1:b2));

11 for(off-diagonal elements in f){
12 L(b2+1:n,b1:b1) =

13 TRSM(f(b1+1:n,b1:b2),L(b1:b2,b1:b2)); } }}}}

14 //Specilized code for the last l-partition.
15 Cholesky_Specialized(HLevelSet[n− 1][0]);

(b) ParSy’s generated code

Fig. 2: The application of the H-Level transformation on blocked left-looking Cholesky factorization. (b) shows the transformed
version of the code in (a) with the H-Level transformation. The gray lines remain unchanged.

we describe the partitioning produced by LBC, its associated
constraints, and the algorithm that produces this partitioning.
Finally, we show the proportional cost model used by LBC to
estimate load costs for each partition.

A. Problem Definition

The goal of Load-Balanced Level Coarsening is to find a
set of l-partitions, and within each l-partition, to find a set
of disjoint w-partitions with as balanced cost as possible. For
improved performance, these partitions adhere to additional
constraints to reduce synchronization between threads and
maintain load balance. Additionally, there are objective func-
tions for minimizing communication between threads and the
number of synchronizations between levels. To describe the
partitioning and constraints, we use the follwoing notation.

Definitions: G(V,E) denotes the input DAG with vertex
set V and edge set E, along with a nonnegative integer weight
d(v) for each vertex v ∈ V and nonnegative integer weight
c(e) for each edge e ∈ E. The level of a node level(v) is the
length of the longest path between the node v and a source
node, which is a node with no incoming edge. The level of
the sync node is critical path P ; in the case of multiple sync
nodes, P is the maximal level among all sync nodes.

Definition 1: Given DAG G and an integer number of
partitions n > 1, the LBC algorithm produces n l-partitions of
V with sets of nodes (Vl1 , ..., Vln) such that Vl1 ∪ ...∪Vln = V
and Vli ∩Vlj = ∅. Each l-partition li = [lbi..ubi] is represented
by a lower bound and upper bound on the level, and contains
all nodes with levels between the two bounds. In addition,
∪ni=1li = [1..P ].

Definition 2: Given the number of threads k > 1, for each set
of nodes Vli , the LBC algorithm produces mi ≤ k w-partitions
(Vli,w1

, ..., Vli,wm
) such that Vli,w1

∪ ... ∪ Vli,wmi
= Vli and

∀i, j, p, q, where i 6= j and p 6= q, Vli,wp
∩ Vlj ,wq

= ∅.
Definition 3: Within a partition, the number of connected

components is the number of disjoint sub-DAGs in the partition,
which is shown by comp(Vli,wp) for a partition Vli,wp .

In summary, the partitioning produced by LBC creates l-
partitions, and within each l-partition i, it creates up to k
disjoint w-partitions. Each node in the DAG belongs to one l-
partition and one w-partition. Note that some l-partitions, those
with connected vertices, will only contain one w-partition (see
Vl2 in Figure 1). Some of the values for that example are as fol-
lows: n = 2, Vl1 = {{1, 2, 3, 4, 5}, {6, 7, 8}, {10, 11, 9, 12}},
Vl1,w2 = {6, 7, 8}, and Vl2 = {{13, 14, 15}}. The number
of w-partitions for Vl1 is m1 = 3, and m2 = 1 for Vl2 .
The number of connected components in l-partition Vli is
shown with comp(Vli). For example, comp(Vl1,w1

) is 2,
comp(Vl1,w2

) is 1, etc.
Constraints: The space-partition constraint ensures that

threads executing iterations in different w-partitions need not
synchronize amongst each other. The name of this constraint
comes from affine partitioning [33], where the goal of the
constraint is the same; however, the constraint definition is
different here since the input is a DAG. If E(Vli,wp

, Vli,wq
) is

the set of cut edges between two partitions Vli,wp
and Vli,wq

,
the space-partition constraint is:

∀1 ≤ i ≤ n ∧ (1 ≤ p, q ≤ mi), E(Vli,wp
, Vli,wq

) = ∅ (1)

The w-partitions within each Vlj must have no edges in
common, which is the constraint expressed in Equation (1).

The load balance constraint ensures that the w-partitions
within Vli are balanced up to a threshold. Assuming ε ∈ R with
ε ≥ 0 is a given input threshold for determining the maximum
imbalance, the load balance constraint is:

∀i, 1 ≤ i ≤ n ∧ comp(Vli) > 1 ∧ ∀1 ≤ p ∈ mi,

cost(Vli,wp
) ≤ (1 + ε)dcost(Vli)/mie (2)

where cost(Vli,wp
) =

∑
v∈Vli,wp

d(v) and cost(Vli) =∑
p∈1..mi

cost(Vli,wp
). As shown in Equation 2, the load

balance constraint does not apply to an l-partition with only
a single w-partition, because creating load balance for one



component is not feasible. The constraint ensures that the cost
of executing an l-partition Vli is uniformly distributed to w-
partitions Vli,wp such that the maximum difference is less than
2ε.

Objective: The objective function for LBC is to reduce the
critical path of the partitioned DAG, also known as quotient
graph QG, as well as the communication cost between the
partitions. QG is the DAG induced by the partitioning Vhj ,wi

,
where each vertex in QG is a partition and edges Eq exist
only if an edge exists such that the two endpoints are in
separate partitions. The critical path minimization objective
is to minimize PQG

. The communication cost objective is to
minimize

∑
e∈Eq

c(e), where c is the cost associated with each
edge of QG. Since no edges exist between w-partitions, this
objective minimizes the edge costs between l-partitions.

B. LBC Algorithm

As shown in Algorithm 1, the inputs to LBC are a DAG
annotated with a cost model for both vertices and edges,
the number of requested w-partitions, an architecture-related
threshold, and two tuning parameters win and agg. An example
cost model used in LBC is illustrated in Section III-C. Since
optimizing for both l-partitions and w-partitions is complex,
our algorithm uses heuristics for speed and simplicity. A major
simplification is to separate the two kinds of partitioning so
that the algorithm, shown in Algorithm 2, proceeds in three
stages: (1) l-partitioning, (2) w-partitioning and, optionally, (3)
reordering.
l-partitioning: This step finds l as defined in Section III-A.

The algorithm begins by finding the first partition, which
contains the source nodes of the DAG; note that the upper and
lower bounds for each partition represent the range of levels
(the distance from the source nodes) for the vertices in the
partition. In line 7, the algorithm finds the largest level (closest
to the sync node of the DAG) containing enough disjoint
sub-DAGs to result in approximately k w-partitions. Then, in
lines 9–16 the algorithm searches through adjacent candidates
up to win levels away for where to cut the partition, by finding
the one that results in the most load-balanced w-partitions (see
Section III-C). Once the first l-partition is set, the loop in
line 17 groups the remaining levels into l-partitions with agg
levels per partition. Tuning parameters win and agg show the
search window for a load-balanced cut and coarseness of the
remaining levels respectively. Finally, the algorithm builds the
last partition, containing the sync node, in line 20.
w-partitioning: In this step, each l-partition, which is a

collection of sub-DAGs with different costs, is divided into
w-partitions such that the cost of each partition is balanced.
To find the sub-DAGs, we do a sequence of depth-first searches
from all source nodes in the l-partition. The sub-DAGs that
intersect are merged. Then in our algorithm, we use a variant
of the first-fit decreasing bin packing [25], [10] approach to
find w-partitions with near-equal overall cost. Lines 21–26
in Algorithm 2 produce w-partitions of size k if there are
enough components; otherwise, the number of bins is set to
comp(Gg)/2. Once the balanced components are found, we

use a modified breadth-first search (BFS) to store the nodes of
w-partitions in a precedence order. The modified BFS algorithm
starts from the source nodes of a w-partition and places the
nodes in a queue. Every node that is removed from the queue
is placed in the final H-Level set and then the incoming degree
of its adjacent nodes is decremented. The algorithm ends when
the queue is empty.

Because our w-partitioning algorithm merges sub-DAGs that
intersect, it is possible that fewer than k components are found
due to the intersection. However, we have not encountered this
case in practice, and in such cases it is possible to modify
the algorithm to perform w-partitioning for multiple candidate
l-partitionings to find one where the most subcomponents exist.

Reordering: Optionally, the w-partitions in each l-partition
can be reordered to further enhance locality. This phase
reorders the computation within each w-partition to optimize
the communication cost objective. The goal is to ensure that
a w-partition Vlj ,wi in l-partition j that synchronizes with
w-partition Vlj+1,wk

can be moved so that both w-partitions
are assigned to the same thread; as a result, the data will
remain local to the thread. In lines 27–32 of Algorithm 2, the
LBC algorithm checks adjacent l-partitions and ensures that
w-partitions with the highest communication cost are aligned
vertically. During execution, w-partitions with the same ID will
be assigned to the same processor, ensuring that inter-thread
communication between l-partitions is minimal.

C. Cost Model & Windowing Heuristic

Statically scheduling the DAG for parallelism requires
estimating the cost of each node in the DAG accurately, to
ensure a high degree of parallelism and good load balance. The
LBC algorithm implements two heuristics for two different
parts of the algorithm that make this possible to do efficiently:
a simple cost model that does not require machine-specific
empirical performance measurements, and a heuristic for
searching only among a small number of possible partitionings.

Existing approaches for static scheduling of sparse factoriza-
tion algorithms such as that used in PaStiX [23] rely on accurate
cost estimates for each BLAS operation to find load balanced
partitions; PaStiX uses empirically-measured runtimes for each
BLAS kernel. In contrast, the H-Level inspector uses a simple
proportional cost model to find an efficient partitioning of the
DAG. Motivated by the fact that sparse matrix computations
are generally memory bandwidth-bound, this model uses the
number of participating nonzeros in each node of the DAG as
a proxy for the cost of execution.

Definition: The participating nonzeros for a node Ni in
the DAG is the total number of nonzeros touched in order to
complete the computation of Ni. For example, for Cholesky
factorization, the participating nonzeros for a node are the
nonzeros in the column block represented by Ni, plus the
nonzeros touched when eliminating the block. This can be
computed exactly during symbolic factorization or can be
approximated with the sum of the column counts for every
column such that the rows corresponding to Ni have a nonzero,
which can be derived in near-linear time in the size of the



Algorithm : Load-Balanced Level Coarsening
Input :G, d, c k, thresh, win, agg
Output : Vlj ,wi , lj
/* For small DAG, use a single partition */

1 if G ≤ thresh then
2 Vl0 = G
3 l0.lb = 0 l0.ub = G.P
4 return {V ,l}
5 end
/* l-partitioning, starting from source nodes */

6 l0.lb = 0
/* Find closest level to the sync node with

enough sub-DAG */
7 linitCut = max({l|comp(G0:l) ≥ k})
8 ε=∞
/* Explore cuts to find good load balance */

9 for i=linitCut; i> linitCut-win; i-=1 do
10 CurCost(:) = BinPack(G0:i,d,k)
11 maximalDiff = max(CurCost) - min(CurCost)
12 if maximalDiff < ε then
13 ε = maximalDiff
14 h0.ub = i
15 end
16 end

/* Group rest of levels into l-partitions */
17 for i=l0.ub; i > G.P − agg; i+=agg do
18 l.append([i, i+ agg])
19 end

/* Final partition includes the sync node */
20 l.append([ln.ub,G.P])

/* w-partitioning */
21 for g ∈ l do
22 if comp(Gg) > 1 then
23 parts = comp(Gg) > k ? k : comp(Gg)/2
24 Vg= BinPack(Gg ,d,parts)
25 end
26 end

/* Reorder w-partitions */
27 for i=n; i> 0; i-=1 do
28 for j=0; j< mi; j+=1 do
29 Q = {∃q ∈ child(Vli,wj )|c(eqVli,wj

) is max }
30 swap(Vli+1,wQ ,Vli+1,wj )
31 end
32 end
33 return {V ,l}

Algorithm 2: The LBC DAG partitioning algorithm. Ga:b is
the DAG induced by including only vertices v where a ≤
level(v) ≤ b and the incident edges. The lower and upper
bounds for each l-partition are values for the node levels.

matrix [11]. We use a similar metric for computing edge cost,
which is the number of nonzeros that must be communicated.

The proportional cost model need not be as exact as the
kinds of cost models used in PaStiX, due to the much coarser
granularity of scheduling in ParSy. However, any model used
for static scheduling, even for coarse-grained tasks, must be
accurate enough to use as a proxy for performance. This
simple cost is sufficient to capture the real behavior of our
static partitioning scheme. Figure 3 shows the actual maximal
difference in time versus the estimated maximal difference in
cost for an example matrix based on participating nonzeros
for l-partitions constructed at different levels, with the left
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Fig. 3: The maximal difference in time matches the maximal
difference in cost, i.e. participating nonzeros. This is shown
for matrix Flan 1565 as an example, but all matrices used in
our experiments exhibit similar behavior.

side being cuts closest to the the sync node. The cost closely
matches the observed difference in time measured using cycle
counters. Unlike other static partitioning schemes, the cost
model used by ParSy is simple and requires no empirical
measurement, while effectively estimating performance for
candidate partitions using the H-Level inspector.
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Fig. 4: The effect of l-partitioning on the performance and load
balancing of Cholesky for matrix Flan 1565 starting from the
sync node, (shown with 1) to close to the source nodes (shown
with 14). The dark rectangle shows the search window from
the initial point which is point 2. The dark green line shows
the maximal difference. The blue line shows the percentage
of actual time spent on the closest-to-sync l-partition, which
uses node-level parallelism. The red line shows the actual total
runtime using each edge cut.

Given this cost metric, the second heuristic tries to find the
partitioning with minimal load imbalance without searching
through a large number of candidates. This windowed search
heuristic examines a small number of candidates in the
neighborhood of the first l-partitioning containing enough
sub-DAGs for parallel execution. For the implementation in
this paper, the window size (that is, the number of additional
candidates to search over) is 3. Figure 4 shows the effect of
the local search. The first l-partition with enough sub-DAGs
is at point 2, but the windowing heuristic chooses a cut at
point 5, which has the best load balance among candidates. As
illustrated by the blue line in Figure 4, choosing cuts closer
to the source nodes results in less work that can be done in
parallel, since the l-partitions closer to the sync node cannot
usually be divided into enough w-partitions to achieve the best
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(a) DAG of dependencies

x=b; // copy RHS to x

HLevel:

for ( int i=0; i<blockNo; ++i){

b1 = block2col[i];

b2 = block2col[i+1];

//Diagonal

x(b1:b2)=TRSM(L(b1:b2,b1:b2),x(b1:b2));

// Off-diagonal

tempX=GEMV(L(b2:blockNo,b1:b2),x(b1:b2));

for(row index j in column i,k=0){
Atomic:

x(Li(j)) -= tempX(k++); }
}

(b) Serial blocked code

x=b;

for(every l-partition i){
#pragma omp parallel for private(tempX){

for(every w-partition j){
for(every v ∈ HLevelSet[i][j]){

i = v;
b1 = block2col[i];

b2 = block2col[i+1];

x(b1:b2)=TRSM(L(b1:b2,b1:b2),x(b1:b2));

tempX=GEMV(L(b2:blockNo,b1:b2),x(b1:b2));

for(row index j in column i,k=0){
#pragma omp atomic

x(Li(j)) -= tempX(k++) ;}
}}}}

(c) Transformed with H-level

Fig. 5: H-Level transformation for sparse triangular solve. (a) An example DAG representing the dependencies for sparse
triangular solve. (b) A blocked forward substitution algorithm with compressed column format that is annotated with HLevel
and Atomic. (c) shows the code after H-Level transformation. Gray lines in the code are not affected by the transformation.

parallel performance.

IV. OTHER SPARSE MATRIX METHODS

The data dependence graphs and H-level inspection strategy
in ParSy can be used for a large class of sparse matrix
computations. For example, for kernels such as LU, QR,
and orthogonal factorization methods [34], which introduce
fill-in during computation, the input DAG to ParSy is the
assembly tree that captures the dependencies in the computation,
including dependencies that come from fill-ins. For kernels
with no fill-in such as ILU(0), IChol(0), and triangular solve,
the input is the matrix DAG. This section describes how ParSy
works for sparse triangular solve, where data dependence is
represented with a DAG and the computations are more regular
than Cholesky.

Triangular Solve. This kernel solves the linear equation
Lx = b for x where L is a lower triangular matrix and b is
the right-hand side (RHS) vector. Figure 5 shows two different
implementations of sparse lower triangular solve for a matrix in
column storage format and dense RHS. A serial implementation
of the algorithm is shown in Figure 5b. Figure 5a shows
the DAG of dependencies for the column-blocked version
of matrix L. ParSy’s H-Level inspector uses the DAG of L
and builds the H-Level set which is an input for the code in
Figure 5c. The H-Level set corresponding to the DAG shown
in Figure 5a is shown in Figure 1b. Since the iterations in the
sparse triangular solve kernel are more regular compared to
the Cholesky algorithm [5] the benefits of creating an H-Level
set using ParSy are mainly in reducing synchronizations in the
code and increasing locality from level coarsening.

V. EXPERIMENTAL RESULTS

We compare the performance of ParSy-generated code with
PaStiX [23] and with MKL Pardiso [48], which are both
specialized libraries for matrix factorization. PaStiX uses the
same left-looking supernodal algorithm as ParSy and also
uses a static scheduling heuristic. MKL Pardiso uses the
left-right looking supernodal variant of Cholesky and uses

TABLE I: Test matrices, sorted in order of decreasing paral-
lelism. nnz is the number of nonzeros in the factor L.

ID Name Rank
(103)

nnz
(106)

Parallelism
(METIS)

Parallelism
(SCOTCH)

1 G3 circuit 1585 127.3 16284 12154
2 ecology2 1000 54.3 11444 7454
3 thermal2 1228 71.9 10618 7087
4 apache2 715.2 164.7 10216 4427
5 StocF 1465 1465.1 1245 7755 6003
6 Hook 1498 1498 1783.8 7651 6032
7 tmt sym 726.8 41.9 6371 4233
8 PFlow 742 742.8 598 5390 4796
9 af shell10 1508 394.3 4900 3752
10 parabolic fem 525.9 35 4712 3488
11 Flan 1565 1564.8 1715.9 3725 3271
12 audikw 1 943.7 1473.1 2438 2203
13 bone010 986.8 1210.1 2332 2020
14 thermomech dM 204.3 9.7 2310 1480
15 Emilia 923 923.1 1992 2277 1927
16 Fault 639 638.8 1275.4 1595 1493
17 bmwcra 1 148.8 79.4 497 402
18 nd24k 72 435.9 48 48
19 nd12k 36 161.9 29 28

hybrid static/dynamic scheduling. MKL also provides optimized
implementations for sparse triangular solve in compressed row,
compressed column, and blocked compressed row formats.
Thus, Cholesky factorization results are compared with both
PaStiX and MKL Pardiso while results for triangular solve are
compared to MKL’s best performing implementation amongst
the three data structures. For triangular solve, we use the
factorized lower-triangular matrix L that is the result of running
Cholesky on each test matrix. Appendix B has additional
triangular solve experiments on matrices with non-chordal
DAGs. We also parallelize each sparse kernel with the level set
used in wavefront techniques [54] and call this implementation
level set. The performance of the level set implementation is
used as a baseline.

For the comparison, we use the set of symmetric positive
definite matrices listed in Table I. The matrices are from [13]
and belong to different domains with real number values in
double precision. The testbed architectures are listed in Table II.



TABLE II: Testbed architectures.

Family Haswell-E Haswell-EP Skylake
Processor Core™i7-5820K Xeon™E5-

2680v3
Xeon™Platinum
8160

Cores 6 @ 3.30 GHz 12 @ 2.5 GHz 24 @ 2.1 GHz
L3 cache 15MB 30MB 33MB
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Fig. 6: ParSy’s (numeric) performance for Cholesky compared
to MKL Pardiso (numeric) and Pastix (numeric) on Haswell-E
(top), Haswell-EP (middle), and Skylake (bottom). All times
are normalized over the level set numeric time.

All ParSy-generated code is compiled with GCC v.5.4.0 using
the -O3 option. We report the median of 5 executions for each
experiment. The PaStiX and MKL Pardiso libraries are installed
and executed using the recommended default configuration. For
Cholesky, the default ordering method for PaStiX is Scotch [40]
and for MKL Pardiso is Metis [28]. We use Metis ordering
in ParSy for comparison to MKL Pardiso, and use Scotch
ordering when comparing to PaStiX; this removes the effect
of ordering and allows for a fair comparison. For triangular
solve, we do not show the effect of reodering since reordering
would possibly change the pattern of the matrix to something
other than a triangular pattern. Unless otherwise stated, we
include only numeric factorization time and do not include
time for symbolic factorization.

Cholesky Performance. Figure 6 shows the performance
of ParSy-generated code compared to MKL Pardiso, PaStiX,
and the level set implementation. The ParSy-generated code
is faster than MKL Pardiso by up to 2.7×, 1.7×, and 2.8×
and is faster than PaStiX by up to 1.7×, 1.8×, and 3.1× on
Haswell-E, Haswell-EP, and Skylake respectively.

One of the main objectives of ParSy’s inspector is to improve
locality in sparse codes. Figure 7 shows the relationship
between the performance of ParSy and MKL Pardiso to their
memory accesses on the Haswell-E2. The average memory
access latency [22] is a measure for locality and is obtained
by gathering the TLB, L1 cache, and last level cache (LLC)
accesses and misses using the perf profiler. The Haswell-
E specification parameters are obtained from [22]. Figure 7
demonstrates a correlation between the performance of the
ParSy-generated code and the average memory access cost.
The coefficient of determination or R2 is 0.65, showing good
correlation between speed-up and memory access latency. For
matrices where ParSy provides better speedups, locality has
been improved more. Data in Figure 7 shows the original
measurements for the 5 runs and not the medians.
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Fig. 7: Relation between speed up and locality on Haswell-
E. Average memory access latency is the average cost of
accessing memory in ParSy’s code and MKL Pardiso. The
relation between speed-up and the memory access ratio is
approximated with a line. The coefficient of determination or
R2 of the fitted line is 0.65.

Figure 8 compares the ratio of wait time to CPU time in
ParSy and MKL Pardiso on Hasewell-E, measured using Intel’s
VTune Amplifier. Wait time3 is the time that a software thread is
stalled due to APIs that block or cause synchronization. CPU
time4 is the time that the CPU takes to execute numerical
factorization. Because it uses dynamic scheduling, MKL
Pardiso is more load balanced and thus has a nearly zero
wait time for all matrices, averaging 99% CPU utilization.
ParSy, however, prioritizes locality over load balance. ParSy
improves locality as shown in Figure 7 and also utilizes the
CPU cores fairly efficiently with an average of 95% CPU
utilization (a ratio of 0.05) as shown in Figure 8. Compared
to MKL Pardiso, ParSy provides a better trade-off between
locality and load balance which leads to the better performance
results for ParSy shown in Figure 6.

To analyze the performance of ParSy we provide the average
parallelism metric, shown with Parallelism in Table I, which
is related to the sparsity of the matrix. Parallelism is obtained
by dividing the number of nodes in the DAG by the critical
path of the DAG and is an approximate indicator of available
parallelism. The analysis based on parallelism is provided for

2We did not have root permission to profile on other architectures.
3https://software.intel.com/en-us/vtune-amplifier-help-wait-time
4https://software.intel.com/en-us/vtune-amplifier-help-cpu-time
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Fig. 8: The ratio of wait time to the total execution time
of numerical factorization for Cholesky in ParSy and MKL
Pardiso on Haswell-E.

both Metis and Scotch ordering methods. The performance
of ParSy is shown with two different orderings. Figure 6
shows how the ParSy-generated code improves the performance
of matrices with different sparsity patterns on the testbed
processors. The Skylake processor has a larger number of
cores compared to the other architectures; thus, we expect
matrices with more parallelism to perform better with ParSy
on this architecture; matrices 1, 2, and 3 which achieve high
speed-ups in ParSy compared to MKL Pardiso have the most
parallelism while matrices 17 and 19 with the least parallelism
do not perform as well as the other matrices.

A fill-in reducing ordering method such as Metis or Scotch
determines the number of nonzeros in the factor L and also
affects the structure of the assembly tree. For fair comparison
with the libraries and also to show the effect of ordering
on ParSy, the performance of ParSy with Metis and Scotch
ordering is shown in Figure 6. As shown, ParSy is faster than
the library using the same ordering; also, ParSy performs well
with both orderings. Library approaches are optimized for a
speific ordering and do not perform well when the ordering is
different from their default. For example, PaStiX with Metis
ordering is on average 2.2× slower than PaStiX with Scotch
ordering and MKL Pardiso with Scotch is on average 7.9×
slower than MKL Pardiso with Metis.

Triangular Solve Performance. Figure 9 compares the
performance of triangular solve in ParSy to MKL and wavefront
parallelism. The average speed-up of ParSy-generated code
compared to the level set implementation is 1.2×, 1.3×, 1.0×
on Haswell-E, Haswell-EP, and Skylake respectively. The
speed-up for triangular solve is relatively smaller than speed-ups
for Cholesky. This may be due to two reasons: (1) the triangular
solve is more regular, and thus the level set implementation
does not create much load imbalance; (2) the kernel has less
data reuse compared to Cholesky which reduces the effects
of optimizing for locality. However, ParSy is faster than the
highly-tuned MKL library on average by 2.6×, 4.7×, and 2.8×
on Haswell-E, Haswell-EP, and Skylake respectively, showing
the efficiency of LBC versus widely-used libraries.

Inspection Overhead. The H-Level inspection is performed
at compile time in ParSy and the generated code only
manipulates numerical values. The accumulated time for ParSy
includes compile-time inspection, code generation time, and
numeric factorization time. As demonstrated in Figure 10 ,
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Fig. 9: The performance of ParSy (numeric) for triangular solve
compared to MKL (numeric) on Haswell-E (top), Haswell-
EP (middle), and Skylake (bottom) processors. All times are
normalized over the level set numeric time.

the accumulated time of ParSy is 1.3× and 1.0× faster than
MKL Pardiso and PaStiX respectively, on average across all
architectures. Figure 11 shows the accumulated time of ParSy-
generated code for triangular solve is in average 4.0× and
3.4× faster than the MKL accumulated time on Haswell-E and
Skylake respectively. The accumulated times for Haswell-EP
follows a similar pattern to Haswell-E.

Scalability Analysis. The average speed-up for ParSy is 4×,
6.6×, and 6.8× compared to ParSy serial code on Haswell-
E, Haswell-EP, and Skylake respectively. For MKL Pardiso
and PaStiX the average speed-ups compared to their own
serial codes are 3.9×, 7.8×, and 8.4× for MKL Pardiso and
4.3×, 7.4×, 7.5× for PaStiX for Haswell-E, Haswell-EP, and
Skylake. These numbers demonstrate good scaling in all three
implementations. However, the performance of ParSy is 1.4×
faster than the two libraries across all architectures.

VI. RELATED WORK

Wavefront parallelism [54], [45], [59], [51], [38], [20] is one
of the most common approaches inspector-executor frameworks
use to parallelize sparse matrix methods. These either employ
manually-written inspectors and executors [51], [38], [20],
[39], [35] or automate parts of the process by simplifying
the inspector [54], [45], [59], [19]. These approaches use
inspectors to obtain dependence information that is only known
at runtime. The H-Level sets created in ParSy are typically
coarser than level sets in wavefront parallelism, reducing the
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Fig. 10: Symbolic + numeric time for ParSy-generated code,
MKL Pardiso, and PaStiX for Cholesky on Haswell-E (top),
Haswell-EP (middle), and Skylake (bottom). All times are
normalized to PaStiX’s accumulated symbolic + numeric time.

number of costly synchronizations. ParSy also improves load
balance in irregular sparse codes such as Cholesky compared to
wavefront approaches. The closest approach to ours that finds
an efficient trade-off between locality and load balance can
be found in [5], which extends the Pluto framework [7] with
an automatic parallelization approach for transforming input
affine sequential codes. However, this is limited to structured
and dense kernels.

Domain-specific compilers use domain information to dictate
optimizations and transformations the compiler can apply.
These compilers cover numerous applications such as stencil
computations [44], [52], [24], signal processing [43], tensor
algebra [29], matrix assembly in scientific simulations [2], [36],
[30], [6], and dense [21], [50] and sparse [12], [46], [9] linear
algebra. Amongst the domain-specific compilers for sparse
methods Sympiler [9] benefits from specializing the generated
code for a specific sparsity structure and numerical method.
However, Sympiler does not support parallelism on multi-core.
ParSy’s goal is to integrate with the Sympiler framework to
generate parallel code for sparse matrix methods on multiple
processor cores while benefiting from the performance that
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Fig. 11: The symbolic + numeric time for ParSy-generated
code and MKL for triangular solve on Haswell-E (top), and
Skylake (bottom) processors. All times are normalized to
MKL’s accumulated symbolic + numeric time.

Sympiler provides with sparsity-specific code specialization.

Numerous hand-optimized parallel sparse libraries exist
with efficient sparse matrix kernels. These libraries differ in
numerical methods they optimize and the platforms supported.
Implementations in [11], [8], [14] provide sequential sparse ker-
nels such as LU and Cholesky while parallel implementations
exist in work such as SuperLU [16], MKL Pardiso [48], and
PaStiX [23] for shared memory architectures, and in [16], [4]
for distributed memory. Several libraries have also optimized
specific sparse kernels such as triangular solve [31], [38], [57],
[55], [53] and sparse matrix-vector multiply [58], [26], [37].
Sparse kernel variants differ between libraries; for example,
PaStiX implements left-looking sparse Cholesky while MKL
Pardiso uses a left-right looking approach [47]. ParSy optimizes
left-looking Cholesky on shared memory architectures.

Parallel sparse libraries use numerical method-specific code
to determine data dependencies and schedule the computation.
These libraries typically inspect the symbolic information
of the matrix, which is called static/symbolic analysis, and
use the information for numerical manipulation with the
objective of creating load-balanced tasks that can execute in
parallel. Libraries such as PaStiX [23] use static analysis and
static scheduling [1] while most other libraries use hybrid
static/dynamic [49], [47] scheduling. Typically the DAG is
partitioned during inspection with algorithms such as the
subtree-to-subcube heuristic [18], [41], [27]. While dynamic
scheduling can introduce overheads at runtime, static schedulers
using profiling data on a specific architecture limit portability.
ParSy uses the matrix structure and numerical method to
compute a proportional cost that does not rely on the underlying
architecture and enables compile-time scheduling of tasks.



VII. CONCLUSION

In this paper we demonstrate how Load-Balanced Level
Coarsening can improve locality and reduce synchronization
in sparse kernels, especially those with non-uniform workloads
such as Cholesky. ParSy takes the numerical algorithm and
sparsity pattern of the matrix and generates optimized parallel
multi-core code. ParSy’s inspector uses the LBC algorithm for
inspection along with H-Level transformation for generating
the code. ParSy-generated code outperforms two state-of-the-
art sparse libraries for sparse Cholesky and triangular solve
across different multi-core processors.
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1 H-Level:

2 for(I1){
3 .

4 .

5 .

6

7 for(In(I1)){
8 Atomic:

9 c /= a[idx(I1,...,In)]; }}

1 f o r ( every l−pa r t i t i o n i) {
2 #pragma omp p a r a l l e l f o r p r i va t e ( pVars )
3 f o r ( every w−pa r t i t i o n j ) {
4 f o r ( every v ∈ HLevelSet [ i ] [ j ] ) {
5 I1 = v ;
6 . . .
7 f o r (In (I1 ) ) {
8 #pragma omp atomic
9 c /= a [ idx (I1 , . . . , In ) ] ;}}}}}

(a) Before (b) After
Level, loop[1].HLevel(HLevelSet,pVars)

Fig. 12: The H-Level transformation. The loop over I1 in (a) transforms to two nested loops that iterate over the H-Level
set in (b). Any use of the original loop index I1 is replaced with its corresponding value from HLevelSet.

APPENDIX

A. General From of Code Transformation

Figure 12 shows the general form of the H-level transforma-
tion. The loop in line 2 of the code in Figure 12a is changed
to lines 1–4 in the code in Figure 12b. After transformation,
all operations and indices that use I1, which is the index of
the transformed loop, will be replaced with a proper value
from HLevelSet. The parallel pragma in line 2 ensures that
all w-partitions within an l-partition run in parallel. Note that
some algorithms may require atomic pragmas; such cases are
detectable using existing analysis techniques [17].

B. Experimental Results for Non-Chordal DAGs

In order to test our algorithm on non-chordal DAGs, we take
the matrices in Table I and modify them to include only the
non-zeros in the lower triangular part of each matrix; we then
run triangular solve on this synthetic lower triangular matrix.
Unlike the L factors from matrix factorization, these lower
triangular matrices are not chordal. Figure 13 compares the
performance of ParSy-generated code against the MKL library
for the lower triangular part of matrices in Table I. All matrices
are first reordered with the Metis ordering method. ParSy code
is faster than MKL on average by 1.6×, 2.3×, and 7.0× for
Haswell-E (top), Haswell-EP (middle), and Skylake processors
respectively. We observe that the heuristic approach used
for finding sufficient w-partitions finds enought independent
components for LBC to produce a load balanced partitioning.
The number of connected components is on average 1019×
the target k number of w-partitions for these matrices with
non-chordal DAGs.
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Fig. 13: The performance of ParSy (numeric) for triangu-
lar solve compared to MKL (numeric) on Haswell-E (top),
Haswell-EP (middle), and Skylake (bottom) processors. All
times are normalized over the level set numeric time.


