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Abstract—The compact data structures and irregular compu-
tation patterns in sparse matrix computations introduce chal-
lenges to vectorizing these codes. Available approaches primarily
vectorize strided regions of computation in a sparse code. They
also reorganize data and computations, at a cost, to increase
the number of strided regions. In this work, we propose a
locality-based codelet mining (LCM) algorithm that efficiently
searches for strided and partially strided regions in sparse matrix
computations for vectorization. We also present a classification
of partially strided codelets along with a differentiation-based
approach to generate codelets from memory accesses in the sparse
computation. LCM is implemented as an inspector-executor
framework called LCM I/E. It generates vectorized code for the
sparse matrix-vector multiplication (SpMV) and sparse matrix
times dense matrix (SpMM), kernels with parallel outermost
loops, and kernels with loop-carried dependence, specifically
the sparse triangular solver (SpTRSV). We demonstrate the
performance of the LCM I/E-generated code for SpMV/SpMM
on a set of 789 real matrices (0.1-330M nonzeros) and SpTRSV
on a set of 132 symmetric positive definite matrices. LCM I/E
outperforms the highly specialized library MKL with an average
speedup of 1.67×, 4.1×, 1.75× for SpMV, SpTRSV, and SpMM,
respectively. For the same matrices, LCM I/E outperforms the
state-of-the-art inspector-executor framework Sympiler [1] for
the SpTRSV kernel with an average speedup of 1.9×.

I. INTRODUCTION

Irregular computations, such as in sparse matrix codes,
frequently appear in scientific and machine learning problems.
The performance of these applications is noticeably improved
if their code is vectorized to exploit single instruction mul-
tiple data (SIMD) capabilities of the underlying architecture.
Vectorization potentially increases opportunities to optimize
for locality, further increasing performance. SIMD instructions
can efficiently vectorize groups of operations that access
consecutive data, i.e. have a strided access pattern. However,
vectorization becomes challenging when access patterns are
not strided, especially in sparse matrix codes that use compact
representation to store the matrix data.

Libraries use domain knowledge, such as kernel or sparsity
pattern information to manually find groups of independent
operations that can be vectorized efficiently. The operations
in a sparse computation can be grouped in different ways
for vectorization. One class of prior libraries, such as ELL-
Pack [2], DIA [2], OSKI [3] finds groups of operations that
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access strided locations in the memory and then vectorizes
these groups. We call these groups of operations with strided
memory accesses strided regions. These libraries map a strided
region to a BLAS [4] kernel and then call an efficient BLAS
implementation to vectorize operations of the strided region.
To increase the size of strided regions in sparse matrix codes,
data reorganization methods such as new storage formats [2] or
padding with additional zero elements [3] are explored. These
methods reorganize data to put operations that access strided
locations next to each other. Another class of libraries, such
as CVR [5] and CSR5 [6] finds groups of operations that only
some of their operands access strided memory locations, which
are called partially strided regions. A common technique to
vectorize partially strided regions is to first store operands that
are not strided in consecutive locations by using gather/scatter
instructions [5], [7] and then vectorize them. Since nonzero
elements of sparse matrices are stored consecutively, i.e. are
strided, finding partially strided regions is always possible
independent of the matrix sparsity pattern.

Compilers automate vectorization of sparse kernels to re-
duce or eliminate the need to manually optimize per kernel/-
pattern, they also provide hardware portability. The automation
in compilers is done by defining the space of vectorization as
a search problem. They search the sparse kernel computation
to find an efficient set of regions that can be vectorized by
generating codelets. Searching the entire iteration space is
expensive, hence prior methods differ based on how they
reduce this search space. Methods such as sparse polyhedral
framework (SPF) [8] and Sympiler [1] search for strided
codelets inside tiles, i.e. a group of operations in consecutive
iterations of a loop. We refer to these methods as tiling-
based approaches. Tiling-based approaches also add padding
to increase opportunities for finding strided codelets. Regular
piece-wise methods such as Augustine et. al. [9] detect strided
regions from anywhere in the iteration space by generating
polyhedral models with rectangle shapes. These works do
not scale to large matrices (support matrices of up to 10M
nonzeros) as their code size becomes large. The common
limitation of prior automation approaches is that they only
search for strided regions for vectorization.

In this work, we propose a Locality-based Codelet Mining
(LCM) algorithm and classification of computations based on
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1 for(i0=0; i0<nrows; i0++)

2 for(i1=Ap[i0]; i1=Ap[i0+1]; i1++)

3 y[i0] += Ax[i1]*x[Ai[i1]];

1 tile_size[] = {0,0,0,0,0}

2 for(i=0,k=0; i<n_tiles;i++){

3 if(tile_size[i]==0){

4 for(i1=Ap[k]; i1=Ap[k+1]; i1++)

5 y[k] += Ax[i1]*x[Ai[i1]];

6 k++;

7 }else{/// Calling BLAS...

8 }}

1 for(i=0; i<3; i++)// BLAS

2 y[i] += Ax[4*i]*x[i+0];

3 for(i=0; i<3; i++)// BLAS

4 y[i] += Ax[4*i+1]*x[i+2];

5 for(i=0; i<3; i++)// BLAS

6 y[i] += Ax[4*i+2]*x[i+5];

7 for(i=0; i<3; i++)// BLAS

8 y[i] += Ax[4*i+3]*x[9];

9

10 for(i=0; i<2; i++)// BLAS

11 y[4+i] += Ax[12+3*i]*x[1+i];

12 for(i=0; i<2; i++)// BLAS

13 y[4+i] += Ax[13+3*i]*x[5-i];

14 for(i=0; i<2; i++)// BLAS

15 y[4+i] += Ax[14+3*i]*x[7];

16 y[5] += Ax[18]*x[9];

1 /// PSC

2 for(i=0; i<3; i++){

3 xt = gather(x,{0+i,2+i,5+i});

4 for(j=0; j<3; j++)

5 y[i] += Ax[4*i+j]*xt[j];

6 }

7 for(i=0; i<3; i++)/// BLAS

8 y[i] += Ax[4*i+3]*x[9];

9

10 /// PSC

11 int s1[] = {1,5,7,2,4,7,9};

12 int b1[] = {0,3,7};

13 for(i=0; i<2; i++){

14 bj = b1[i+1]-b1[i];

15 xt = gather(x,s1[b1[i]],bj);

16 for(j=0; j<bj; j++)

17 y[4+i]+=Ax[b1[i]+12+j]*xt[j];

18 }

1

Fig. 1: The codes in Figures 1b–1d show three different approaches to vectorize the SpMV kernel for the two regions in the
matrix as shown in Figure 1a. Each approach chooses a different strategy to group operations to be vectorized. The tiling
approach searches for consecutive outermost iterations that access strided memory locations but because no outermost iterations
with the same access pattern exist, it vectorizes one operation at a time as shown in line 5 in Figure 1b. The regular piece-wise
approach searches across all operations and converts the SpMV code to a group of operations with strided memory accesses
as shown in Figure 1c, each group is vectorized with BLAS. LCM groups operations that are strided and also operations with
partial strides, as shown in Figure 1d.

their strided behaviour, to automatically find strided and par-
tially strided regions in sparse codes. A novel differentiation-
based approach is also proposed to generate codelets. LCM
mines the memory accesses in the sparse computation in
polynomial time. In a permutation and partitioning step LCM
prunes the mining space by reordering operations for local-
ity and as a result, also improves vectorization efficiency;
this is because locality between operations increases the
number of strided accesses. In a second step, LCM creates
the combination of the largest possible BLAS and partially
strided codelet (PSC) codelets from the reordered operations
to minimize the overall execution time of the sparse kernel.
LCM is implemented as an inspector-executor framework and
supports multi-threaded execution. Compared to other automa-
tion frameworks, LCM has a low inspection time, generates
compact code, and is scalable (results are shown for matrices
with up to 300 million nonzeros). Our approach outperforms
the MKL library with an average speedup of 1.67×, 4.1×, and
1.75× for sparse matrix-vector product(SpMV), sparse lower
triangular solver (SpTRSV), and sparse times dense matrix
(SpMM) kernels, respectively. It also outperforms Sympiler,
an in-house implementation of SPF and regular piece-wise
methods with an average speedup of 1.92×, 4.1×, and 4.6×
respectively.

Motivation: We use the example in Figure 1 to compare
the codes generated from the automation methods, i.e. tiling-
based and regular piece-wise methods, to the generated code
from LCM. The example shows that from the same set of
operations in a sparse kernel, different vectorizable codes can
be generated, however, the code from LCM is more efficient
as it also contains vectorizable codelets for partially strided

regions. We do not show the mining strategy in LCM and our
PSC classification in this example.

For the region highlighted in blue in Figure 1a, the tiling-
based approach (code in Figure 1b) can not find tiles and
thus has to vectorize one multiply-add operation with a SIMD
instruction. As a result, SIMD units are not utilized efficiently.
We assume the number of SIMD units is three to simplify our
representations. The regular piece-wise approach (code in Fig-
ure 1c) finds four regions with strided accesses and vectorizes
them with BLAS codelets. Each codelet has three operations
and thus utilizes the SIMD units. However, SIMD instructions
do not access consecutive nonzeros in Ax, degrading spatial
locality. Figure 1d shows the code from LCM which includes
a partially strided codelet that vectorizes 9 operations (lines
1–6) and thus utilizes the SIMD units. It also iterates over the
nonzero elements in Ax consecutively, thus enhancing spatial
locality. Additionally, for the unstrided accesses to x, the LCM
generated code reuses column indices {0,2,5}, and uses a
gather instruction to store values consecutively in xt to further
enhance locality. For the set of computations highlighted in
green in Figure 1a, LCM generates an even more efficient code
compared to other tools because the memory access patterns
are less strided compared to the computations highlighted by
blue. Tiling-based and regular piece-wise approaches are both
unable to use SIMD units efficiently while the code from LCM
improves spatial locality, makes better use of SIMD units, and
uses gather instructions to load unstrided accesses to x as
shown in Line 15 in Figure 1d.
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I = [i0, i1, nrows]

{
i0 ≥ 0 ∧ i0 < nrows

i1 ≥ Ap[i0] ∧ i1 < Ap[i0 + 1]

}

iteration space access functions

y[∗] : f(i0, i1) = i0

Ax[∗] : g(i0, i1) = i1

x[∗] : h(i0, i1) = Ai[i1]

1

Fig. 2: Polyhedral representation of the SpMV kernel.

II. PARTIALLY STRIDED CODELETS

This section introduces partially strided codelets and dis-
cusses their classification. We also present a cost model
and a differentiation-based PSC detection strategy, both of
which are used in the LCM algorithm to find PSCs in sparse
matrix computations. We also show how PSCs are vectorized
efficiently with vector instructions.

A. Definitions

Polyhedral model and data access functions. A loop nest
that contains a set of statements is represented with a polyhe-
dral model through an integer polyhedron sets I and relations
f . A statement is made of a data space described with D which
is a disjoint set containing m elements D0, . . . ,Dm. An integer
polyhedral set I = [i0, ..., in] is a collection of inequalities
that create bounds for each dimension inside i ∈ I. For each
Dd ∈ D a data access function f is used to describe how
the data space Dd is accessed by the iteration space of I. In
other words, a data access function maps an iteration space to
a data space, i.e. fI→Dd

. The statement in the SpMV code
in Figure 1a has three data spaces y, Ax, and x as well as
three data access functions. Figure 2 shows the polyhedron
sets for I = [i0, i1, nrows] and also the access functions
corresponding to each data space in the SpMV code.

Codelet. A polyhedral model that has a convex integer
polyhedron with no flow dependencies, i.e. read after write
dependency (RAW) between access functions, is a codelet.
A codelet only has one statement type and the operation in
that statement is a SIMD-supported operation. Throughout the
paper, an operation refers to an instance of a statement. An
instance of a statement is each time the statement is executed
for a given input.

A list of operations is shown in Figure 3a and its polyhe-
dral representation including iteration space and data access
functions are shown in Figure 3b. All operations in this model
are independent and are instances of one statement (y[*]
+= Ax[*] * x[*]), with a multiply-add operation which
is supported by Intel and AMD SIMD units. Although there is
RAW between operations in Figure 3a, they are independent
in SIMD units due to associativity of accumulation [9]. These
properties satisfy the criteria for being a codelet.

Strided and unstrided data access function. A function that
can be expressed with a linear combination of induction vari-
ables in I is a strided access function. If the function cannot
be expressed as strided, it is an unstrided function. An access
function is represented as fI→Dd

(I) = qd+sd[i0]+. . .+sd[in]
where sd has n dimensions and each dimension corresponds
to an induction variable. sd[ik] shows indices for ik, and qd
is a constant integer offset. If f is strided with respect to ik

f g h
y[ 0 ] += Ax[
y[ 0 ] += Ax[
y[ 0 ] += Ax[
y[ 1 ] += Ax[
y[ 1 ] += Ax[
y[ 1 ] += Ax[
y[ 2 ] += Ax[
y[ 2 ] += Ax[
y[ 2 ] += Ax[

0
1
2
4
5
6
8
9
10

] * x[ 0 ]
] * x[ 2 ]
] * x[ 5 ]
] * x[ 1 ]
] * x[ 3 ]
] * x[ 6 ]
] * x[ 2 ]
] * x[ 4 ]
] * x[ 7 ]

(a) (b)

I = [i0, i1, 3]

{
i0 ≥ 0 ∧ i0 < 3

i1 ≥ 0 ∧ i1 < 3

}

y[∗] : f(i0, i1) = i0

Ax[∗] : g(i0, i1) = 4 ∗ i0 + i1

s2[][] = {{1}, {0, 2, 5}}
x[∗] : h(i0, i1) = s2[0][0] ∗ i0

+s2[1][i1]

1
Fig. 3: (a) a list of operations. (b) the iteration space and
access functions of the operation list in part (a).

then sd[ik] becomes an integer, this integer is the coefficient
of ik in the access function f .

The data access function f and g in Figure 3b are both
strided and can be expressed as a linear combination of [i0, i1].
Function h is unstrided because it is not linear with respect
to i1. In Figure 3b we show how h is represented using s2,
s2[0][0] is the coefficient of i0, s2[1] is an array of indices for
i1, and q2 is zero and is not shown.

B. Partially Strided Codelet Classification

An efficient way to vectorize a codelet is to find operations
with strided accesses across different iterations. This enables
the vectorization of more operations and potentially increases
data reuse between different iterations. However, current au-
tomation approaches are limited to vectorizing codelets with
strided access functions. We call codelets with strided access
functions BLAS codelets because an efficient BLAS [4] im-
plementation is used in this work to vectorize these codelets.
We also define a novel set of codelets called Partially Strided
Codelets that have at most m − 1 strided access functions
and at least one unstrided access function. These codelets
can benefit from vectorization because they have one or more
strided access functions.

PSCs are classified into different types based on the number
of access functions that are strided. For example, in SpMV,
SpTRSV, and SpMM that have codelets with three access
functions, m = 3, two types of PSCs can be defined. The PSC
type I codelet is used when two of access functions are strided,
and the PSC type II codelet is used when only one access
function is strided. For example, the operations in Figure 3b
are a PSC I with one unstrided access function h.

C. Partially Strided Codelet Cost Model

We use an empirical cost model to estimate the execution
time of codelets. To measure the cost of a codelet, similar to
[10], we account for arithmetic operation cost and measure
the memory access cost due to load/store operands. Because
PSC codelets have unstrided accesses and indirection, we
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additionally account for the cost of indexing for load and
stores. The cost of a codelet l (Cl) is:

cost(Cl) = cop×
|p|
V

+cst×
|s0 + q0|

V
+cld×

1

V

m=3∑

d=1

|sd+qd|

(1)
The arithmetic cost of a codelet is obtained by dividing
the number of arithmetic operations |p| by the vectorization
factor V (because SIMD units execute every V operations
at once) and then multiplying the result by cop. cop is the
number of cycles for an arithmetic operation type in the
target architecture. To measure the memory access cost of a
codelet, since the cost of loads differ from the cost of stores
on multicore processors, we separately measure the cost of
memory accesses from functions that contribute to stores and
then add it to the cost of memory accesses from functions
that contribute to loads. In this work we use codelets with
three access functions, m = 3, as shown with f , g, and h in
Figure 3. Function f contributes to stores and is expressed with
s0 + q0, this expression is obtained from the access function
representation explained in Section II-A. |s0+q0| in Equation 1
shows the number of store operands plus the indexing cost,
i.e. the size of arrays s0 and q0. Then the number of stores is
multiplied with cst which is the cost of a store and is divided
by V . Functions g and h contribute to loads in a codelet and
thus |s1+q1| and |s2+q2| are added to measure load operands
and their indexing cost. The number of loads is then multiplied
with cld which is the cost of a load operation and then divided
by V . The arithmetic cost of the codelet in Figure 3 is 9
assuming cop = V = 1. The store access cost is 4 assuming
cst = 1. The load access cost is 25 assuming cld = 1.

Figure 4 shows the correlation between the codelet cost
model and the execution time of codelets on an Intel Skylake
and an AMD Epyc processor. We vectorize SpMV, SpTRSV,
and SpMM computations with different codelets for all matri-
ces in our dataset obtained from SuiteSparse [11]. The x-axis
shows the execution time of a kernel for a matrix in seconds.
The y-axis shows their corresponding cost, which is computed
by adding the cost of all codelets in the sparse kernel for
the specific matrix. As shown, the cost model predicts the
execution time with a correlation of 0.89 on Intel and 0.95
on AMD. Our cost model shows a good correlation despite
not accounting for cache effects. This is because the size
of codelets is bounded to be small enough to fit into L1
cache (our heuristic is Section III-B explains this) and thus
codelets will not get evicted from cache during execution. Also
matrices and vectors are aligned in memory, so the number of
misaligned memory accesses remains low.

D. Differentiation Based PSC Detection

In this section, we explain how the first order partial
difference (FOPD) of the access functions in a group of
operations can be used to detect a codelet type.

First Order Partial Differentiation (FOPDI). Given the data
access function f with an iteration space of I = [i0, i1], the
first order partial difference of f with respect to i1 ∈ I is
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Fig. 4: Correlation between the PSC cost model and execution
time for an Intel (a) and an AMD (b) processor.

0, 0, 0, 1, 1, 1, 2, 2, 2
0, 1, 2, 0, 1, 2, 0, 1, 2
0, 0, 0, 1, 1, 1, 2, 2, 2
0, 1, 2, 4, 5, 6, 8, 9, 10

1, 1, 1, 1, 1, 1,

0, 2, 5, 1, 3, 6, 2, 4, 7

2, 3, 2, 3, 2, 3,

i0 =
i1 =

f(i0, i1) =

g(i0, i1) =

∆i0h(i0, i1) =

h(i0, i1) =

∆i1h(i0, i1) =
1

Fig. 5: Taking the derivative of the access function h with
respect to i0 and i1.

computed as FOPDi1 = ∆
∆i1

f(I) = ∆i1f = f(i0, i1 + 1)−
f(i0, i1). FOPD shows if accesses to a data space are strided
with respect to the induction variable i1. Figure 5 illustrates
the process of computing the FOPD for the access function h
given the operation group shown in Figure 3a. For example,
the FOPD of h evaluated at i0 = 1, i1 = 1 is ∆i1h(1, 1) = 3.

FOPD of access functions are used to distinguish types of
codelets by finding strided access functions. Given a codelet
with three access functions and the iteration space of I =
[i0, i1, nrows], an access function f is strided if its FOPDs
with respect to I are equal in the entire iteration space. In
other words, f is strided if the elements in ∆i0f(i0, i1) are
equal to each other and similarly for elements in ∆i1f(i0, i1).
With the strided definition above, all codelet types can be
defined per definitions in Section II-B. For example, the
first three accesses in function g(i0, i1) in Figure 5 are to
consecutive locations (0, 1, 2) in Ax. The FOPD of the first
two accesses, wrt. i1, is FOPDi1(0, 0) : g(0, 1)− g(0, 0) = 1
and for the second and third accesses is FOPDi1(0, 1) :
g(0, 2)− g(0, 1) = 1. Similarly the FOPD of the accesses for
i0 are FOPDi0(0, 0) : g(1, 0)−g(0, 0) = 4 and FOPDi0(1, 0) :
g(2, 0) − g(1, 0) = 4. Since FOPDi1(0, 0) and FOPDi1(0, 1)
are equal, and FOPDi0(0, 0) and FOPDi0(1, 0) are equal, the
function in the iteration space I = {i0 = 0 ∧ 0 ≤ i1 ≤ 3} is
strided. Because function f is also strided and h is not strided,
the codelet is categorized as a PSC type I.
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1 #include <immintrin.h>
2 void PSCI_MADD(double *Ax, double *x, double *y,
3 IterSpace I, Fun f, Fun g, UFun h){
4 for(int i0=0; i0<I.n0; i0++){
5 auto xt = gather(x, h.s0);
6 auto r0 = _mm_setzero_pd();
7 for(int i1=0; i1<I.n1; i1+=V){
8 Axt = _mm_loadu_pd(Ax, g(i0,i1));
9 r0 = _mm_fmadd_pd(Axt, xt, r0);

10 }
11 y[f(i0)] += hsum_double_avx(r0);
12 }}

Listing 1: The parametrized vectorized routine for a PSC-I
codelet with the multiply-add operation and with unstrided h.

E. Parameterized Vectorized Routine

We vectorize a PSC with a parameterized vectorized rou-
tine that efficiently uses the SIMD instructions of the target
architecture, i.e. x86. The parameterization also allows us to
generate concise code invariant to the number of codelets that
are mined for a set of operations. The parameterized vectorized
routine takes the iteration space and access functions of a
codelet and data spaces of the kernel as input and vectorizes
all operations in the codelet. Listing 1 shows the parameterized
vectorized routine for a PSC-I and the multiply-add operation
with an unstrided access function h. For efficient use of
SIMD instructions, we implement a separate routine based on
strided properties of access functions. For a PSC I codelet, we
implement three routines, and in each routine one of f , g, h is
unstrided. For PSC II, we use three routines with one of f , g,
or h being strided per routine. To vectorize a list of codelets of
different types, a switch-case structure is used that selects the
parameterized vectorized routine associated with each codelet
type.

III. MINING FOR PARTIALLY STRIDED CODELETS

PSC mining creates a list of codelets from access functions
and the iteration space of a sparse kernel with the objective to
minimize the overall cost of the final codelet list. In this section
we first define PSC mining as a problem with its objective and
constraints and then propose a locality-based codelet mining
(LCM) heuristic to solve it. The extension of LCM to multi-
thread parallelism is also discussed.

A. The PSC Mining Problem

This subsection first defines the inputs and output of the
PSC mining problem and then demonstrates the objective and
its constraints. The inputs to the PSC mining problem are a list
of P unique operations represented with three access functions
f , g, and h, the iteration domain I, and operation dependence
information G. The matrix G is boolean, and Gij = 1 indicates
that executing operation j after operation i does not violate
correctness in the sparse computation, and is obtained from
the dependence graph of the sparse kernel [1]; The range for i
and j is [0, P−1]. The output is the list of M mutually disjoint
codelets, final list = (C0, C1, ..., CM−1) that covers all P
operations in the sparse computation. The objective of the PSC

(a)access functions anditeration space (b)dependence
information

(c) codelet list

f g h[i0, i1]Op #

0
1
2
3
4

0
0
0
1
1

0
1
2
0
1

y[ 0 ] += Ax[
y[ 0 ] += Ax[
y[ 0 ] += Ax[
y[ 1 ] += Ax[
y[ 1 ] += Ax[

0
3
4
5
6

] * x[ 4 ]
] * x[ 3 ]
] * x[ 2 ]
] * y[ 0 ]
] * y[ 0 ]

0

1

2

3

4

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

0 0 0 1 1

0 1 2 3 4
→→

i
j G

final list = (C0, C1)

C0 = (0, 1, 2)

C1 = (3, 4)

1

Fig. 6: The inputs (Figures 6a and 6b) and output (Figure 6c)
of the PSC mining problem.

mining algorithm is to find the best list of codelets that covers
each operation exactly once and minimizes the below cost:

M−1∑

k=0

cost(Ck) (2)

To ensure correctness for codelets with more than one opera-
tion, the following constraint should be satisfied:

∀k = 0 . . .M − 1 ∀i, j ∈ Ck, i ̸= j, Gij = Gji = 1 (3)

The constraint ensures that operations i and j are assigned to
a codelet k only if they can execute independently, i.e. Gij

and Gji is one. Additionally the PSC mining problem ensures
that an operation is only mapped to one codelet and is used
in that codelet only once. It is possible that a codelet gets
assigned only one operation and because in those codelets no
dependence is violated Gij for i = j is always 1.

An example of input operation list to PSC mining is shown
in Figure 6a. The dependence information matrix G for the five
operations in Figure 6a is shown in Figure 6b, e.g. G34 and
G43 is set to one because operations 3 and 4 are independent.
Note that these operations are independent because we are
leveraging the associativity property of the add operation.
G30, G31, and G3,2 are zero because there is read after write
dependence between operation 3 and operations 0–2. The
constraint in Equation 3 is satisfied in the final codelet list in
Figure 6c, e.g. operations 3 and 4 that are mapped to codelet
1 are independent based on G while operations 3 and 0 are
not mapped to the same codelet.

The solution to the discussed PSC mining problem is NP-
hard as it is equivalent to solving a set partitioning prob-
lem [12]. The objective of a set partitioning problem is to
create non-overlapping subsets that cover all elements in the
set and minimizes a total cost over all subsets. Similarly, PSC
mining creates a list of codelets from the list of operations in
the sparse kernel such that codelets do not overlap and cover
all operations in the kernel.

B. Locality-based Codelet Mining Heuristic

We propose a locality-based mining algorithm that mines
operations and finds an efficient codelet combination that satis-
fies the constraints of the PSC mining problem and minimizes
the total cost of codelets. The LCM algorithm has two steps;
in the first step, LCM permutes operations to increase data
reuse and the possibility of creating efficient codelets from
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Fig. 7: Figure 7a shows the LCM inputs, i.e. the list of operations, their iteration space, and their access functions that
correspond to SpMV operations of the blue part of the matrix in Figure 1a. Figure 7b shows the minimum edge cover problem
that first step of LCM solves. Each vertex corresponds to an operation and an undirected edge between operations i and j
shows that they can execute in any order without violating correctness while ensuring a strided access. Figure 7c shows the
permuted operations corresponding to highlighted edges in Figure 7b. Figure 7d shows the second step of LCM where, for
each computation region, it merges initially created small codelets to reduce the total cost of codelets.

that list of operations. This step also groups operations that
have the most reuse into computation regions. The second
step of LCM searches for efficient codelets in consecutive
operations of each computation region. The steps in LCM
prune the search space of the PSC mining problem by finding
codelets in computation regions with high data reuse, i.e. good
locality.

1) Step 1, Permutation and Partitioning: In the first step,
LCM permutes operations to increase locality. It also creates
partitions from the permuted operations. Since locality results
from operations with 0/1 strided memory accesses, LCM looks
into the access functions for operations that access spatially
close or common memory locations. This is obtained via
solving a permutation problem that improves locality through
minimizing a distance between operation pairs while ensuring
the correctness of the computation. Only operation pairs that
have at least one strided access are considered as they provide
better data reuse. Distance between operations is defined as
a measure for common memory accesses and the number of
strided accesses between a pair of operations. For a pair of
operations i and j, distance is dij = (|f(OP [i])−f(OP [j])|+
|g(OP [i])−g(OP [j])|+|h(OP [i])−h(OP [j])|)×u2 where |.|
is the absolute difference between operations i and j when the
difference is either zero or one, otherwise it is a constant, e.g.
4, and u is the number of operation pair accesses for these two
operations that do not have 0/1 strided access. OP is the list
of integer tuples (I0, ..., I|p|) where OP [j] shows the iteration
information of operation j, e.g. in Figure 7a OP [2] = (0, 2).

We solve the permutation problem by modeling it as a
minimum edge covering graph problem1. Vertices are also
partitioned as a part of the process. A cover graph is first
created. In the cover graph each vertex represents an operation
and an edge exists between two vertices if their operations do
not have RAW dependence and have at least one 0/1 strided
access. Each edge in the graph has a weight equal to the dis-

1Minimum edge covering problem [13] finds the subset of edges that
minimizes total edge cost; the union of edge endpoints covers all vertices.

tance between the two operations connected via the edge. The
selected edge set from the graph problem is used to permute
operations. If eij is in the set, then operation j will follow i in
the permuted list of operations. In an additional step, we iterate
over the graph with the selected edges and, group vertices that
belong to a connected component as a computation region.
Figure 7b shows the cover graph representation created for
the list of operations in Figure 7a. The graph has 12 vertices
that correspond to the SpMV operations in the blue region of
the matrix in Figure 1a. Operations 0 and 1 have 0/1 stride
in f and g thus, an edge with weight 5 connects them. For
brevity, only edges for operations with 0/1 strided accesses
in at least two access functions are shown. The graph is also
leveraging the associativity property in the add operation in
SpMV and hence for example there exists no edge between
operations (vertices) 0 and 1. The output of Step 1 is shown
with colored edges. Selected edges between operations 3 and
7 indicate that operation 7 should execute after operation 3 the
direction is from the operation with small number to the big
one. Vertices covered by edges of the same color belong to
one computation region. Two computation regions are created
in the graph in Figure 7b.

Since solving the minimum edge cover problem on the
entire graph is NP-hard [14], LCM uses a greedy algorithm
and finds the best possible edge cover amongst vertices visited
through a depth-first search. It initially creates a computation
region with a window of vertices. A window contains a chain
of vertices with the size of vectorization factor that all their
connecting edges have the same edge weight di. Windows w1

and w2 are strided if every vertex in w1 connects to a unique
vertex in w2 via a common weight do. From the initial window,
LCM does a depth-first search to find its strided windows. The
vertices of a window and its strided window vertices are put
into the same computation region. The process repeats for any
unvisited vertex in the graph.

The permutation step in LCM is shown in Lines 1–12 in
Algorithm 1. The graph is created via the make cover graph
function in line 2. To create the edges of the cover graph,
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Algorithm 1: Locality-based Codelet Mining (LCM)
Input : f, g, h, I,G
Output: final list
/* 1) Permutation and Partitioning */

1 comp region list ← ∅;
2 CGraph ← make cover graph(f, g, h,G);
3 for unvisited v1, v2, v3 ∈ CGraph do
4 stack.push( v1, v2, v3);
5 tmp cr ← ∅;
6 di, do ← determine search window(v1, v2, v3);
7 while stack is not empty do
8 v′1, v

′
2, v

′
3 ← stack.pop three ops();

9 mark as visited(v′1, v′2, v′3);
10 tmp cr.append(v′1, v′2, v′3);
11 stack.push( expand window(v′1, v′2, v′3, di, do));

12 comp region list.append(tmp cr);
/* 2) Codelet Creation */

13 for r ∈ comp region list do
14 FOPDr ← compute FOPD(r);
15 S ← create PSC II(FOPDr, I);
16 for s ∈ S do
17 Cr ← ∅;
18 while cost(s ∪ Cr) ≤ cost(Cr) + cost(s) do
19 Cr ← s ∪ Cr;
20 s← S.next();

21 final list.append(Cr);

obtained by the distance, make cover graph checks operation
pairs. Because checking all operation pairs is expensive,
make cover graph picks pairs from V consecutive operations.
V is the vectorization factor. This strategy is effective because
operations are initially sorted based on access functions with
the most reuse, i.e. g in SpMV and SpTRSV and h in
SpMM. The initial window and common weights di and
do are determined via determine search window in Line
6 in Algorithm 1. Depth first search is conducted in lines
7–11 and function expand window in Line 11 returns the
strided windows v′1, v′2, and v′3 w.r.t di and do. When all
reachable vertices are visited, i.e. the stack is empty, the
current computation region is added the list of regions in
Line 12 and the process repeats to create another computation
region. Operations in a window are placed consecutively in the
comp region list list to ensure efficient use of SIMD units.
During this process each vertex is visited twice and each edge
is visited once thus the computation complexity of step 1 is
O(2× P + E) where E is the number of edges.

For the graph in Figure 7b and a vectorization factor of
three, a computation region is initialized with a window
{0,1,2}. The region is expanded with a strided window {4,5,6}
where di = 5 and do = 6. This region is enlarged by adding
the strided window {8,9,10}. The final computation region
will be of size 9, and then the algorithm repeats to create the
other computation region containing {3,7,11}.

2) Step 2, Codelet Creation: In the second step, for
each computation region, LCM fits the best combination of
PSC/BLAS possible. As discussed in Section II-C, different
codelet combinations can be created for a computation region

Algorithm 2: Multi-threaded LCM (MT-LCM)
Input : f, g, h, I,G,K
Output: Schedule

1 if G.has zero() then
2 Partitions← wavefront coarsening(G, I, 8×K);
3 else
4 Partitions← partition even(I, 8×K);

5 pList← ∅;
6 for I′ ∈ Partitions do
7 f ′, g′, h′,G′ ← get func of iteration space(f, g, h, I′);
8 L′ ← LCM(f ′, g′, h′, I′,G′);
9 C′ ← Cost(L′);

10 pList.append(L′, C′);

11 Schedule = first fit packing(pList, K);

with a given order of operations. For example, for the blue
computation region in Figure 7c, one possibility is to create
three BLAS codelets as shown in Figure 1c with an indexing
cost of 15, another possibility is to create three PSCs-II with
the cost of 18. LCM chooses the codelet set with the minimum
cost of 7, which is the PSC-I shown in Figure 3 (arithmetic
operation cost and loading/storing operand cost are the same
for all three possibilities).

To solve the codelet creation problem, LCM first creates
a list of PSC-II codelets (S) that covers all operations in a
computation region, (create PSC II in Line 15). Then the
codelets in S will be visited in order and merged to reduce the
total cost of the output, final list. The codelet list final list
is created to minimize Equation 2 while prioritizing writes
over reads. This is because write accesses are more costly
compared to reads. The algorithm performs this by grouping
all operations that the FOPD of their write access function is
constant and zero. To create the final codelet list, in Lines 16–
21, LCM applies a merging method based on codelet costs.
The first codelet in S is put in a Cr (running codelet) and
merged with the following codelets in S, if profitable. Merging
two codelets is profitable if the PSC that covers the operations
of both codelets, i.e. cost(s ∪ Cr), has a cost that is lower
than the cost of individual codelets added. If profitable, the
algorithm merges Cr with s and checks for the possibility of
merging with the next codelet in S. The algorithm also stops
merging when the size of the codelet becomes larger than the
L1 cache to satisfy the cost model (Section II-C) requirement.
If not profitable, the codelet in Cr is put in to the final list.
The process continues until the final list is populated with
codelets that cover all operations in the kernel, i.e. set S is
fully visited. Since each operation is visited once in Step 2,
its complexity is O(P ).

C. Multi-threaded Extension

LCM takes a set of operations and creates codelets to vector-
ize computations on a single-core. To extend the algorithm to
multiple threads and hence improve scalability, in Algorithm 2,
we show the extension of LCM to multiple threads (called MT-
LCM). The number of cores K is also an input to MT-LCM.
Lines 1–4 create balanced partitions to be executed by each
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thread and simultaneously minimize synchronization between
threads. LCM is then applied to each partition in lines 6–10.
Because the execution time of operations in partitions changes
after vectorization, the cost of each partition is also computed
in line 9, and in the final stage, partitions are balanced using
bin packing to create well-balanced partitions.

MT-LCM initially partitions the operations into M inde-
pendent partitions in Lines 1–4 in Algorithm 2. It selects M
to be larger than K, i.e. 8×K, so that the computations can
be balanced via merging partitions. Kernels SpMV and SpMM
only contain operations that have write-after-write dependence.
Thus, the outermost iterations are evenly divided into parti-
tions. In SpMM, iterations that access the same column can
potentially improve temporal reuse. Hence, MT-LCM merges
partitions with more than 50% common column access. For
kernels that have loop-carried dependencies, such as SpTRSV,
its dependence information has RAW dependence and hence
at least one zero in G (Line 1). To create partitions, we use
the load-balanced wavefront coarsening (LBC) [15] method
to partition operations (line 2 in Algorithm 2). A wavefront
is a group of iterations with no RAW. LBC finds independent
partitions from a group of wavefronts called coarsened wave-
fronts and then applies synchronization between the coarsened
wavefronts.

MT-LCM uses the PSC cost model along with a bin-packing
method to ensure load balance after operations are vectorized.
As shown in Lines 6–11 in Algorithm 2, MT-LCM computes
access functions of each partition in line 7 and then builds
codelets from the functions (Line 8). The partition cost, equal
to the total cost of codelets in the partition, is calculated in
Line 9. Finally, in Line 11, the vectorized partitions and their
costs are passed to a first-fit bin-packing method [16], where
it merges every pair of consecutive partitions to create a larger
partition equal to a target cost. The target cost is the total cost
of all partitions divided by K.

IV. RESULTS

We evaluate the performance of LCM (implemented as
in inspector-executor, which we call LCM I/E) using three
kernels, SpMV, SpTRSV, and SpMM. LCM I/E is compared
to other automation approaches, specifically Sympiler and SPF,
which are tiling-based, and regular piece-wise from [9]. We
also compare LCM I/E to libraries CSR5 [6] and MKL [17].
Sympiler does not support SpMV and SpMM, and CSR5 and
regular piece-wise implementations do not support SpTRSV
and SpMM, so these tools are omitted from the respective
kernel figures.

A. Experimental Setup

Matrix Dataset: The set of matrices used to evaluate
the performance of SpMV and SpMM are obtained from
the SuiteSparse repository [11]. For an unbiased selection
of matrices, we choose all real matrices with more than
100K non-zero elements (789 total). To ensure the numerical
stability of SpTRSV, all symmetric positive definite (SPD)
matrices larger than 100K nonzeros (132 total) are selected

(a)

(b)

(c)

(d)

Fig. 8: LCM I/E speedups for SpMV over (a) the best of the
multi-threaded SpMV CSR and the parallel MKL, (b) parallel
CSR5, (c) SPF-ELL, and (d) Regular piece-wise (RPW). Every
point above the red horizontal line represents a matrix where
LCM I/E is faster. RPW and SPF-ELL are missing data points
because they either time out or become out of memory.

from SuiteSparse for evaluation. For the SpTRSV, we only
use the lower triangular half of the SPD matrices. Since
profiling is time consuming, all of our profiling figures and
data are conducted on a randomly selected set of 30 matrices
in the range of 100k-100 million nonzeros. Throughout the
result section, we refer to these 30 matrices as the random
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Fig. 9: The LCM I/E speedups for SpMV over the best of the
multi-threaded SpMV CSR and MKL SpMV on AMD.

subset. Additionally for reproducibility, we separately report
the running time in GFlop/s of all tools (as a stacked bar) for
these 30 matrices. The test-bed architectures are an Intel(R)
Xeon(R) Gold 5115 CPU (2.8GHz, 14080K L3 Cache) with
20 cores and 64GB of main memory and an AMD EPYC
7742 CPU (2.25 GHz, 256MB L3 Cache) with 68 cores
and 256GB of main memory. All experiments are conducted
on the Intel processor unless otherwise stated. All generated
code, implementations of different approaches, and library
drivers are compiled with GCC v.11.2 and the -O3 flag. Each
benchmark is executed 50 times per matrix/kernel, and the
median value of the runs is reported. MKL 2021.4.0 and latest
public version of CSR5 are used for evaluation.

LCM implementation: We implement LCM and the PSC
codelets as an inspector-executor framework, called LCM I/E.
The inspector first creates a set of codelets using the LCM
algorithm, and then the executor executes the kernel with the
created codelets. With its inspector, LCM I/E creates access
functions and the dependence graph and passes them to the
MT-LCM algorithm along with the number of cores, which is
20 for the Intel processor. The access functions are created
from the matrix sparsity pattern and the kernel code i.e.,
SpMV, SpTRSV, and SpMM codes in compressed sparse row
(CSR) format. For each sparse kernel, LCM I/E generates an
inspector and an executor and hence performs code generation
and compilation once per kernel. We show the executor time
of LCM I/E in all graphs unless otherwise stated.

Regular piece-wise (RPW) methods: To compare LCM
with the RPW approaches, we use the work in [9] which
is evaluated for SpMV. The code for RPW is not publicly
available thus, we created an in-house inspector-executor im-
plementation of their approach with feedback from the authors.
Since RPW methods perform code generation and compilation
per matrix, we include that timing as a part of their inspector.
The RPW method in [9] supports single-threaded execution,
so we also extended it for parallelism, and report the best
performance between the two implementations. A timeout of
4 hours was used for all runs (including the code generation,
inspection, and execution time). In our figures, RPW does
not have a data point for some large matrices because their
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Fig. 10: The performance breakdown of LCM I/E for SpMV
using BLAS and PSCs, and its comparison with SPF-ELL and
RPW are shown.

inspector times out.
Tiling-based approaches: We compare the SpTRSV and

SpMV of LCM I/E in order with Sympiler and an imple-
mentation of the sparse polyhedral framework. For Sympiler,
we use its generated code for the SpTRSV kernel. To compare
with SPF, since the code is not publicly available, we use their
SpMV implementation from Venkat et. al. [18] and use the
techniques proposed in ELLPACK [2] to decide when to pad;
we call this ELLPACK-based implementation of SPF the SPF-
ELL approach. In our figures, SPF-ELL does not have a data
point for large matrices, because of padding from ELL, the size
of these matrices becomes larger than the system memory.

B. SpMV Performance

We compare the performance of LCM I/E for SpMV with
CSR5, MKL, SPF-ELL, and RPW across all matrices in the
dataset as shown in Figure 8. LCM I/E is faster than all four
methods for over 91% of the matrices. It is on average 1.6×,
2.1×, 4.1×, and 4.6× faster than MKL, CSR5, SPF-ELL, and
RPW respectively. We also compare LCM I/E with its fastest
competitor, i.e., MKL for SpMV on the AMD processor as
shown in Figure 9. LCM I/E is faster than MKL across all
matrices in our dataset with an average speedup of 1.7×.

To demonstrate the effect of partially strided codelets on
the performance of LCM I/E, in Figure 10, we use a stacked
bar for LCM I/E for the random subset of matrices. The
stacks show the GFlop/s from LCM I/E when it only mines
for BLAS codelets (LCM I/E+BLAS and refer to LCM I/E
BLAS only), and from the entire LCM I/E algorithm, i.e.
Algorithm 1, that mines for BLAS and PSC (shown with LCM
I/E or LCM I/E+BLAS+PSC in the figure). As shown, LCM
I/E is on average 10× faster than LCM I/E BLAS only, which
demonstrates the importance of using PSC codelets. We also
calculate the percentage of operations that are vectorized in
the generated code from LCM I/E with PSC I, PSC II, and
BLAS codelets, obtained by averaging over all matrices in the
random subset. We found that 83% of operations in SpMV
are vectorized with PSC codelets.

The PSC codelets improve strided memory accesses through
improving data locality in LCM I/E’s generated code. Figure
11a shows the relation between LCM I/E’s performance and
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Fig. 11: Figure 11a shows the correlation between LCM I/E
speedup over the parallel SpMV CSR and its relative memory
cycle to the parallel SpMV. The coefficient of determination or
R2 is 0.83. Figure 11b shows the correlation between instruc-
tion cache misses in our implementation of RPW compared
to the sequential SpMV CSR where R2 is 0.4.

the performance of the parallel (OpenMP) version of SpMV
CSR for the random subset of matrices. Average memory
access latency [19] is used as a measure for locality and is
computed by gathering the number of misses and accesses to
L1, L2, and LLC caches using the PAPI [20] performance
counters. Figure 11a shows the coefficient of determination
or R2 is 0.83, which indicates a good correlation between
speedup and the memory access latency.

To further explain why LCM I/E is faster than other tools,
we conduct a few experiments and report the resulting average
over the random subset of matrices in this paragraph. For
MKL, we compute its average memory access latency, which
is 4.36x slower than that of LCM I/E, contributing to the worse
performance compared to LCM I/E. To compare to CSR5, we
count the number of instructions. CSR5 executes 1.73x more
instructions compared to LCM I/E. This is potentially due
to the overhead of the segmented sum calculations used in
their approach to improving vectorization and load balance.
To conclude, the SpMV code of LCM I/E is faster than
existing implementations because it improves data locality
and/or reduces the number of instructions via vectorization.

We compare LCM with the automation approaches, SPF-
ELL, and RPW for 30 selected random matrices. Figure 10
compares the performance of LCM I/E with RPW and SPF-
ELL. As shown, LCM I/E is faster than RPW and SPF-ELL
with an average of 6.32× and 5× respectively. The RPW ap-
proach has difficulties in scaling because the size of its output
code is often linearly correlated with the number of nonzero
elements of the sparse matrix, and thus the performance of its
generated code depends on the number of instruction cache
misses. Figure 11b illustrates a negative correlation between
the regular piece-wise speedup over the sequential baseline
SpMV code and the relative instruction cache misses, with
R2 = 0.397. Code compaction techniques such as adding
loop variables to group small BLAS codelets do not help
on large scale due to conditional statement overhead. LCM
does not have a code size issue because of using the proposed
PSC codelet classification and their parameterized vectorized
routines. SPF-ELL is slower than LCM I/E because the
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Fig. 12: Performance breakdown of LCM I/E for SpTRSV
using BLAS and PSCs, and its comparison with MKL and
Sympiler.

number of padded nonzeros in SPF-ELL is often larger than
the nonzero elements in the matrix, thus creating significant
redundant instructions.

C. SpTRSV Performance

Figure 13 compares the performance of SpTRSV using
LCM I/E, MKL, and Sympiler across all SPD matrices in
the dataset. On average LCM I/E is faster than MKL, and
Sympiler 4.1× and 1.92×, respectively.

We show the performance breakdown of LCM using BLAS
and PSCs in Figure 12 for the random subset. As shown,
partially strided codelets are the main contributors to the
overall performance of the LCM I/E’s SpTRSV code. On
average, LCM I/E is 3.9× faster compared to when only BLAS
codelets are generated. Similar to SpMV, PSCs contribute
to optimizing 78% of the operations over the 30 matrices.
However, the number of PSC II codelets has increased from
18% in SpMV to 53% in SpTRSV. The number of codelets
with more than one strided access function is small, due to
the existing dependencies in SpTRSV, thus, more PSC type II
codelets are generated. Similar to SpMV, the mined PSCs in
LCM I/E improve locality. The correlation coefficient between
the speedup and relative memory cycle is 0.67, which is
consistent with the trend in SpMV.

The LCM I/E code for SpTRSV is faster than Sympiler and
MKL due to multiple factors. While MKL provides an efficient
and vectorized implementation for single-threaded SpTRSV
executions, it is not optimized to execute on parallel proces-
sors; the performance of MKL’s parallel code is similar to its
serial implementation. Sympiler performs well for matrices
that contain row-blocks or can be padded with up to 30%
nonzeros to create row-blocks, these row-blocks are converted
to BLAS calls and thus improve locality. However, it does not
perform well for other matrices.

D. SpMM Performance

The scatter plot for sparse matrix-dense matrix multiplica-
tion (SpMM) speedups is shown in Figure 14 where the dense
matrix in SpMM has 256 columns. The average speedup for
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Fig. 13: The LCM I/E speedups over parallel MKL (red
circles) and Sympiler (green triangles) for SpTRSV.
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Fig. 14: The LCM I/E speedups for SpMM over the best of
the multi-threaded SpMM CSR and MKL SpMM.

the dataset is 1.75× over the best of MKL and a parallel
implementation of SpMM in CSR. LCM I/E is faster than
MKL for 87% of matrices up to 6.41×. We also change the
number of columns in the dense matrix in SpMM to be 32,
64, and 128 and observe that LCM I/E’s average speedup
over MKL is 1.23×, 1.54×, and 1.72× respectively for these
number of columns. When the number of columns increases in
the dense matrix, temporal reuse between operations increases.
LCM I/E turns the temporal reuse across iterations into locality
and thus outperforms MKL.

E. The Inspector Overhead

We compare the inspection time of LCM I/E to that of other
inspector-executors frameworks, i.e. Sympiler and SPF-ELL.
We compute the number of executor runs (NER) that amortize
the cost of the inspector using Inspector T ime

Baseline T ime− Executor T ime .
The baseline time is obtained by running a sequential imple-
mentation of the kernel. The RPW inspector would timeout
for over 83.3% of matrices because of its large inspection
overhead and code compilation time. For small matrices that
RPW would execute, more than one million executor runs
are needed to amortize the cost of the inspection. LCM I/E’s
inspection time is on average 0.5 seconds with an average
NER of 15 for SpMV and the NER for SPF-ELL is on
average 85. The inspection time of LCM I/E and Sympiler
are similar, with an average NER of less than 100 for both
tools for SpTRSV. The largest matrices in our benchmark
are inspected in less than 7 seconds with LCM I/E. Sparse

kernels such as SpMV and SpTRSV are typically used in
iterative solvers, for example, to compute a residual in each
iteration or to apply a preconditioner per iteration. Even with
preconditioning, these solvers typically converge to a solution
after tens of thousands of iterations [21], [22], [23] and hence
inspector-executor frameworks such as LCM I/E and Sympiler
lead to noticeable speedups as their inspection time overheads
are amortized after a few initial iterations of the solver.

V. RELATED WORK

Numerous hand-optimized libraries [24], [25] and imple-
mentations [26], [27], [28], [29] exist that optimize the per-
formance of sparse matrix computations for different parallel
architectures and also optimize vectorization on a single core.
Libraries such as MKL and Eigen as well as implementations
in [30], [31], [32], [33], [34] optimize the performance of
SpMV on shared memory architectures and improve SIMD
vectorizability. A number of library implementations such
[2], [35], [36], [37], [6], [38], [5], [39], [40] reorganize data
and computation to increase opportunities for vectorization. A
class of these libraries implement and optimize sparse kernels
based on available storage formats; for example [41] optimizes
SpMV based on ELLPACK. Other libraries work best for
matrices arising from specific applications, such as [30], which
optimizes SpMV for large matrices from graph analytics or
KLU [42] which works best for circuit simulation problems.

Inspector-Executor approaches inspect the unstrided access
patterns of sparse matrix computations at run-time to enable
the automatic optimization of sparse codes [43], [44], [45],
[46], [18], [47], [48], [49], [50]. The index array accesses
of the sparse code is analyzed using an inspector and the
information is used at runtime to execute the code efficiently.
The sparse polyhedral framework [51], [52], [53] uses un-
interpreted function symbols to express regular and irregular
segments of sparse codes. As a result, it can automatically
generate inspector executors at compile time that can resolve
data dependencies in sparse computations. These approaches
do not generate code that is specialized for the sparsity of
the input matrix. Sympiler [1] and ParSy [54] are amongst
the inspector executor frameworks that inspect the matrix
sparsity pattern and as a result generate vectorized and parallel
code specialized for the input sparsity. Their optimizations
for vectorization are based on detecting tiles or row-blocks
that primarily exist in matrices obtained from the numerical
factorization.

Augustine et al. [9] proposed an approach based on the
Trace Reconstruction Engine [55], [56] where polyhedral
models are built by inspecting the sequence of addresses being
accessed in the sparse matrix-vector multiplication. A follow-
up to this work proposes to use program-guided optimiza-
tion for better vectorization [57]. These approaches lead to
generating code that is specialized for the sparsity pattern
of the input matrix and improves vectorization in SpMV for
strided regions. Their work only supports matrices below 10M
nonzeros because of inspector overheads and because the size
of the generated code increases with the matrix size.
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VI. CONCLUSION

In this work, we mine for partially strided codelets to enable
the efficient vectorization of computations with strided and
partially strided memory accesses in sparse matrix codes.
We demonstrate how these codelets increase opportunities for
vectorization in sparse codes and also improve data locality
in their computation. A novel algorithm called locality-based
codelet mining is proposed that efficiently mines for PSCs
and as a result, generates highly efficient code for sparse
kernels. The performance of the LCM I/E-generated code
is compared to state-of-the-art library implementations and
automation frameworks for three sparse matrix kernels.
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APPENDIX

A. Abstract

We provide details of building the artifact and running the
experiments in the ”vectorizing sparse matrix codes using
partially strided codelets” paper. The paper proposes a new
vectorization method, LCM I/E, that inspects the memory
access patterns of a sparse computation and vectorizes the
code. We provide instructions on how to run LCM I/E and
how to compare it with different methods in the paper using
the provided singularity image.

B. Dependencies and software versions

This section provides details of the required packages for
this artifact. All required packages are installed inside the
singularity image( needs singularity v.3.7 or higher). However,
the following packages are used inside the artifact.

1) a C++ compiler (gcc-10), CMake 3.2, and Git for pulling
and building the artifact from source code.

2) MKL Library(v.2021) for comparing its performance.
3) python3 for plotting figures.
4) Sympiler code generator for compari-

son. The latest version is obtained from
https://github.com/sympiler/sympiler.git

5) CSR5 is an open-source tool used to
compare its performance with other tools.
The latest version of CSR5 is obtained from
https://github.com/weifengliu-ssslab/
Benchmark_SpMV_using_CSR5.git and is
modified to run on modern Intel processors efficiently.

C. Platform details

The architecture is an Intel Xeon(R) Gold processor with
20 cores. We use one node of the Niagara server, which
is provided by compute Canada. The artifact should run on
other settings as long as dependent packages are installed.
The performance plots should be reproducible for Skylake/-
CascadeLake processors.

D. Dataset

We use matrices from the SuiteSparse matrix repository.
All real-typed matrices larger than 100K nonzero elements
are selected to compare the performance of sparse matrix-
vector multiplication (SpMV) and sparse matrix times dense
matrix (SpMM). All SPD matrices larger than 100K are also
selected to compare the performance of sparse triangular
solver (SpTRSV) across different methods. Two separated
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scripts ( dl_matrices.py and dl_SPD_matrices.py
) are provided in the mining-bench repository to download
these two sets of matrices.

E. Running demo examples

The artifact has a demo for each of the three kernels, i.e.
sparse matrix-vector product (SpMV), sparse lower triangu-
lar solver (SpTRSV), and sparse matrix times dense matrix
(SpMM). A separate demo is also provided for MKL, CSR5,
regular-piecewise, and SPF-ELL libraries. All demos will take
the matrix file path as their input argument and runs the
corresponding kernel/implementation. Other input parameters
are explained through calling –help switch from the demo. For
example, to run the SpMV demo, the following instruction is
needed:
singularity exec artifact.sif

/source/codelet_mining/build/demo/spmv_demo
--matrix ./path/to/matrix.mtx
--numerical_operation SPMV
--storage_format CSR

F. Experiment list

We provide instructions on how to reproduce Figures 6, 7,
9, 10, and 11 of the submitted draft. These figures compare the
performance of LCM I/E (our proposed methods) with MKL,
CSR5, regular piece-wise, sparse polyhedral framework, and
Sympiler. Figures 7 and 9 additionally provide the effect of
different mined codelets. Three significant experiments should
be conducted to reproduce the mentioned figures.

1) The SpMV experiment compares the performance of
SpMV across different tools and generates data for
Figures 6 and 7.

2) The SpTRSV experiment compares the performance of
SpTRSV across different tools and generates data for
Figures 9 and 10.

3) The SpMM experiment compares the performance of
MKL and our framework as shown in Figure 11.

G. Running experiments using singularity image

To run the list of experiments, the singularity images and
matrix datasets should be downloaded first, and then provided
scripts in the repository should be used to run the experiments.
We show all steps to run experiments here:

1) The mining-bench repository should be cloned: git clone
https://github.com/cheshmi/mining-bench.git
cd mining-bench

2) The singularity image should be pulled to the same
directory that the code is cloned using:
singularity pull artifact.sif li-
brary://kazem/kazem/artifact22:latest
You can test the image by running the following com-
mand from the current directory:
singularity exec artifact.sif /source/-
codelet mining/build/demo/spmv demo –matrix
./LFAT5.mtx –numerical operation SPMV –
storage format CSR

The output is a set of comma-separated values (CSV)
such as matrix specification and execution time of dif-
ferent tools.

3) The datasets should be downloaded by calling:
python ssgetpy/dl matrices.py
python ssgetpy/dl SPD matrices.py
Matrices are downloaded into the mm and SPD direc-
tories in the current directory (This might take several
hours and requires an internet connection).

4) The SpMV experiment can be executed by emitting:
bash run spmv.sh
For running on compute node: sbatch bash run spmv.sh
You might need to update scripts with new absolute
paths to the dataset and the image file. You will also
need to load the singularity module.

5) SpTRSV experiment can be done by running:
bash run sptrsv.sh

6) SpMM experiment can be reproduced by calling:
bash run spmm.sh

7) Upon successful completion of experiments, all results
should be stored as CSV files under the ./logs/
directory and can be used for plotting. Separated Python
scripts are provided to generate each figure. Each exper-
iment calls a python script to plot data in generated CSV
files.
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