
 http://hpc.sagepub.com/
Computing Applications

International Journal of High Performance

 http://hpc.sagepub.com/content/early/2014/03/05/1094342014524807
The online version of this article can be found at:

DOI: 10.1177/1094342014524807

 published online 5 March 2014International Journal of High Performance Computing Applications
Yang You, Haohuan Fu, Shuaiwen Leon Song, Maryam Mehri Dehnavi, Lin Gan, Xiaomeng Huang and Guangwen Yang

Wendroff correction stencil
−Evaluating multi-core and many-core architectures through accelerating the three-dimensional Lax

Published by:

 http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing ApplicationsAdditional services and information for

 http://hpc.sagepub.com/cgi/alertsEmail Alerts:

 http://hpc.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 http://hpc.sagepub.com/content/early/2014/03/05/1094342014524807.refs.htmlCitations:

 What is This?

- Mar 5, 2014OnlineFirst Version of Record >>

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/
http://hpc.sagepub.com/content/early/2014/03/05/1094342014524807
http://www.sagepublications.com
http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://hpc.sagepub.com/content/early/2014/03/05/1094342014524807.refs.html
http://hpc.sagepub.com/content/early/2014/03/05/1094342014524807.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://hpc.sagepub.com/
http://hpc.sagepub.com/

Original Article

The International Journal of High
Performance Computing Applications
1–18
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014524807
hpc.sagepub.com

Evaluating multi-core and many-core
architectures through accelerating the
three-dimensional Lax–Wendroff
correction stencil

Yang You1, Haohuan Fu1,4, Shuaiwen Leon Song2,
Maryam Mehri Dehnavi3, Lin Gan1,4, Xiaomeng Huang1,4

and Guangwen Yang1,4

Abstract
Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative
stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be
highly time-consuming, which greatly limits their performance and power efficiency. In this paper, we accelerate the
forward-modeling technique on the latest multi-core and many-core architectures such as Intel� Sandy Bridge CPUs,
NVIDIA Fermi C2070 GPUs, NVIDIA Kepler K20 3 GPUs, and the Intel� Xeon Phi co-processor. For the GPU plat-
forms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.
For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best perfor-
mance. Although our stencil with 114 component variables poses several great challenges for performance optimization,
and the low stencil ratio between computation and memory access is too inefficient to fully take advantage of our evalu-
ated architectures, we manage to achieve performance efficiencies ranging from 4.730% to 20.02% of the theoretical
peak. We also conduct cross-platform performance and power analysis (focusing on Kepler GPU and MIC) and the
results could serve as insights for users selecting the most suitable accelerators for their targeted applications.

Keywords
Complex stencil, 3D wave forward modeling, Kepler GPU, Intel Xeon Phi, optimization techniques, performance power
analysis

1 Introduction

The forward modeling of wave propagation is a widely
used computational method in oil and gas exploration.
Its iterative stencil loops (Li and Song, 2004) also have
broad applications in image processing, data mining
and various physical simulations (Meng and Skadron,
2009). However, the time-consuming iterative stencil
loops greatly limit the application’s performance
efficiency.

In the past decade, with the design constraints on
heat dissipation and power consumption, the develop-
ment trend of processor architectures has moved from
increasing the clock rate to increasing the number of
identical cores (Mudge, 2001). While programmers in
the past could depend on the ready-made performance
improvements from faster clock speeds, nowadays they
have to face the challenges of scaling applications over

hundreds of cores within a single chip (Satish et al.,
2012).

Graphics Processing Units (GPUs) have become a
popular accelerator for general purpose computation
since the introduction of the Compute Unified Device
Architecture (CUDA) programming model by

1Department of Computer Science and Technology, Tsinghua University,

China
2Pacific Northwest National Laboratory, USA
3Computer Science and Artificial Intelligence Laboratory, Massachusetts

Institute of Technology, USA
4Ministry of Education Key Laboratory for Earth System Modeling,

Tsinghua University, China

Corresponding author:

Yang You, FIT 3-126, Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China.

Email: you-y12@mails.tsinghua.edu.cn

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

NVIDIA in 2006. CUDA has been used in the fields of
machine learning (Raina et al., 2009), oil exploration
(Liu et al., 2009), genomics (Manavski and Valle,
2008), finance (Surkov, 2010) etc. due to its superior
computing capability and high parallelism. Recently,
Intel introduced the Many Integrated Core (MIC)
architecture, which claims to provide more than 1
Tflop double-precision performance (http://www.xbi
tlabs.com/). In addition, the 3 86 core architecture of
MIC provides a friendly environment with high pro-
grammability and easy software porting.

In this paper, we present various efficient strategies
based on four evaluated platforms (Sandy Bridge
CPUs, Fermi GPUs, Kepler GPUs, and the Intel�

Xeon Phi) to accelerate the complex iterative stencil
loops, which dominate the execution time of our three-
dimensional (3D) wave forward-modeling application.

Each accelerator architecture has its own unique
advantages over the others for certain types of applica-
tions (Asano et al., 2009; Clapp et al., 2010; Nickolls
and Dally, 2010). Therefore, choosing the best accelera-
tor for a specific application becomes a key issue in
improving the application’s performance and power
efficiency. In order to provide support for such selec-
tion, we also conduct cross-platform performance and
power analysis (focusing on Kepler GPUs and the
Intel� MIC) to provide insight to help users select the
most suitable accelerators for their applications (see
Section 8.3).

The contributions of this work include:

(1) The design of ‘‘one-thread-one-point’’ and ‘‘one-
thread-one-line’’ schemes to maximize the perfor-
mance and resource utilization of our stencil
kernel on Fermi and Kepler GPUs. We then com-
pare the performance achieved by these two
schemes on Fermi and Kepler GPUs respectively,
and suggest what optimization techniques should
be applied when the architecture changes from
Fermi to Kepler.

(2) The exploration of a series of optimization tech-
niques for our stencil kernel on Sandy Bridge
CPUs and the Intel� MIC. We also explain how
the architectural differences between Sandy
Bridge and MIC relate to their significant perfor-
mance differences.

(3) A detailed cross-platform comparison analysis
between Kepler GPUs and MIC, which can pro-
vide insight to help users who need to choose the
best accelerators for their specific applications.

The rest of the paper is organized as follows: In
Section 2, we provide an overview of the application’s
background and related work; a detailed Lax–
Wendroff Correction (LWC) stencil analysis is given in
Section 3; a comprehensive description and analysis of

the evaluated architectures used in this paper is
provided in Section 4; optimization techniques on two
types of GPUs, Sandy Bridge, and MIC are demon-
strated in Sections 5 and 6; a summary of the
experimental results is give in Section 7; detailed cross-
platform performance/power comparison analysis is
provided in Section 8; and conclusions for this work
are discussed in Section 9.

2 Background and related work

Explicit finite-difference (EFD) is a classical strategy
for solving the wave-propagation problem. One of the
most efficient and commonly used methods for EFD is
the LWC, which was proposed by Lax and Wendroff in
1964. During recent years, LWC has become a mature
approach and its efficiency has been improved signifi-
cantly by various works from Dablain (1986), Sei and
Symes (1995), Blanch and Robertsson (2007) and other
scholars. For instance, in Dablain’s work, published in
1986, high-order approximation for derivatives was
proven to be very efficient because of its low time cost
and lesser memory requirements, and such methods
have been widely used ever since.

Although the performance of numerical algorithms
has improved significantly during the past 30 years,
they still cannot satisfy the growing demands of indus-
tries such as oil and gas exploration. Therefore, acceler-
ating these algorithms through utilizing the current
most advanced parallel architectures such as GPGPU
and Intel� Xeon Phi has become an urgent task.

In 2009, Paulius Micikevicius accelerated a simple
finite-difference algorithm using a shared memory data
reuse approach on a Tesla-10 GPU. The results showed
that a single GPU could achieve an order of magnitude
speedup over a four-core CPU. Thousands of threads
were utilized to traverse the 3D volume slice-by-slice in
order to maximize the data reuse. Okamoto et al.
(2010) and Michéa and Komatitsch (2010) proposed
similar techniques and achieved 203 to 603 speedups
over a single CPU. They also achieved higher overall
cluster performance using GPUs as accelerators in a
HPC environment. Additionally, there have been other
works (Unat et al., 2011; Zhang and Mueller, 2012)
focusing on automatically generating GPU-stencil
code, which is able to deliver competitive performance
against painstakingly handcrafted work.

However, in order to further accelerate the LWC
stencil using modern accelerators (i.e. GPUs and MIC)
or accelerator-based large-scale parallel systems, we still
face some challenges:

(1) In LWC, a higher order of difference can be effi-
cient because it requires a smaller data size and
less memory cost for simulating the same wave
field. However, a high order of difference can

2 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

make the stencil algorithm more complicated,
which is undesirable for programmability. Its per-
formance could also be constrained by the limited
number of registers on accelerators. In order to
maintain balance between algorithm efficiency
and complexity, we need to choose the proper
order of difference for accelerating LWC on mod-
ern heterogeneous systems (shown in Section 3.1).

(2) In addition to the single-variable partial deriva-

tives in LWC such as
∂2U

∂y2
and

∂2U

∂z2
(solved using

the Micikevicius (2009) method in this paper), we
also have to handle the multiple-variable partial

derivatives such as
∂2V

∂x∂y
and

∂2W

∂x∂z
, which brings a

further challenge for the limited number of regis-
ters for each thread on accelerators such as GPUs
(shown in Section 5.2).

There have also been a few works on using Intel�

MIC to accelerate parallel applications such as sorting
(Satish et al., 2010), data mining (Heinecke et al., 2012),
and ray tracing (Benthin et al., 2012). However, they
are based on the previous Knights Ferry MIC (KNF),
rather than on the more advanced Knights Corner MIC
(KNC). There have been several important improve-
ments (Duran and Klemm, 2012; http://www.hpcwire.
com/hpcwire/) to the KNC architecture, including: (a)
the increase in GDDR5 memory size from 2 GB to 8
GB; (b) the increase in the number of cores from 32 to
61; (c) the increase in the theoretical bandwidth of the
memory from 125 GB/s to 320 GB/s; and (d) the pro-
cessing power of single/double precision has also
improved significantly. Therefore, optimizing complex
iterative stencil loops of LWC on the KNC architecture
is more meaningful, especially when exploring the archi-
tectural differences between the host Sandy Bridge
CPUs and the device Xeon Phi accelerators.

3 LWC stencil analysis

In order to balance the efficiency and cost of the opti-
mization as well as address the challenge (1) described
in the previous section, we chose to use the central-
difference scheme (four-order spatial accuracy:
O(Dt2,Dx4,Dy4,Dz4)) to speedup LWC on modern sys-
tem accelerators (terms explained in Table 1).

3.1 Mathematical derivation

We use U , V and W to denote the three displacement
components in the x-, y- and z-directions. U , V and W

are the functions that depend on x, y, z and t. The wave
equations in isotropic media are shown as equations
(1)–(3).

r
∂2U

∂t2
=(l+ 2m)

∂2U

∂x2
+m

∂2U

∂y2
+m

∂2U

∂z2

+(l+m)
∂2V

∂x∂y
+(l+m)

∂2W

∂x∂z

ð1Þ

r
∂2V

∂t2
=(l+m)

∂2U

∂x∂y
+m

∂2V

∂x2
+(l+ 2m)

∂2V

∂y2

+m
∂2V

∂z2
+(l+m)

∂2W

∂y∂z

ð2Þ

r
∂2W

∂t2
=(l+m)

∂2U

∂x∂z
+(l+m)

∂2V

∂y∂z
+m

∂2W

∂x2

+m
∂2W

∂y2
+(l+ 2m)

∂2W

∂z2

ð3Þ

For instance, in order to get the expression
∂2U

∂t2
in

equation (1), we need to first compute the spatial par-

tial derivatives
∂2U

∂x2
,
∂2U

∂y2
,
∂2U

∂z2
,
∂2U

∂x∂y
and

∂2U

∂x∂z

� �

through the Taylor expansions (Dablain, 1986). We

can then obtain
∂2U

∂t2
by adding the spatial partial deri-

vatives to equation (1), where l and m are the coeffi-

cients.
∂2V

∂t2
and

∂2W

∂t2
can also be obtained using the

same procedure.
The deductions shown above are based on spatial

variables. We can also get the temporal variables (i.e.
Ut + 1 and Ut�1 at time t) using Taylor expansions. In
this way, we are able to update Ut + 1, Vt + 1,Wt+ 1 by
the values of their previous moments (t � 1 and t). This
process is shown in equations (4)–(6). We then loop

them for
T

Dt
times, where T and Dt represent the whole

physical simulation time and temporal step, respectively
(Table 1).

Ut + 1 = 2Ut � Ut�1 +
∂2U

∂t2
(Dt)2 +O((Dt)3) ð4Þ

Vt+ 1 = 2Vt � Vt�1 +
∂2V

∂t2
(Dt)2 +O((Dt)3) ð5Þ

Table 1. Explanation of the mathematical terms used in this
paper.

Term Explanation

T The whole physical simulation time
Dt Temporal step
Dx,Dy,Dz Spatial steps in the x-, y-, z-directions
U, V and W Displacement components in the x-, y-, z-

directions
r,l,m Coefficients
h1, h2, h3 Coefficients

You et al. 3

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Wt + 1 = 2Wt �Wt�1 +
∂2W

∂t2
(Dt)2 +O((Dt)3) ð6Þ

3.2 Algorithm overview

Algorithm 1 represents our numerical algorithm; the flow
chart is shown in Figure 1. Refer to our source code at
https://github.com/You1991/ManyCoreForwardModeling
for the implementation details.

3.3 Ratio of computation to memory access

We define the Ratio of Computation to Memory
Access (RCMA) in equation (7).

The LWC stencil (shown in Figure 2) is a complex
3D kernel, which dominates the computation time of
our forward-modeling algorithm. As mentioned above,
to compute all three components (U , V and W) of one
central point, 36 neighboring points of this central
point (shown in Figure 2) are required to be accessed.
Therefore, plus one extra point, to update a single
point at each step, we need to read 114 elements
(38 3 3) and 14 coefficients in total, with 228 floating
point operations. For the best case, where we have the
perfect data reuse (U , V and W are only fetched once),
the single-precision RCMA is 19 (equation (8)).
However, for the worst case, where we have to read U ,
V and W for each point, the single-precision RCMA is

reduced to 0.5 (equation (9)). Therefore, the range of
single-precision RCMA for the LWC stencil is between
0.5 and 19. Similarly, the range of double-precision
RCMA for LWC stencil is between 0.25 and 9.5.

RCMA=
num flops

num bytes
ð7Þ

228 3 data size

3 3 data size 3 4B
= 19 ð8Þ

228 3 data size

114 3 data size 3 4B
= 0:5 ð9Þ

4 Architectures for accelerating the
forward-modeling algorithm

We have accelerated our algorithm on several of the
currently most advanced multi-core and many-core
architectures including the NVIDIA Fermi C2070
GPU, the NVIDIA Kepler 203 GPU, Intel� Sandy
Bridge CPUs and the Intel� Xeon Phi co-processor.
The important parameters of these architectures are
listed in Table 2.

4.1 Memory hierarchy

4.1.1 The 3 86 cores. The Sandy Bridge architecture
used for the comparison analysis in this paper is shown
in Figure 3. It is composed of 2 Xeon E5-2560 CPU
sockets and 16 3 86 cores (8 cores per socket) in total.
Each core has a 64 kB private L1 cache and a 512 kB
private L2 cache. Additionally, each CPU is equipped
with an extra 20 MB coherent L3 cache which is shared
by all 8 cores. These two 20 MB L3 caches are con-
nected by an 8 GT/s Intel� Quickpath Interconnect,
providing real-time data exchanges between different
cores. In addition to the limited high-speed three-level
cache, each CPU possesses 4 memory channels, provid-
ing a 68 GB/s bandwidth (tested by STREAM bench-
mark) for the whole system.

Algorithm 1 The LWC algorithm

Step 0: Start
Step 1: Times 0, set all the elements of U , V and W as zero
Step 2: Use Taylor expansions to calculate the spatial partial derivatives

Step 3: Get
∂2U

∂t2
,
∂2V

∂t2
and

∂2W

∂t2
through substituting the spatial partial derivatives into equations (1)–(3)

Step 4: If the point in wave source,
∂2W

∂t2
 ∂2W

∂t2
+

ffs

rh1h2h3

Step 5: Update U , V and W through substituting
∂2U

∂t2
,
∂2V

∂t2
and

∂2W

∂t2
into equations (4)–(6)

Step 6: Times times+ 1

Step 7: If times� T

Dt
, go Step 2

Step 8: End

Figure 1. Flow chart of the algorithm. The middle loops
(marked in red) dominate the execution time for acceleration.

4 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Similar to the Sandy Bridge architecture, our Intel�

KNC (shown in Figure 4) also consists of many 3 86
cores, Quickpath Interconnect (5.5 GT/s) and several
memory controllers. However, there are several distinct
differences between these two architectures. As for the
number of cores, there is a significant improvement

from KNC MIC (61 in total, 60 for computation and
one for OS management) over Sandy Bridge. For mem-
ory bandwidth, KNC MIC can provide a 352 GB/s the-
oretical bandwidth (5.5 GTransfers/s 3 16 channels
3 4 B/Transfer) and 159 GB/s practical bandwidth
(STREAM benchmark), which are almost three times

Figure 2. Stencil: each point in the graph depends on its 36 neighboring points. These 36 points are evenly distributed in the XOY,
YOZ and XOZ planes. There are 37 points in total after counting the central point.

Table 2. Related parameters of architectures.

Architecture Sandy Bridge KNC Fermi Kepler

Frequency (GHz) 2.00 1.09 1.50 0.73
Peak performance double (Gflops) 256 1010 515 1320
Peak performance single (Gflops) 512 2020 1030 3950
L1 Cache (kB) 32/core 32/core 64/SM 64/SM
L2 Cache (kB) 256/core 512/core 768/card 1536/card
L3 Cache (MB) 20/socket 0 0 0
Coherent cache L3 L2 L2 L2
Memory type DDR3 GDDR5 GDDR5 GDDR5
Memory size (GB) 128 8 6 6
Theoretical memory bandwidth (GB/s) 100 352 192 250
Measured memory bandwidth (GB/s) 68 159 97 188
Computation bandwidth ratio single (Gflops/GB) 7.52 12.70 10.62 21.01
Computation bandwidth ratio double (Gflops/GB) 3.76 6.35 5.31 7.02

You et al. 5

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

that for Sandy Bridge. Moreover, MIC does not have
an L3 cache but has a 31 MB coherent L2 cache (512
kB for each core).

4.1.2 GPGPU. Each Fermi GPU card is equipped with
14 streaming multi-processors (SM). In each SM
(Figure 5), there is a 64 kB high-speed on-chip buffer
that can be configured as either 48 kB of shared mem-
ory +16 kB L1 cache (default), or the other way
round. Each SM also has a 12 kB read-only texture
cache. Additionally, there is a unified 768 kB L2 cache
that is shared among all the SMs, and a 6 GB on-board
GDDR5 memory with a bandwidth of 192 GB/s.

There are some notable architectural improvements
in terms of memory from Kepler over Fermi (shown in
Figure 6): (1) users have an additional option to divide
the 64 kB on-chip buffer into 32 + 32 kB; (2) the size
of the read-only texture cache increases from 12 kB to
48 kB; (3) the size of the L2 cache doubles; and (4) the
bandwidth of global memory grows up to 250 GB/s.

4.2 Processing power

The growing concern of power dissipation (Mudge,
2001) has moved the focus of modern processors from
the increasing clock rate to increasing parallelism to
improve peak performance without drastic power incre-
ment. All our experimental architectures employ two-
level parallelisms: task and data parallelism.

For Sandy Bridge and Xeon Phi, the task paralle-
lism is achieved by utilizing multiple or many hardware
threads. The data parallelism benefits from an on-core
Vector Processing Unit (VPU) and Single Instruction
Multiple Data (SIMD). In each CPU core, the 256-bit
instruction can process 4 double-precision operations
or 8 single-precision operations at a time. In each MIC
core, the 512-bit instruction doubles the data
parallelism.

For Fermi and Kepler, the task parallelism comes
from the independent warps that are executed by differ-
ent SMs. In each warp, the data-parallelism is achieved
by the computations performed by the different CUDA
cores within the SM. Although the number of SMs does
not increase from Fermi to Kepler, the 192 cores per
SM in Kepler is more powerful than the 32 cores per
SM in Fermi.

Figure 3. Sandy Bridge architecture. Each CPU is composed of
8 386 cores and a 20 MB coherent L3 cache. Each core has a
32 kB L1 data cache, a 32 kB L1 instruction cache, and a 256 kB
L2 cache.

Figure 4. KNC Architecture. Each MIC consists of 61 cores and a 31 MB coherent L2 cache. Each core has a 32 kB L1 data cache
and a 32 kB L1 instruction cache (http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner).

6 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Figure 5. NVIDIA Fermi architecture. Each streaming multi-processor contains 32 CUDA cores, a 64 kB on-chip L1 cache +
shared memory and a 768 kB unified L2 cache.

Figure 6. NVIDIA Kepler architecture. Each streaming multi-processor contains 192 cores, a 64 kB on-chip L1 cache + shared
memory and a 1536 kB unified L2 cache.

You et al. 7

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

In order to get a satisfactory performance, fully uti-
lizing the two-level parallelism, and improving the occu-
pancy rate of the computing resources are the crucial
issues.

RCMB=
max performance

max measured bandwidth
ð10Þ

4.3 Ratio of computation to memory bandwidth

Similar to the RCMA (equation (7)), the Ratio of
Computation to Memory Bandwidth (RCMB) of a spe-
cific architecture is defined in equation (10). Compared
to the RCMBs of the evaluated architectures (shown in
Table 2), the algorithmic RCMA (3.3) is much lower,
even in the worst case. Take the single-precision case
for example, the RCMB of Kepler is 21.01 while the
RCMA of LWC is 0.5, which means the limited mem-
ory bandwidth may not match the high processing
power required for accelerating the LWC stencil.
Therefore, improving data reuse in cache and shared
memory is necessary in order to reduce the impact of
the constrained bandwidth.

5 Optimizations on the GPUs

We propose two schemes for accelerating the stencil
kernel on the GPUs: Scheme (1) one thread handles
one point; and Scheme (2) one thread handles one line,
which means we put the 2D neighboring slices in shared
memory and each thread traverses the 3D stencil slice-
by-slice on its own line. In Scheme (2), the slices are
allocated into shared memory at the beginning, and
each point can reuse the neighboring points in the pro-
cess of computation. Scheme (1) can provide extremely
high parallelism while Scheme (2) can maximize shared
memory data reuse and reduce off-chip traffic.

5.1 Optimization scheme (1): One thread handles
one point

In order to maximize parallelism and make full use of
millions of lightweight threads on the GPUs, we pro-
pose this one-thread-one-point scheme. The challenges
of this technique are: (a) getting the corresponding rela-
tion between the thread-ID and stencil coordination;
and (b) calculating the boundary condition correctly.
Both of them increase the complexity of programming
when handling non-trivial stencil computation. The
details of Scheme (1) are shown in Algorithm 2.

5.2 Optimization scheme (2): One thread handles
one line

As mentioned in Section 4.3, improving data reuse in the
on-chip buffer is indispensable since our stencil is very

likely constrained by the limited memory bandwidth.
Thus, using the two-dimensional (2D) slice shared mem-
ory scheme may be a good choice. However, our stencil
is much more complex (shown in Figure 2) compared
with previous work because we not only need to com-

pute the single-variable partial derivatives such as
∂2U

∂y2

and
∂2U

∂z2
, but also have to handle the multiple-variable

partial derivatives such as
∂2V

∂x∂y
and

∂2W

∂x∂z
.

First, we divide the 3D stencil into multiple 2D slices
and then further divide each 2D slice into multiple 2D
tiles. After that, we apply the following two strategies:

Strategy (1): putting only one slice into the shared
memory and putting the other neighboring points into
registers (shown in Figure 7(a)). The round points
denote all the neighboring points and the triangular
points denote the additional points for updating the
neighboring points. There are 12 additional round
points and 4 triangular points in the XOZ plane, with
the same number in the YOZ plane. Therefore, we
must put 32 floats in registers for each displacement. In
other words, we have to put 96 points into registers for
the three displacements (U ,V ,W).

Strategy (2): putting five slices that contain all the
neighboring points (Figure 7(b)) into the shared mem-
ory, therefore no additional points or neighboring
points will be stored in registers.

For simplicity, we assume that our block size is
32 3 16 and we use a single-precision floating-point
type here. We evaluate these two strategies by consider-
ing the size of the shared memory and registers in order
to decrease the data-access latency.

5.2.1 Register usage. The capacity of registers for each
block is 64 kB for Kepler and 32 kB for Fermi.
Therefore, the registers can only hold 32 points on
Kepler and 16 points on Fermi for each thread (calcu-
lated using equation (11)). Additionally, each point in

Algorithm 2 The one-thread-one-point scheme

Step 0: Start
Step 1: Calculate the threadId
Step 2: Set all the elements as zero
Step 3:
x threadId DIV (dimy MUL dimz)
y (threadId MOD (dimy MUL dimz)) DIV dimz

z threadId MOD dimz

Step 4: If x in bounds and y in bounds and z in bounds,
perform Algorithm 1 (each point is only controlled
by one thread)
Step 5: Synchronization
Step 6: End

8 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

our stencil depends on several other parameters.
Therefore, we have to put these additional parameters
into the registers because they are accessed very fre-
quently. For Strategy (1), we have to store 96 points in
the registers, which not only exceeds the capacity of reg-
isters but also leaves no space for storing the additional
necessary parameters. In contrast, for Strategy (2), we do
not need to store any neighboring point in the registers.

block register capacity

block size 3 floating point size
=max points ð11Þ

5.2.2 Shared memory usage. If we take the halos into
consideration, the size of the tile will be
(32+ 4)3 (16+ 4). In fact, the shared memory could
hold more than 15 tiles (U , V and W three compo-
nents) if we use the 48 kB shared memory (calculated
using equation (12)).

max num tiles=
shared memory capacity

tile size 3 floating point size
ð12Þ

Based on the analysis of the registers and shared
memory above, we decided to apply our five-slice
scheme (Figure 7(b)) to accelerate the stencil kernel.
The five-slice scheme is illustrated in Algorithm 3. Even
though accessing registers is more efficient than shared
memory, this trade-off is worth it for the overall perfor-
mance improvement since we can store all the necessary
parameters in registers for speedup.

5.2.3 Time division multiplex access. When applying the
five-slice scheme, we can only set the maximum block

size as 16 3 16 for double precision in order to put 15
slices into the shared memory. However, the general
optimization principle on GPUs is to maximize the
number of threads in a block, when possible, to make
full use of the quick-switching threads. To maximize
the number of threads in a block for better perfor-
mance, we only create one buffer in shared memory
and let the three components (U , V and W) access it in
sequence. Although we still cannot create the maximum
1024 threads in a block (plus the halos), there is an
obvious improvement in performance from 256 threads
to 512 threads.

5.3 Other optimizations

In addition to the two optimization schemes above, we
also attempted to use other strategies for improving the

Figure 7. Two strategies for managing slices. Strategy (1): putting the XOY slice into shared memory and other neighboring points
into registers. The round dots denote the neighboring points. In order to update the data, we have to add the triangular points.
Strategy (2): putting five slices into shared memory, which contain all the neighboring points.

Algorithm 3 The one-thread-one-line scheme

Step 0: Start
Step 1: Set all the elements as zero
Step 2: Put the five slices into shared memory
Step 3: Jump to the third slice
Step 4: Perform the calculation for the in-bound points
Step 5: Perform the calculation for the points in the
halos
Step 6: Synchronization
Step 7: Jump to the next slice.
Step 8: If there are more than two slices left, go to
Step 4
Step 9: Synchronization
Step 10: Update U , V and W

Step 11: End

You et al. 9

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

performance further, including swapping memory
space within the GPU card to minimize the communi-
cation overhead through PCIe (shown in Figure 8), set-
ting the best block size according to the warp size and
shared memory bank size, and adjusting the proportion
between share-memory and L1 cache of the 64 kB on-
chip memory appropriately to get the best
configuration.

6 Optimizations on Sandy Bridge and MIC

The Sandy Bridge processor (CPU) and Xeon Phi
(MIC) share many similarities in architecture (a brief
analysis is given in Section 4). Therefore, we employ
similar optimization techniques for CPU and MIC.
These techniques generally fall into three categories:
task parallelism, data parallelism, and improving data
reuse in the on-chip buffer.

6.1 Task parallelism

In this paper, we choose OpenMP as the programming
model for task parallelism. For OpenMP, the efficient
techniques of task parallelism contain the configuration
of the proper thread number and the utilization of cores
and threads in balance.

6.1.1 The appropriate number of threads. For both CPU
and MIC, each independent hardware device owns a
specific amount of physical resources, which provides
an inherent task parallelism. Hence, for taking full
advantage of this mechanism, a practical way is to set
the number of threads according to the number of phys-
ical resources in each device. For Sandy Bridge CPUs,
there are 16 physical cores. For Intel� MIC, there are
60 physical cores. Additionally, each MIC core is
equipped with 4 hardware threads, thus there are 240
virtual cores in a Xeon Phi processor. Therefore, we set

the number of threads as 16 and 240 for the Sandy
Bridge CPU andMIC, respectively.

6.1.2 Load balancing. Another technique used for taking
full advantage of the existing hardware resources is load
balancing. In our case, both the coherent L2 cache on
MIC and the shared L3 cache on Sandy Bridge CPU
support the Non-Uniform Memory Access (NUMA)
effect. Therefore, allocating the virtual threads to the
proper cores is highly necessary. We use the Affinity
model (shown in Figure 9) to accomplish this. The most
effective mode is ‘Compact’ for CPUs and ‘Balanced’
for MIC. In this way, we decompose the task into sev-
eral portions and distribute them across all the physical
devices evenly.

6.2 Data parallelism

After accomplishing efficient task parallelism, another
concern is how to achieve data parallelism in each phys-
ical device. A practical solution to this issue involves
referring to the SIMD mechanism, which is supported
by both Sandy Bridge CPU and Intel� MIC. In addi-
tion, MIC also provides a VPU for more efficient vec-
torization. MIC supports 512-bit instruction, which
means 16 single-precision or 8 double-precision opera-
tions can be executed at one time. Together with the
vectorization scheme, we apply memory alignment so
that the vectorization can use aligned load instructions
to achieve a more efficient data parallelism.

6.3 Data reuse

In most cases, the two-level parallelism (task and data)
contributes a significant improvement in performance.

Figure 8. The left figure shows that without optimization the
updated data have to be transferred between the host and GPU.
The right figure shows our memory space swapping scheme
which does not require the data shuffle through PCIe. The PCIe
wall means the bandwidth of PCIe cannot match the bandwidth
of GDDR5.

Figure 9. The three models of Affinity for load balancing. In the
compact mode, the new thread will firstly be allocated to one
core until the core reaches its maximum load. In scatter mode,
the new thread will firstly be allocated to the core that has the
lightest load. The Balanced model is a comprehensive one. It not
only assigns the new thread to the core that has the lightest load
but also tries to assign the neighboring threads to the same core.

10 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

However, the high parallelism also requires a large
amount of data during a short period of time, which
may be beyond the capacity of the peak memory band-
width. This bottleneck limits the further improvement
in performance under certain circumstances. Therefore,
we employ the blocking scheme to decompose each 3D
domain into several smaller 3D sub-domains according
to the different cache levels (Figure 10). In order to
obtain the best configuration of block and cache size,
we make an automated search over all the possible
blocking schemes in one, two and three dimensions,
respectively.

6.4 The choice between off-load mode and native
mode

Similar to the GPGPU, the bandwidth of the PCI-
express bus in the Intel� MIC is still not satisfactory
for conveying the data exchanges between the host
CPU and the MIC cards, making it one of the major
performance bottlenecks for MIC. Fortunately, the
native mode of MIC allows us to execute the entire
program on the co-processor directly without code
modification to avoid any cost for the data transmis-
sion between host and device. However, native mode
does not apply to all the cases. For instance, porting
the serial code to MIC generally brings no benefit (see
Section 8.1).

6.5 Other optimization techniques

In addition to the techniques above, we also tried other
methods such as: (1) prefetching the data in the cache
to reduce the pressure of memory bandwidth; (2)
exploring the schedule model in OpenMP for the
proper relationship between thread and iteration; (3)

employing Cilk array notation rather than the implicit
semi-automatic compiler hints to vectorize the data-
intensive part explicitly; (4) using Cilk Plus to replace
OpenMP for task parallelism; and (5) rewriting the
source codes by applying the highly parallel Intel�

Math Kernel Library. However, these techniques did
not improve the overall performance significantly for
our case.

7 Experimental results and summary

In addition to the specific optimization methodologies
for GPGPU and MIC respectively, we also utilize some
general techniques that are suitable for all the evaluated
architectures including: (1) converting the high-latency
operations (e.g. division) to efficient operations (e.g.
multiplication); (2) getting rid of branches to avoid dis-
continuities in SIMD and Single Instruction Multiple
Thread (SIMT) execution; and (3) preferring Structure
of Array (SOA) rather than Array of Structure (AOS)
for continuous memory access.

In terms of performance measurement, we use
Performance Application Programming Interface
(PAPI) (Browne et al., 2000) to measure the serial code
on Sandy Bridge CPU (simultaneous multi-threading
and SIMD disabled) for the total number of floating-
point operations. Then we use the number of floating-
point operations per second (Flops) to represent the
performance. The peak performances achieved by the
architectures are shown in Tables 3 and 4 and
Figure 11.

Another important issue is the performance effi-
ciency (illustrated in equation (13)), which indicates
how deep we have explored for the computing potential
of a given architecture. From Figure 12 and Table 4,
we can find that although CPUs do not necessarily give

Figure 10. We decompose the domain in the first two dimensions (the I and J directions) because the data in the third dimension
(the K direction) is stored in a continuous address. Our experiments also show that it is meaningful to block in the third dimension
(the K direction). Figure (a) shows the original domain, and (b) represents the sub-domains. This figure serves as an sample
illustration. We do not necessarily divide the problem into four parts.

You et al. 11

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

the highest performance, they does achieve the best per-
formance efficiency.

From Table 2, we can see that the RCMA of our
stencil kernel is much lower than the RCMB of the
evaluated architectures. Even though we could fully
take advantage of the bandwidth, the performance for
our stencil kernel is still not satisfactory. For example,
the maximum expected performance (equation (15)) of
our stencil on Kepler for the non-data-reuse situation
is 94 Gflops (single precision) or 47 Gflops (double pre-
cision). Therefore, to get the peak performance on the
evaluated architectures for our stencil kernel, the
required memory bandwidth from the evaluated archi-
tectures (equation (14)) for the non-data-reuse case is
7900 GB/s (single precision) or 5280 GB/s (double pre-
cision), which is way higher than what our current eval-
uated architectures can provide (shown in Table 2).

Table 3. The baseline performances. For CPU and MIC they are measured for the serial version of the LWC stencil using one
thread; for the two types of GPUs, they are measured for the LWC stencil using the one-thread-one-point scheme.

Architectures CPU MIC Fermi Kepler

Single precision (Gflops) 2.651 0.1874 83.09 173.7
Double precision (Gflops) 3.373 0.1563 40.89 86.10

Table 4. The peak performances obtained on the LWC stencil.

Architectures CPU MIC Fermi Kepler

Single precision (Gflops) 70.25 129.1 131.2 186.8
Single-precision efficiency 13.72% 6.390% 12.74% 4.730%
Double precision (Gflops) 51.25 58.70 75.00 87.47
Double-precision efficiency 20.02% 5.810% 14.56% 6.630%

Figure 11. This figure shows the peak performances achieved by Sandy Bridge CPUs, KNC, the Fermi GPU and the Kepler 203

GPU for single precision and double precision for the stencil kernel. The number on top of each bar represents the number of times
performance improvement that scheme achieved compared to the base (serial code) Sandy Bridge CPU case. ‘base’ means the
performance of the serial code. ‘omp’ means using OpenMP for task parallelism. ‘simd’ means using vectorization for data
parallelism. ‘blc’ means using cache blocking to improve data reuse in the on-chip buffer. ‘1 thread 1 point’ denotes Scheme (1) for
GPU optimization (using one thread to handle one computing point), and ‘1 thread 1 line’ denotes Scheme (2) for GPU optlimization
(putting five neighboring slices into shared memory).

Figure 12. This figure sums up the efficiencies achieved by the
four architectures. The efficiency is calculated according to
equation (13). The efficiency denotes the effectiveness of our
optimizations for the computing potential of a given architecture.

12 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Thus, constrained by the mis-marriage between the
stencil RCMA and architecture RCMB, the existing
optimization techniques cannot improve the perfor-
mance further unless hardware modifications are
applied.

8 Comparisons and analysis

Performance Efficiency=
Stencil Peak Performance

Architecture Theoretical Peak Performance

ð13Þ

Required Memory Bandwidth=
Architecture Peak Performance

Stencil Flop Byte Ratio

ð14Þ

Maximum Expected Performance= Stencil Flop Byte Ratio

3 Architecture Memory Bandwidth

ð15Þ

8.1 Comparison between the Sandy Bridge
CPU and MIC

From Figure 11, we see that significant improvements
in performance over the base case (serial code) are
achieved for both CPU and MIC after a series of opti-
mizations. Although MIC achieved a higher peak per-
formance than Sandy Bridge, its performance efficiency
was worse (shown in Figure 12). This is mainly because
the base performance of MIC is much lower than the
Sandy Bridge CPU (shown in Table 3). The base per-
formance of MIC is 14.2 times and 21.6 times lower
than Sandy Bridge for single precision and double pre-
cision respectively.

There are several factors that cause the inferior base
performance of MIC (serial version) compared to
Sandy Bridge: (1) the difference in clock rate results in
a performance discrepancy of two times; (2) a given
instruction of MIC cannot be executed in the consecu-
tive two cycles, which may account for an additional
performance discrepancy of two times; and (3) the
Intel� MIC does not provide out-of-order execution
and L3 cache, which may account for the remaining
performance discrepancy of three to five times.

On the other hand, from the CPU and MIC peak
performances shown in Figure 11, we can observe that
the Intel� MIC outperforms Sandy Bridge (one socket)
by 4.1 129:1 3 2

62:70

� �
times for single precision and by 2.3

58:69 3 2
51:24

� �
times for double precision. We can actually

use the performance difference of the base version from
MIC and Sandy Bridge to estimate the peak perfor-
mance difference. For instance, the base performance
of MIC is 14.2 times or 21.6 times lower than Sandy
Bridge for single precision and double precision,

respectively. In addition, each MIC card has 240 hard-
ware threads while each CPU socket has only 8 hard-
ware threads. Thus we can estimate the performance
speedup for MIC over Sandy Bridge using only task
parallelism: 240

14:2 3 8
= 2:11 times (single precision) and

240
21:6 3 8

= 1:39 times (double precision). With the addi-
tional 2 times performance difference in SIMD width
for MIC over Sandy Bridge, we can theoretically esti-
mate that MIC outperforms Sandy Bridge for our sten-
cil kernel by 4.22 times (single precision) and 2.78 times
(double precision), which is very close to the 4.10 and
2.30 obtained from the measurements.

Based on these results, we conclude that, in terms of
performance for our specific stencil, one Sandy Bridge
hardware thread is equivalent to 14.2 (single precision)
or 21.6 (double precision) Knights Corner hardware
threads and one Knights Corner card is equivalent to
4.1 (single precision) or 2.3 (double precision) Sandy
Bridge sockets.

8.2 Comparison between the Fermi and Kepler GPUs

From the GPU performance shown in Figure 11, we
can see that the one-thread-one-point scheme (maximum
parallelism) on the Kepler GPU exhibits a 108.9%
improvement in single-precision performance over that
of the Fermi GPU. In addition, the one-thread-one-line
scheme (on-chip data reuse) on the Kepler GPU exhibits
a 42.42% improvement in single-precision performance
over that of the Fermi GPU. Several important architec-
tural improvements from the Fermi to the Kepler GPU
(http://www.nvidia.com/content/PDF) may account for
these performance improvements:

(1) There is no difference between Fermi C2070 and
Kepler 203 in the number of SMs (both have
14). For each SM, however, the Kepler GPU has
192 single-precision cores and 64 double-precision
units, while the Fermi GPU only has 32 cores.
Additionally, from the Fermi GPU to the Kepler
GPU, the number of special function units (SFUs)
increases from 4 to 32, and the number of LD/ST
increases from 16 to 32.

(2) From the Fermi GPU to the Kepler GPU, the
number of warps available for scheduling concur-
rently on each SM increases from two to four.
Moreover, each Kepler warp scheduler controls
double-instruction dispatch units, which means
two independent instructions can be dispatched to
each warp per cycle (shown in Figure 13).
Combined with improvement (1), the parallelism
of the Kepler GPU is four times higher than the
Fermi GPU.

(3) The size of the block registers changes from 32 to
64 kB. This feature ensures each thread is allo-
cated more registers.

You et al. 13

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

As described previously, our one-thread-one-point
scheme requires high parallelism, which can benefit
from the architectural improvements (1) and (2).
Moreover, improvement (3) could further satisfy the
high-register-access demand of our one-thread-one-
point scheme. Therefore, we conclude that optimization
techniques that require high parallelism and a large
number of register accesses will likely benefit from the
architectural improvements from Fermi to Kepler.

From the one-thread-one-point scheme to the on-
chip data reuse scheme (one-thread-one-line), there are
significant performance improvements (1:6 3 and
1:8 3) on the Fermi architecture. However, the perfor-
mance improvements between these two schemes on
Kepler are significantly smaller (1:1 3 and 1:0 3).
There are several reasons behind this. First of all, as
mentioned previously, the architectural improvements
from Fermi to Kepler bear a certain degree of responsi-
bility for this because the one-thread-one-point scheme
can benefit more from Kepler than Fermi in terms of
performance. Moreover, the limited 48 kB shared mem-
ory on Kepler highly constraints the block size we can
choose for the on-chip data reuse scheme. Although we
have applied a time-division multiplex access method
for shared memory reuse (Section 5.2.3), we can create,
at most, 512 threads rather than the maximum 1024
threads in a block for double precision. Therefore, the
unimproved shared memory from Fermi to Kepler hin-
ders the further improvement in performance.

8.3 Comparison of GPU and MIC

In this section, we will provide detailed comparisons
between the GPU and the MIC architectures in several
important aspects. Our objective is to provide scenarios
for users to choose the proper accelerators for their
applications.

8.3.1 Shared memory vs. L1 cache. From the single-
precision results of Figure 11, we can observe that the
performance of the omp-simd-blc MIC is slightly worse
than that of one-thread-one-line on Fermi, and much
worse than the performance of one-thread-one-line on
Kepler. This is because the L1 cache of MIC is predo-
minantly controlled by the compiler, while the shared
memory of GPUs can be more flexibly managed by
users. Even though we can conclude that user-
controlled shared memory is more efficient than a
compiler-controlled L1 cache for our stencil kernel
optimization case, we cannot treat this conclusion as a
general recommendation because the two different
methods vary in the complexity of programming.

8.3.2 Performance and programmability. Programmability
is one of the key issues for users who know little about
the low-level programming method. Thus user-friendly
program interfaces will be extremely important for the
popularization of this programming model.

The programming models for MIC are based on sev-
eral commonly used HPC methods such as OpenMP
and Intel� Cilk, which are easier for developers to grasp
in a short period of time. Moreover, since MIC is based
on 3 86 architecture, it will require little, or even no,
effort to port software from the conventional 3 86 plat-
form to MIC. Additionally, MIC cannot only be run as
an accelerator (off-load model), but can also be used as
a host (Native model). This advantage may provide
additional convenience for users as well. Last but not
least, there have been many sophistically developed
tools based on Intel architectures for compiling, debug-
ging, and performance analysis, which can be easily
ported to MIC.

As for GPU, with the introduction of OpenACC
(Wienke et al., 2012), programming models may
become more user friendly and the existing software
will also be more compatible with GPUs than before.
In fact, the OpenACC Application Programming
Interfaces (APIs) may become part of the OpenMP
specifications in the near future (http://www.openacc-
standard.org/node/47). However, porting the large
amount of existing software, such as MPI tools, to
GPU still takes a lot of effort.

8.3.3 Power efficiency. Power consumption is another key
constraint for developing applications and architectures
(Balakrishnan, 2012), especially in future exascale sys-
tem design. Power efficiency (the ratio between peak
performance and power consumption) has already
become equally as important as peak performance
when designing or evaluating an architecture. For sim-
plicity, we use the power consumption of the entire
node (one CPU and two cards) to evaluate the power
efficiency. From Table 5, we can observe that the

Figure 13. Each Fermi SM allows two warps to be issued and
executed concurrently while a Kepler allows four; one
instruction is dispatched to each warp for Fermi per cycle, while
two independent instructions could be dispatched to each warp
for Kepler per cycle (http://www.nvidia.com/content/PDF).

14 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

GPU-based node is 1.61 times (single precision) and
1.68 times (double precision) more efficient than the
MIC-based node.

8.3.4 Suitable parallelism. The granularity of parallelism
often influences the performance. In addition, differ-
ences in the best thread numbers of GPU and MIC
require us to employ different optimizing schemes.
Therefore, we attempt to find the relationship between
architectural differences and suitable parallelism
through comparisons between the GPU and MIC
architectures.

GPU employs the SIMT architecture. The multi-
processor creates, schedules, and executes a group of
threads concurrently. Similarly, MIC is based on the
SIMD architecture, which is the foundation for the vec-
torization scheme on MIC. Although both SIMD and
SIMT are useful for enhancing parallelism, there are
essential differences between them in the granularity of
parallelism (shown in Figure 14):

(1) SIMD: one MIC thread executes one 512-bit
instruction. Therefore, one MIC thread corre-
sponds to 16 single-precision operations and 32
single-precision floating points (or 8 double-
precision operations and 16 double-precision
floating points).

(2) SIMT: 32 threads (a warp) execute the same 32
instructions concurrently. Thus, one thread corre-
sponds to one operation and two single-precision
floating points.

In addition, in terms of core architecture (Figure 15),
we find that the MIC core is composed of more compli-
cated units. Therefore, the GPU thread is more light-
weight and provides more fine-grain parallelization
compared to the MIC thread. Based on their unique
architectures, both of them have their own advantages
over the other for different types of applications.

For instance, GPU can provide millions of light-
weight threads. A Kepler SM allows 4 dual-instruction
warps to be issued and executed concurrently, which
provides a 256-instruction (32 3 4 3 2) parallelism for
each SM and a 3584-instruction (256 3 14) parallelism
for each GPU card. Due to the fact that a given instruc-
tion of MIC cannot be executed in the consecutive two
cycles, each MIC card can only provide a 122-instruc-
tion parallelism. Thus, the parallelism of a GPU card is
29.4 times that of an MIC card.

In contrast, as mentioned above, each MIC instruc-
tion corresponds to 16 single-precision or 8 double-
precision operations. Therefore, the parallel granularity
of MIC is 16 and 8 times that of GPU for single and
double precision respectively.

With the additional performance discrepancies in
thread switching speed and clock frequency, the analy-
sis above is in line with our experimental results. Thus,

Table 5. Comparison of the NVIDIA Kepler GPU and the
Intel� MIC.

Type Kepler 203 GPU Intel� KNC MIC

Peak performance
single (Gflops)

186.8 129.1

Power consumption
single (Watt)

419.1 466.1

Power efficiency single
(Gflops/Watt)

0.4457 0.2770

Peak performance
double (Gflops)

87.47 58.69

Power consumption
double (Watt)

409.2 460.1

Power efficiency
double (Gflops/Watt)

0.2138 0.1276

Figure 14. (a) The SIMD for MIC: one thread executes one
512-bit instruction, which handles 32 single-precision floating
points at one time. (b) The SIMT method of GPU: 32 threads
execute the same 32 instructions concurrently, one thread only
handles 2 single-precision floating points.

Figure 15. An MIC core (left) and a Fermi GPU core (right). It
is obvious that the MIC core is much more complicated (http://
www.nvidia.com/content/PDF, http://software.intel.com/en-us/
articles/intel-xeon-phi-coprocessor-codename-knights-corner).

You et al. 15

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

for optimizing applications on GPU, we could maxi-
mize parallelism in order to use enough lightweight
threads (under resource limitation); as for the optimiza-
tions on MIC, in order to reach the peak performance
of each powerful core, coarse-grained parallelism and a
modest number of threads may be a better choice.

9 Conclusion

In this paper, we proposed methodologies to accelerate
the widely used forward-modeling 3D wave propaga-
tion method based on Sandy Bridge CPU, KNC, Fermi
GPU, and Kepler 203 GPU platforms, and achieved
performance efficiencies (equation (13)) ranging from
4.730% to 20.02%.

We employed 2 schemes to optimize our 114-point
stencil on GPU: (1) putting five neighboring slices in
shared memory to maximize reuse of on-chip data and
to solve the problems caused by insufficient registers;
and (2) using one thread to handle one point in order
to maximize the parallelism degree. Inspired by the
experimental results of these two schemes on two types
of GPUs, we concluded that the improvements from
Fermi to Kepler will favor the optimization techniques
which provide extremely high parallelism and require a
large number of register accesses. In addition, we found
that the unimproved shared memory from Fermi to
Kepler may hinder the further improvement in perfor-
mance for on-chip data reuse techniques.

We also used various techniques to optimize our
application on Sandy Bridge CPU and MIC, including
task parallelism, data parallelism, on-chip data reuse,
etc. We found that although KNC MIC quadruples
Sandy Bridge CPU in the theoretical peak performance,
the actual speedup is 1:2 3 (double precision) and
2:1 3 (single precision) due to lower clock frequency,
lack of out-of-order execution, inferior 3 86 core and
insufficient cache.

We also presented cross-platform comparison analysis.
Our focus is on the detailed comparison between MIC
and GPU in terms of the performance–effort relationship,
power efficiency, and parallel granularity. Our analysis
indicated that although GPU requires a higher program-
ming effort than MIC, it may achieve better improve-
ments in peak performance. Specifically, one Kepler 203

GPU card is equivalent to 1.45 (single precision) and 1.49
(double precision) KNC MIC card in terms of peak per-
formance for our stencil kernel. For power efficiency, our
GPU-based node is 1.61 times (single precision) and 1.68
times (double precision) more efficient than our MIC-
based node. Additionally, the parallelism of a GPU card
is 29.4 times that of a MIC card, but the parallel granular-
ity of MIC is 16 times (single precision) and 8 times (dou-
ble precision) that of GPU.

The general findings for all the architectures are: (1)
user-managed shared memory on GPGPU is more

efficient than compiler-controlled L1 cache on 3 86
cores for the on-chip data reuse strategy; and (2) on-
chip data reuse is highly important when the architec-
ture RCMB is higher than the stencil RCMA.

Acknowledgements

We would like to thank Zihong Lv for his advice in paper
writing.

Funding

This work was supported in part by the National Natural
Science Foundation of China (grant numbers 61303003 and
41374113) and the National High-tech R&D (863) Program
of China (grant number 2013AA01A208).

References

Asano S, Maruyama T and Yamaguchi Y (2009) Performance

comparison of FPGA, GPU and CPU in image processing.

In: 2009 international conference on field programmable

logic and applications, Prague, Czech Republic, 31 August-

2 September 2009, pp. 126–131. Piscataway: IEEE Press.
Balakrishnan M (2012) Power consumption in multi-core pro-

cessors. Contemporary Computing 306: 3.
Benthin C, Wald I, Woop S, Ernst M and Mark W (2012)

Combining single and packet-ray tracing for arbitrary ray

distributions on the Intel MIC architecture. IEEE Trans-

actions on Visualization and Computer Graphics 18(9):

1438–1448.
Blanch J and Robertsson J (2007) A modified Lax-Wendroff

correction for wave propagation in media described by

Zener elements. Geophysical Journal International 131(2):

381–386.
Browne S, Dongarra J, Garner N, Ho G and Mucci P (2000)

A portable programming interface for performance evalua-

tion on modern processors. International Journal of High

Performance Computing Applications 14(3): 189–204.
Clapp R, Fu H and Lindtjorn O (2010) Selecting the right

hardware for reverse time migration. The Leading Edge

29(1): 48–58.
Dablain M (1986) The application of high-order differencing

to the scalar wave equation. Geophysics 51(1): 54–66.

Duran A and Klemm M (2012) The Intel� many integrated

core architecture. In: 2012 international conference on high

performance computing and simulation, Madrid, Spain, 2–6

July 2012 pp. 365–366. Piscataway: IEEE Press.
Heinecke A, Klemm M, Pflüger D, Bode A and Bungartz H

(2012) Extending a highly parallel data mining algorithm

to the Intel� many integrated core architecture. In: Euro-

Par 2011: Parallel processing workshops, Bordeaux,

France, 29 August–2 September 2011, pp. 375–384. Berlin:

Springer.
Lax P and Wendroff B (1964) Difference schemes for hyper-

bolic equations with high order of accuracy. Communica-

tions on Pure and Applied Mathematics 17(3): 381–398.
Li Z and Song Y (2004) Automatic tiling of iterative stencil

loops. ACM Transactions on Programming Languages and

Systems 26(6): 975–1028.

16 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Liu G, Liu Q, Li B, Tong X and Liu H (2009) GPU/CPU co-

processing parallel computation for seismic data process-

ing in oil and gas exploration. Progress in Geophysics

24(5): 1671–1678.
Manavski S and Valle G (2008) CUDA compatible GPU

cards as efficient hardware accelerators for Smith-Water-

man sequence alignment. BMC Bioinformatics 9(Suppl 2):

S10.
Meng J and Skadron K (2009) Performance modeling and

automatic ghost zone optimization for iterative stencil

loops on GPUs. In: 23rd international conference on super-

computing, Yorktown Heights, NY, USA, 8–12 June 2009

pp. 256–265. New York: ACM.
Michéa D and Komatitsch D (2010) Accelerating a three-

dimensional finite-difference wave propagation code using

GPU graphics cards. Geophysical Journal International

182(1): 389–402.
Micikevicius P (2009) 3D finite difference computation on

GPUs using CUDA. In: 2nd workshop on general purpose

processing on graphics processing units, Washington, DC,

USA 08 March 2009 pp. 79–84. New York: ACM.
Mudge T (2001) Power: A first-class architectural design con-

straint. Computer 34(4): 52–58.
Nickolls J and Dally W (2010) The GPU computing era.

IEEE Micro 30(2): 56–69.
Okamoto T, Takenaka H, Nakamura T and Aoki T (2010)

Accelerating large-scale simulation of seismic wave

propagation by multi-GPUs and three-dimensional

domain decomposition. Earth Planets and Space 62(12):

939–949.
Raina R, Madhavan A and Ng A (2009) Large-scale deep

unsupervised learning using graphics processors. In: 26th

annual international conference on machine learning, Mon-

treal, Canada, 14–18 June 2009 vol. 382, pp. 873–880. New

York: ACM.
Satish N, Kim C, Chhugani J, Nguyen A, Lee V, Kim D, et

al. (2010) Fast sort on CPUs, CPUs and Intel MIC archi-

tectures. Technical report, Intel, Santa Clara, CA, USA.
Satish N, Kim C, Chhugani J, Saito H, Krishnaiyer R,

Smelyanskiy M, et al. (2012) Can traditional programming

bridge the ninja performance gap for parallel computing

applications? In: 39th international symposium on computer

architecture, Portland, Oregon, USA, 9–13 June 2012 pp.

440–451. Piscataway: IEEE Press.
Sei A and Symes W (1995) Dispersion analysis of numerical

wave propagation and its computational consequences.

Journal of Scientific Computing 10(1): 1–27.
Surkov V (2010) Parallel option pricing with Fourier space

time-stepping method on graphics processing units. Paral-

lel Computing 36(7): 372–380.
Unat D, Cai X and Baden SB (2011) Mint: realizing CUDA

performance in 3D stencil methods with annotated C. In:

25th international conference on supercomputing, Tucson,

Arizona, USA,31 May–4 June 2011 pp. 214–224. New

York: ACM.
Wienke S, Springer P, Terboven C and an Mey D (2012)

OpenACC� first experiences with real-world applications.

In: 18th international conference on parallel processing,

Rhodes Island, Greece, 27–31 August 2012, pp. 859–870.

Berlin: Springer.

Zhang Y and Mueller F (2012) Auto-generation and auto-
tuning of 3D stencil codes on GPU clusters. In: 10th inter-

national symposium on code generation and optimization,
San Jose, California, USA, 31 March–4 April, pp. 155–
164. New York: ACM.

Author biographies

Yang You is an MPhil candidate in the Department of
Computer Science and Technology at Tsinghua
University. His major research interest is parallel/dis-
tributed computing. Specifically, his research is focused
on designing high-performance algorithms to optimize
real-world applications such as massive graph traversal
(e.g. BFS), scientific computing (e.g. stencils), machine
learning (e.g. classification), and bioinformatics (e.g.
genomes) on many-core and multi-core architectures
like CPUs, GPUs and Intel� Xeon Phi co-processors.
He is also interested in solving large-scale problems on
multi-node clusters. He is a student member of the
IEEE.

Haohuan Fu is an Associate Professor in the Ministry
of Education Key Laboratory for Earth System
Modeling, and the Center of Earth System Science at
Tsinghua University. His research interests mainly
focus on high-performance computing applications in
earth and environmental sciences. Dr Fu has a PhD in
computing from Imperial College, London. He is a
member of the IEEE.

Shuaiwen Leon Song is currently a Research Staff
Scientist for the Performance Analysis Laboratory at
Pacific Northwest National Laboratory (PNNL). He
graduated with a PhD from the Computer Science
Department of Virginia Tech in May 2013. Before he
joined PNNL, he was a member of the Scalable
Performance Laboratory directed by Dr Kirk W
Cameron at Virginia Tech. In the past, he has been an
intern at the Center for Advanced Computing at
Lawrence Livermore National Laboratory, at PNNL,
and also an R&D intern for the Architecture Research
Division at NEC Research American in Princeton,
New Jersey. He was a 2011 ISCR scholar and recipient
of the 2011 Paul E Torgersen Excellent Research
Award. His research interests lie in several areas of
high-performance computing.

Maryam Mehri Dehnavi received her PhD in Electrical
and Computer Engineering from McGill University,
Canada in 2012. She is currently a Postdoctoral
Researcher in the Computer Science Department at
MIT. Her research is focused on accelerating scientific
computations on parallel architecture. The work
involves developing domain-specific libraries for finite
difference and finite element methods, designing auto-
tuners to tune the performance of parallel code on

You et al. 17

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

hybrid platforms and reformulating the communica-
tion patterns specific within the algorithms. During her
PhD she worked in the Parallel Computing Laboratory
at UC Berkeley where she worked on developing
communication-avoiding Krylov solvers for many-core
architecture. She has also worked in the Parallel
Systems & Computer Architecture Laboratory at UC
Irvine as a Visiting Researcher, and was a Senior R&D
engineer at Qualcomm Inc. before joining MIT.

Lin Gan is a PhD candidate in the Department of
Computer Science and Technology at Tsinghua
University. His research interests include high-
performance solutions to global atmospheric modeling
and exploration geophysics, focusing on algorithmic
development and performance optimizations based on
hybrid platforms such as CPUs, FPGAs, and GPUs.
He has a BE in Information and Communication
Engineering from the Beijing University of Posts and

Telecommunications. He is a student member of the
IEEE.

Xiaomeng Huang is an Associate Professor in the
Ministry of Education Key Laboratory for Earth
System Modeling, and the Center of Earth System
Science at Tsinghua University. He received his PhD
from the Department of Computer Science and
Technology at Tsinghua University in 2007. He is espe-
cially interested in high-performance computing, cloud
computing, ocean modeling etc.

Guangwen Yang is Professor of Computer Science and
Technology at Tsinghua University. He received his
PhD from the Department of Computer Science at the
Harbin Institute of Technology University in 1996. He
is mainly engaged in the research of grid computing
and parallel and distributed computing.

18 The International Journal of High Performance Computing Applications

 at Massachusetts Institute of Technology on May 19, 2014hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

