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ABSTRACT
Tensors, or N-dimensional arrays, are increasingly used to repre-
sent multi-dimensional data. Sparse tensor decomposition algo-
rithms are of particular interest in analyzing and compressing big
datasets due to the fact that most of real-world data is sparse and
multi-dimensional. However, state-of-the-art tensor decomposition
algorithms are not scalable for overwhelmingly large and higher-
order sparse tensors on distributed platforms. In this paper, we use
the Mapreduce model and the Spark engine to implement tensor
factorizations on distributed platforms. The proposed CSTF, Cloud-
based Sparse Tensor Factorization, is a scalable distributed algorithm
for tensor decompositions for large data. It uses the coordinate
storage format (COO) to operate on the tensor non-zeros directly,
thus, eliminating the need for tensor unfolding and the storage
of intermediate data. Also, a novel queuing strategy (QCOO) is
proposed to exploit the dependency and data reuse between a se-
quence of tensor operations in tensor decomposition algorithms.
Details on the key-value storage paradigm and Spark features used
to implement the algorithm and the data reuse strategies are also
provided. The queuing strategy reduces data communication costs
by 35% for 3rd-order tensors and 31% for 4th-order tensors over the
COO-based implementation respectively. Compared with the state-
of-the-art work, BIGTensor, CSTF achieves 2.2× to 6.9× speedup
for 3rd-order tensor decompositions.

1 INTRODUCTION
Tensors, or multi-dimensional vectors, naturally lend themselves to
representing multi-dimensional data. Tensor decomposition algo-
rithms appear in numerous domains and applications such as data
mining [9, 13], machine learning [1, 7], computer vision [24, 25],
and quantum chemistry [12]. Recently, the size of tensor data has
become overwhelmingly large, including tens to hundreds of mil-
lions or even billions of non-zeros in real tensor-based applications.
This has demanded the need for developing novel algorithms and
frameworks that implement tensor operations on parallel and dis-
tributed systems for better performance and scalability. Specifically,
implementations of tensor factorization algorithms on fault-tolerant
frameworks such as Hadoop [6] and Spark [27] are useful as they
can execute in data-center settings.

Many successful advances have been made to scale large tensor
decomposition algorithms to distributed platforms using theMapRe-
duce paradigm [4] some of which are GigaTensor [9], HATEN2 [8]
and BIGtensor [8]. The previous MapReduce implementations of
tensor algorithms such as BIGtensor, use the Hadoop framework
[6]. These implementations do not support higher-order tensors
and are implemented with tensor unfolding which creates large
memory footprints. The data-reuse and locality amongst different

tensor operations in tensor factorization methods are not exploited
efficiently in these implementations.

In this paper we propose CSTF, Cloud-based Sparse Tensor Factor-
ization, a scalable distributed algorithm for tensor decompositions
on large data. CSTF uses the open source Apache Spark, [27] plat-
form, an extension to the MapReduce [4] framework. Our work
focuses on the performance optimization of the CANDECOMP/-
PARAFAC (CP) decomposition on Spark. The running time of a
typical CP decomposition on an N -order tensor is dominated by
a sequence of Matricized Tensor Times Khatri-Rao product (MT-
TKRP) operations along each mode of the tensor. The mode-centric
nature of the tensor computations is a major challenge when design-
ing high-performance algorithms for higher-order sparse tensors.
Previous implementations of tensor algorithms on distributed sys-
tems [3, 9–11] are mainly based on performance improvements of
a single tensor operations such as the MTTKRP. By contrast, we
achieve better performance by examining the relationships among
an entire sequence of MTTKRP operations within the CP decom-
position. This leads to a scalable implementation for higher-order
tensors. As far as we know, this paper is the first work to investigate
sparse tensor CP decomposition for tensors of order 3 or higher on
Spark. Our major contributions are as follow:

1. The CSTF-COO algorithm which uses the key-value storage
paradigm to enable explicit computations on the tensor non-
zeros. Our proposed algorithm uses the coordinate storage for-
mat (COO) to eliminate the need to unfold the tensor and avoids
the "data explosion problem" in tensor operations such as the
MTTKRP.

2. The CSTF-QCOO algorithm detects data reuse between different
MTTRKP operations inside tensor factorization methods. CSTF-
QCOO proposes strategies to use the key-value paradigm as well
as data-persistence capabilities provided by Spark. As a result
data communication over the network, is reduced in the tensor
factorization algorithm.

3. We compare the performance of our CSTF implementations
on up to 32 nodes with the state-of-the-art implementations of
tensor algorithm using the MapReduce model, namely BIGten-
sor. CSTF-COO and CSTF-QCOO achieve upto 6.9× and 6.5×
speedup for 3rd-order CP decompositions over BIGtensor re-
spectively. The data-reuse strategy in CSTF-QCOO algorithm
a reduces the amount of shuffled data by up to 35 percent com-
pared to using CSTF-COO.

The rest of this paper is organized as follows. Section II intro-
duces notations and provides a brief introduction to tensor com-
putations. Section III reviews state-of-the-art approaches to the
optimization of tensor decompositions. Section IV describes the
proposed CSTF algorithms, including CSTF-COO and CSTF-QCOO.



Section V provides the experimental evaluations and results analy-
sis. Section VI is concludes the work.

2 BACKGROUND
This section presents preliminary definitions and notations for
tensor computations and discussed the Spark framework and the
MapReduce programing models.

2.1 Tensor Notation
A tensor can be thought of as a multidimensional array. The order
of a tensor is the number of the dimensions, also known as ways
or modes. First-order tensors, vectors, are represented by lower-
case letters, e.g., a. Second-order tensors, matrices, are shown with
boldface capital letters, e.g., A. Tensors of order three or higher are
denoted by boldface Euler script letters, e.g.,X. Scalars are repre-
sented by lowercase letters, e.g., a, and the scalar element at position
(i, j,k) of a third-order tensor X is denoted by X(i, j,k). We use the
colon notation, where a colon represents all non-zeros in an index
on that mode. For example, A(m, :) represents the m-th row of the
matrix A. Table 1 summarizes the notations used in this paper. We
use I , J ,K to represent the dimensions of a 3-order tensor.

Matricization, also known as unfolding or flattening, is the pro-
cess of reordering the elements of an N -way array into a matrix.
The mode-n matricization of a tensor X is shown with X(n) and
arranges the mode-n fibers to be the columns of the resulting ma-
trix. A fiber of a tensor is defined by fixing every index but one,
a three-way tensor has three kinds of fibers, denoted by X(:, j,k),
X(i, :,k) and X(i, j, :). Given a three-way tensor X ∈ RI×J×K , X(1),
the mode-1 matricization, is of dimension I × JK .

Table 1: Table of symbols

Symbol Definition

X A tensor
X A tensor with Queue strategy

X(n) Mode-n matricization of a tensor
R Rank of a tensor
N Order of a tensor
nnz Nonezeros of a tensor X
⊙ Khatri-Rao product
⊗ Kronecker product
∗ Hadamard product
AT Transpose of matrix A
M† pseudoinverse of matrixM
bin() function that converts non-zeros elements of to 1

2.2 CANDECOMP/PARAFAC Decomposition
The CANDECOMP/PARAFAC (CP) decomposition algorithm fac-
torizes a tensor into a sum of rank-one tensors. The most commonly
used approach for computing the CP decomposition is the Alternat-
ing Least Squares (ALS) method. The ALS method for a 3rd-order
tensor has three steps. Each step performs an update for one of the
three factor matrices, by keeping the other two matrices as shown

in Algorithm 1. The result matrices from tensor factorization A, B
and C are called the factor matrices.

Algorithm 1 CP-ALS for a 3rd-order tensor
Require: X: A 3rd order tensor R: The rank of factorization
Ensure: [λ;A,B,C]
1: repeat
2: A← X(1)(C ⊙ B)(B⊤B ∗ C⊤C)†
3: Normalize columns of A and store the norms as λ
4: B← X(2)(C ⊙ A)(A⊤A ∗ C⊤C)†
5: Normalize columns of B and store the norms as λ
6: C← X(3)(B ⊙ A)(A⊤A ∗ B⊤B)†
7: Normalize columns of C and store the norms as λ
8: until stop criterion satisfied or maximum iterations reached

2.3 Matricized Tensor Times Khatri-rao
Product

MTTKRP is the key tensor operation and a compute-intensive op-
eration in the CP decomposition algorithm. Equation 1 shows MT-
TKRP operations along the first mode of the tensor, meaning that
the unfolded tensor along the first mode gets multiplied with the
Khatri-Rao product of factor matricies B and C:

M = X(1)(C ⊙ B) (1)

If tensor X is of size I × J × K , then matrices B and C are of size
J × R and K × R. The result matrix of explicitly constructing the
Khatri-Rao product C ⊙ B is a dense matrix of size J ×K ×R, which
is very large, defined as the intermediate data explosion problem in
[9].

2.4 Spark and MapReduce programming model
MapReduce [4] is a programming model which defines Map and
Reduce functions that are capable of processing records composed
of key-value pairs. Key-value pairs represent data with an identi-
fier, a key, and some associated data, the value. Spark [27] is an
extension of the MapReduce programming model [4] which uses
an abstraction called RDDs [26] to represent datasets. The dataset
representation used by Spark, an RDD, is an immutable collection
of records which may be composed of a key-value pair or simply
a value which can have records partitioned across multiple net-
worked processors. Every RDD can have operations such as map,
filter, join, reduce, and more performed on it. These RDD opera-
tions are classed as transformations and actions. Transformations
apply a single function to many data items such as map, filter, and
join. By contrast, actions require computations to be performed
and data returned to the user, such as in the reduce function. Spark
extends MapReduce by realizing a directed-acyclic-graph (DAG)
representation for datasets. An RDD can be represented as a key-
value pair and may be partitioned across processors based on the
key in each record. Depending on the transformations performed,
data from separate partitions may need to be shuffled. A shuffle is
an operation which requires data from one or more partitions to
be on the same processor to complete an operation. Examples of
these types of operations are: a join where records from two RDDs
with similar keys are combined and reduceByKey which combines
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records with the same keys in the same RDD together into a single
record. Depending on which processor each record is located on,
performing one of these types of operations will induce a shuffle
where each process will decide which records must be transmitted
over the network. Shuffles are often expensive operations because
they can require data communication over the network.

3 RELATEDWORK
A large class of previous work has proposed high-performance
implementations of tensor algorithms on shared memory archi-
tectures [14] , co-processors such as GPUs [15] and MPI-based
implementations on distributed memory platforms. DfacTo [3] ac-
celerates tensor decomposition methods on distributed platforms
by using the Message Passing Interface (MPI). DfacTo lowers MT-
TKRP into two successive sparse matrix-vector multiplies (SpMV)
operations to improve the performance of tensor decomposition
methods. A hyper-graph partition-based method for the distributed
implementation of tensor algorithms is presented by Kaya et la.
[11] to maintain an efficient trade-off between load balancing and
communication costs. DMS [20], based on SPLATT [22], proposed
a new distributed CPD-ALS algorithm where a 3D decomposition
is used to avoid complete factor replication and communication. A
hybrid MPI+OpenMP implementation is used in DMS. Other work
such as [21] and Shaden et al. present decomposition techniques
that avoid complete factor replication and communication in tensor
computations and eliminate costly pre-processing steps. Tensor
computations have also been optimized for GPU architectures for
key tensor operations in tensor factorization algorithms [15] and
tensor contraction [18]. Liu et al. [15] proposed a new storage for-
mat called F-COO for optimizing sparse tensor computations on
GPUs.

Distributed Computing on the Cloud Platforms: Previous
works have also provided implementations of tensor operations on
distributed platforms using theMapReduce programming paradigm.
MapReduce is a distributed programmingmodel for processing mas-
sive datasets, which handles the problems of fault-tolerance, load
balancing, and massive scaling automatically. Hadoop [6] is an
open source implementation of MapReduc. U Kang et al. firstly pro-
posed GigaTensor [9], a large scale tensor decomposition algorithm
on the Hadoop platform by utilizing the MapReduce framework.
Namyong Park, U Kanget al. propose DBTF [17], a distributed algo-
rithm and implementation for Boolean tensor factorization running
on the Spark framework. HATEN2 [8] is proposed based on the
MapReduce paradigm and supports two commonly used tensor
factorization algorithms on Hadoop—PARAFAC and Tucker.

Recently, Namyong Park, U Kanget al. proposed BIGtensor [16],
a large-scale tensor mining library that handles a variety of tensor
computations on Hadoop including tensor decomposition. BIGten-
sor is considered a the state-of-the-art tool for distributed tensor
factorizations. For distributed CP decomposition on MapReduce
framework, BIGtensor employs the idea from GigaTensor [9]. Our
work differs from the current implementation of tensor operations
on distributed performs in that it leverages the Apache Spark and to
provides implementations which eliminate the need to unfold the
tensor, reduces the memory footprint, and also enables the reuse of
factors across sequential MTTRKP operations.

4 CLOUD-BASED SPARSE TENSOR
FACTORIZATION

In this section, we introduce Cloud-based Sparse Tensor Factoriza-
tion (CSTF), which is a scalable algorithm for implementing ten-
sor decompositions on distributed platforms with the MapReduce
programming model using the Spark engine. CSTF optimizes ten-
sor computations, specifically MTTKRP, to eliminate the need for
tensor unfolding and to reduce the memory footprint of the imple-
mentation; we call this algorithm the CSTF-COO. We also propose
the CSTF-QCOO algorithm, which analyzes and exploits the de-
pendency and locality between a sequence of tensor operations to
enable efficient data reuse in the distributed tensor factorizations.
The following elaborates both algorithms and provides details on
how the key-value storage paradigm is used in the spark engine to
implement the methods efficiently on distributed systems.

4.1 CSTF-COO
CSTF-COO implements the MTTKRP operation with the COO stor-
age format using the MapReduce programming model in Spark. In
tensor decomposition algorithms, matricization across all modes of
an N-order tensor results in N replications of the tensor to perform
each MTTKRP. Also, constructing the Khatri-Rao product of dense
matrices explicitly creates larger dense result matrices. CSTF-COO
provides an implementation that eliminates explicit computation
of these costly operations by fully exploiting the sparsity of tensor.
The main contributions in the CSTF-COO algorithm are (1) the
design of distributed data representations motivated from tensor
computations; (2) in-memory caching to reuse intermediate results
in the MTTKRP. CSTF-COO uses the Coordinate storage format
(COO) for storing the sparse tensor and then defines key-value
pairs and operates on them to implement the MTTKRP operation.

In the COO storage format for a third-order tensor, each non-
zero entry is stored with indices i, j and k for three modes and
corresponding non-zero entries. In other words, COO stores a list
of tuples including indices and value to represent all elements of
sparse tensor. Based on COO, a sparse tensor can be represented by
an RDD where each element represents one non-zero entry. With
a tensor stored in the COO format, MTTKRP operations can be
performed as in Equation 2, 3 derived from Equation 1. As shown
by Equation 3, based on nonzero indices and values, a row of B and
a row of C are retrieved respectively, then their Hadamard product
is computed and scaled with a tensor entry to update a row ofM.
This computation can be extended from 3-order tensors to N-order
tensors.

M(i, r ) =
JK∑
z=1

X(1)(i, z)(C(z/J , r )B(z%J , r )) (2)

M(i, :) =
JK∑
z=1

X(1)(i, z)(C(z/J , :) ∗ B(z%J , :))

=

k=K∑
k=1

j=J∑
j=1
X(i, j,k)(C(k, :) ∗ B(j, :)) (3)

Implementation workflow. Table 2 illustrates the workflow of
implementingMTTKRP onmode-1 (M = X(1)(C⊙B)) in CSTF-COO.
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Table 2: Workflow comparison between BIGtensor, CSTF-COO, and CSTF-QCOO on a 3rd-order mode-1 MTTKRP
M⇐ X(1)(C ⊙ B)

Stage BIGtensor CSTF-COO CSTF-QCOO

1
Map (i, j0, X(1)(i, j0)) on ⌈

j0
J ⌉,

and (k, r, C(k, r )) on k .
Reduce: (i, j0, X(1)(i, j0)C(k, r ))

Map COO on k to get (k, (i, j, k, X(i, j, k )))
Join C(k, :), (k, (i, j, k, X(i, j, k )), C(k, :))

Join (k, ((i, j, k, X(i, j, k )),
Queue(A(i, :), B(j, :))) with C(k, :)

2
Map (i, j0, bin(X(1)(i, j0)))
on (j0 mod J ) and (j, r, B(j, r )) on j
Reduce: (i, j0, bin(X(1)(i, j0))B(j, r ))

Map(k ((i, j, kX(i, j, k)), C(k, :))) on j
to get (j(i, j, k, X(i, j, k)), C(k, :))),
Join
B(j, :), (j, ((i, j, k, X(i, j, k), C(k, :)), B(j, :))

Map Add C(k, :) to the queue, dequeue A(i, :) from
the queue and move to the next key.
Emit
(i, (i, j, k, X(i, j, k )), Queue(B(j, :), C(k, :)))

3

Map (i, j0, X(1)(i, j0)C(j, r )).
and (i, j, bin(X(1)(i, j))B(j, r )) on i ,
Reduce:
(i, j0,

∑
j X(1)(i, j0)B(j, r )C(k, r ))

Update: sum up columns and emit M(i, r ).

Map: (j, (i, j, k, X(i, j, k ), C(k, :)),
B(j, :)) on i and do B(j, :) ∗C(k, :) ∗ X(i, j, k ).
ReduceByKey:
on (i, B(j, :) ∗C(k, :) ∗ X(i, j, k )).
Update:
M (i, :) with (B(j, :) ∗C(k, :) ∗ X(i, j, k )).

MapValues: (i, (i, j, k, X(i, j, k)), Queue(B(j, :),
C(k, :))) reduce the queue to B(j, :) ∗C(k, :).
ReduceByKey: on (i, B(j, :) ∗C(k, :) ∗ X(i, j, k ))
Update:
M (i, :) with B(j, :) ∗C(k, :) ∗ X(i, j, k ))).

Table 3: Representation of Data as Spark RDDs

Dataset Type Spark RDD abstract Element example Implementation

X Sparse tensor RDD[Vector] (i, j,k,X(i, j,k)) COO
XQ Sparse tensor RDD[(Vector, Queue[Vector])] ((i, j,k,X(i, j,k)),Queue(A(i, :),B(j, :),C(k, :))) QCOO

A,B,C Dense factor matrices IndexedRowMatrix (index ,A(index , :)) COO, QCOO

Algorithm 2 CSTF-COO mode-1 MTTKRP for a 3-order tensor
Require: :
X ∈ RI×J×K : A 3-order tensor
X(i, j,k): A non-zero element of X at position (i, j,k)
B: Factor matrix of second mode
C: Factor matrix of third mode

Ensure: :
M: The result matrix of MTTKRP

1: M← 0
2: for X(i, j,k) ∈ X do
3: M(i, :) ← M(i, :) + X(i, j,k)[C(k, :) ∗ B(j, :)]
4: end for

The basic idea of MTTKRP for a 3rd-order tensor is to fix two matri-
ces and update the remaining matrix. For the MTTKRP on mode-1,
matrix B and C are fixed and the result of MTTKRP M is used to
update matrix A. STAGE 1 in Table 2 shows transformations of
the RDD based on the dependency between matrix C and tensor X
along mode-3 to perform the computation:X(i, j,k)∗C(k, :); STAGE
2 shows transformations of the RDD based on the dependency be-
tween matrix B and tensorX along mode-3 to perform the computa-
tionwith intermediate result from STAGE 1:X(i, j,k)∗C(k, :)∗B(j, :).
STAGE 3 of CSTF-COO provides transformation of RDDs based on
the dependency between the output matrix M1 and the tensor X
along mode-1 to update the result matrix with intermediate results
from STAGE-2:M(i, :) = M(i, :) + X(i, j,k) ∗ C(k, :) ∗ B(j, :).

Caching. As shown by Algorithm 1, the tensor factorization
algorithm discussed in this paper is based on the alternative least
square method (ALS). Factor matrices A, B and C are updated re-
peatedly by the ALS procedure in each iteration until a stopping
criterion is satisfied, keeping the tensor in memory can improve

the performance significantly since tensor data is reused across
iterations. RDDs in Spark can be cached by specifying a storage
strategy and data format between intermediate stages of the DAG.
Data may be cached in a serialized or raw format to while choosing
memory or disk as the storage strategy [28]. Serialized formats
convert the internal objects into a stream of bytes which typically
take up less space than the raw Java or Scala object representa-
tion in memory. While serialization takes less space, more CPU
cycles are needed to convert the data representation. Raw caching
typically requires more space but is faster at reading objects into
memory when a transformation must be performed. We cache the
tensors using the raw format since as it leads to better performance
benefits in iterative tensor algorithms such as tensor factorizations
mainly due to the faster data accesses.

4.2 CSTF-QCOO
CSTF-QCOO improves upon CSTF-COO by reusing data between
MTTKRP operations to reduce the amount of shuffling required.
The proposed improvement is useful when the MTTKRP operation
is used in a tensor factorization algorithm such as the CP-ALSwhere
multiple MTTKRP operations are computed in each iteration and
between iterations. One of the main issues of using the CSTF-COO
algorithm in CP-ALS is the amount of communication required for
every MTTKRP operation because of the number of data shuffling
operations. With CSTF-COO, every MTTKRP for an N-order tensor
requires N shuffle operations which degrades the performance of
the algorithm. Algorithm 3 demonstrates CP-ALS for an N -order
tensor using the queuing process.
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Algorithm 3 CP-ALS for a N-way tensor with QCOO

Require: X ∈ RI⊮×···×IN : A N th order sparse tensor
R: The rank of approximation

Ensure: CP decomposition [λ;A1, · · · ,AN ]
1: V ← Queue{AT1 A1, . . . ,ATN−1AN−1}
2: Z ← Queue{A1, . . . ,An−1}
3: repeat
4: for n = 1 : N do
5: dequeue(V )

dequeue(Z )
6: if n = 1 then
7: V ← enqueue(ATNAN )
8: Z ← enqueue(AN )
9: else
10: V ← enqueue(ATn−1An−1)
11: Z ← enqueue(An−1)
12: end if
13: V̂ ← reduce(V ,v1,v2 → v1 ∗v2)
14: Ẑ ← reduce(Z , z1, z2 → z1 ⊙ z2)
15: An ← X(n)ẐV̂ †

16: Normalize the columns of An and store the norms as λ
17: end for
18: until no improvement or maximum iterations reached

Mode-1 MTTKRP

<i, (j, k)>

Mode-2 MTTKRP

<j, (k, i)>

Mode-3 MTTKRP

<k, (i, j)>

A B C B C A C A B

A B C B C A B C A

Figure 1: The illustration of data reuse among three MT-
TKRP operations along different modes in CP decomposi-
tion. The color blue represents an index and row of the ma-
trix that has to to be updated. The color red represents the
rows of factor matrices which are fixed and are used to per-
form the MTTKRP operation. A line with an arrow marks
the reuse flow from one MTTKRP to another.

Â← X(1)(D ⊙ C︸︷︷︸
M1

⊙B)(D⊤D ∗ C⊤C︸         ︷︷         ︸
N1

∗B⊤B)† (4)

B̂← X(2)(D ⊙ C︸︷︷︸
M1

⊙Â)(D⊤D ∗ C⊤C︸         ︷︷         ︸
N1

∗Â⊤Â)† (5)

Ĉ← X(3)(D ⊙ B̂ ⊙ Â︸︷︷︸
M2

)(D⊤D ∗ B̂⊤B̂ ∗ Â⊤Â︸        ︷︷        ︸
N2

)† (6)

D̂← X(4)(Ĉ ⊙ B̂ ⊙ Â︸︷︷︸
M2

)(Ĉ⊤Ĉ ∗ B̂⊤B̂ ∗ Â⊤Â︸        ︷︷        ︸
N2

)†l (7)

In subsequent MTTKRP operations in CP-ALS there is a reuse of
factor matrices as shown in Equation 4,5, 6 and 7. For example, we
see that the Khatri-Rao product of D and C is used in the update
of both Â in equation 4 and B̂ in equation 5. Furthermore, the
computation for N1 and N2 in Equation 4, 6 can be omitted for
Equation 5,6 through reusing the intermediate result.

As shown by Algorithm 2, For each nonzero X(i, j,k) at (i, j,k),
the MTTKRP along mode-1 can be performed as the j−th row of
matrix B and the k−row of matrix C are retrieved based on index
j and k. Their Hadamard product is scaled with the tensor entry
at (i, j,k) to update i−th row of matrix A. When performing the
MTTKRP along mode-2, the k-th row of C and the i-th row of A are
retrieved to update the j−th row of matrix B. Therefore, between
mode-1 MTTKRP and mode-2 MTTKRP, the k−th row of the matrix
C can be reused directly (marked by the arrow in Figure 1). The
i−th row of A is updated during the mode-1 MTTKRP computation
and remains in same partition without no added communication
for computations in the mode-2 MTTKRP. Likewise, data reuse
exists between mode-2 and mode-3 MTTKRPs, mode-3 and mode-1
MTTKRPs in the next iteration, marked by the arrows in Figure 1.

Implementation workflow: Algorithm 3 describes how the
CSTF-QCOO algorithm is implemented. Between consecutive MT-
TKRP operations, the matrices used to calculate V̂ and Ẑ are all
the same except for one matrix. The implementation of CP-ALS
benefits from this data reuse in Spark to reduce the number of
shuffle operations. CSTF-QCOO utilizes the same storage format
as the CSTF-COO algorithm. By using the COO format for the im-
plementation it is able to take full advantage of the sparsity of the
tensor in the same way that CSTF-COO does. The first step of the
CSTF-QCOO algorithm is to create the queues V and Z in lines 1
and 2 of Algorithm 3 and to enqueue each factor matrix for the first
MTTKRP. The resulting RDD has the form XQ shown in Table 3.
After this is performed, STAGE 1 of CSTF-QCOO in Table 2 can be
applied. The data representation for Stage 1 is similar to the COO
format except a key-value scheme is applied as seen in Table 2 and
instead of a single vector there is a queue.

After performing the join transformation in STAGE 1, a map
transformation is used on the RDD to switch to the right key which
is shown in STAGE 2 of CSTF-QCOO in Table 2. During the same
map operation, the joined vector is added to the queue, and a de-
queue operation is performed which drops the oldest vector from
the queue. The resulting RDD from STAGE 2 can then be used to
perform the first join operation for the next MTTKRP. After STAGE
2, the resulting RDD has its values mapped. The map function re-
duces the queue by performing an element-wise multiplication with
each row vector, and finally the multiplying by the tensor value.
The entire RDD is then transformed via ReduceByKey in order to
add all vectors which correspond to the same row of the matrix.
This step is shown by STAGE 3 in Table 2. This entire operation
corresponds to line 14 in Algorithm 3.

Caching. The queue of the RDD is updated for each MTTKRP,
thus, no more than two operations are performed on the same
RDD. Because RDDs are immutable, this means there are many
new RDDs created throughout the CP-ALS algorithm. Each tensor
RDD that is used before a join in STAGE 1 of Table 2, is cached
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to memory. The RDD from the previous MTTKRP iteration is re-
moved from the cache by explicitly telling the Spark to unpersist
the old RDD. CSTF-QCOO also exploits the reuse of data related
to computations of the gram matrices (the Gram of a matrix A is
ATA) from an MTTKRP update to the next. An entire update of
a matrix row consists of an MTTKRP operation followed by the
psuedo-inverse of the multiplication of all but one of the gram
matrices. Because even the matricized modes of the tensor are large
and distributed, the each Gram matrix for each factor is only com-
puted once per CP-ALS iteration. By computing the gram matrix
only once per iteration in CSTF-QCOO the algorithm also does not
require extra reduce operations which can lead to data shuffle and
communication overheads.

4.3 Comparing the CSTF Workflow to
BIGtensor

In the following we first elaborate on the workflow in BIGtensor
and then compare it to the CSTF workflow. As shown in Table 2 to
perform a mode-1 MTTKRP operation, the tensor data is matricized
in mode-1 on STAGE-1 of the BIGtensor workflow. It is then joined
with the factor matrix C along mode-3. Both the tensor and factor
matrixC are shuffled between nodes which leads to data communi-
cation. In STAGE-2, the bin function bin() is used to preserve the
sparsity of tensorX, which keeps the indices of nonzeros in mode-1
matricization of the tensor without value of non-zeros. Then the
tensor and factor matrix B are joined along mode-2. In STAGE-3,
BIGtensor combines the results from STAGE-1 and STAGE-2 using
the Hadamard product and adds each row to obtain the final result.
In this stage, double the number of tensor non-zeros are shuffled.
The workflow of BIGtensor from STAGE-1 to STAGE-3 is based on
matricization of the tensor, while CSTF uses key-value to directly
operate on non-zeros. Also, CSTF-QCOO utilizes a queue strategy
in MTTKRP operations to look for data reuse between MTTKRP
operations while BIGtensor optimizes for a single MTTKRP. Finally,
at STAGE-2 of BIGtensor, the bin() function is used to preserve the
sparsity of the tensor to execute STAGE-1 and STAGE-2 simultane-
ously, however, the bin() function is an expensive operation as it
needs to do a full pass over the tensor.

5 COMPLEXITY ANALYSIS
In this section, we analyze the complexity of the MTTKRP im-
plementation in BIGtensor, CSTF-COO, and CSTF-QCOO demon-
strated in Table 4. nnz represents the number of non-zeros in the
sparse tensor, R is the rank of the tensor decomposition, and flops
represents the number of floating point operations. Intermediate
data is the size of data stored to complete a single MTTKRP. Shuffles
represents the number of shuffle operations caused by an MTTKRP
operation.

BIGtensor. At STAGE-1 of Table 2, the amount of data commu-
nicated is nnz×R to join tensor X(1) with matrix Cwith one shuffle.
At STAGE-2 in Table 2, the communicated data is also nnz × R to
join tensor bin(X(1)) with matrix B in one shuffle. STAGE-3 com-
bines the intermediate result from STAGE-1 and STAGE-2 with 2
shuffles. In total, BIGtensor performs 4 shuffles for one MTTKRP
operation. The total amount of communicated data is 4 × nnz × R
(nnz is the number of non-zeros of the tensor X). For intermediate

data, BIGtensor uses the tensor and one column from the factor
matrix B or C to do computation at every task, thus the intermediate
data size ismax(J + nnz,K + nnz). BIGtensor requires 5 × nnz × R
to perform one MTTKRP, including 3 × R for 3 Hadamard products
at each STAGE and 2 × nnz × R for final multiplication at STAGE-3.
The performance analysis of BIGtensor’s MTTKRP algorithm is
provided in more detail in [9].

CSTF-COO. As shown in Table 4, CSTF-COO requires 3nnz ×
R flops for performing X(1)(C ⊙ B). This includes nnz × R flops
to compute X(i, j,k)C(k, :) in STAGE 1 and nnz × R to compute
X(i, j,k)C(k, :) ∗ B(j, :) in STAGE 2. Then finally another nnz × R
to perform the ReduceByKey operation seen in STAGE 3. Every
non-zero entry is associated with vector of size R related to a tensor
entry. Thus, the intermediate data is nnz × R. The size of the tensor
entry itself is not included because these values must be stored
with each record. Three shuffle operations are required for a 3rd
order tensor. There will be two joins and one ReduceByKey which
is shown in table 2.

A N -order tensor will require up to N shuffles for N MTTKRP
operations in CSTF-COObecause a joinmust be performed for every
dimension of the tensor except for one, followed by a ReduceByKey
each of which require a shuffle operation. For an entire iteration
of CP decomposition, there will be up to N 2 data shuffles with
intermediate data of size nnz × R. Thus the maximum amount of
data communicated during shuffles for a single CP iteration will be
N 2 × nnz × R. T The intermediate data remains the same, nnz × R,
because the size of the RDD does not depend on the order of the
tensor.

CSTF-QCOO: The required number of flops for CSTF-QCOO
is the same as CSTF-COO because both algorithms perform the
same number of vector operations. For a 3rd-order tensor there
will be up to 2 vectors for each tensor entry. Thus, the intermediate
data is 2nnz × R. However, there is only one join per MTTKRP.
The total shuffles counting the final reduceByKey is 2, however the
amount of data required to perform the second shuffle is less than
the intermediate data size shown in Table 4 at only nnz × R. There
is an overhead of N shuffles before the first MTTKRP operation in
the CP decomposition algorithm with CSTF-QCOO. This overhead
occurs because the first N initial vectors must be joined and added
to the queue of each record. The queue holds a vector for each
dimension of the tensor, leading to an increase in intermediate data.
The intermediate data size becomes (N − 1) × nnz × R where N is
the dimension of the tensor. For a single CP iteration, the maximum
communication cost is N × (N − 1) × nnz × R for join operations.
While this is a small decrease in overall communication compared
to CSTF-COO, many real world tensors are of order 3, 4, or 5. For
these dimensions CSTF-QCOO reduces communication costs up to
33%, 25%, and 20% respectively.

6 EXPERIMENTS
This section presents the implementation results for the CSTF-COO
and CSTF-QCOO algorithms. The performance of the algorithms
are compared to the state-of-the-art framework BIGtensor and
demonstrated for multidimensional tensors.
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Table 4: Cost comparison of BIGtensor, CSFT-COO, and
CSTF-QCOO for 3rd-order mode-1 MTTKRP

Algorithm Flops Intermediate Data Shuffles

BIGtensor 5nnz × R max(J + nnz,K + nnz) 4
CSTF-COO 3nnz × R nnz × R 3
CSTF-QCOO 3nnz × R 2nnz × R 2

6.1 Experimental Setup
The experiments are ran on the Comet cluster provided by the
XSEDE [23] project, in which each node is equipped with with
an Intel Xeon E5-2680v3 processor (24 cores per node with Clock
speed at 2.5GHz), a 128GB RAM, and 320GB of SSD local scratch
space. The cluster runs Spark v1.5.2, Hadoop 2.6.0, and consists of
a driver node and up to 32 worker nodes. We implement the CSTF
algorithms on Spark written in Scala.

6.2 Datasets
Datasets we chose for the experiments vary in density and size.
Each of the datasets used are standard datasets generated from
real applications except for synt3d. We use standard datasets from
FROSTT [19]. Nell1 comes from Never Ending Language Learning
(NELL) project [2]. The nell1 tensor represents noun-verb-noun
triplets. Delicious4d is a user-item-tag-date tensor crawled from
tagging systems [5], where date is at the granularity of day. The
3rd-order tensor delicious3d is the same data with dates removed.
The synt3d is a synthetically generated random 3rd-order tensor.
The detailed configurations of these datasets are shown in Table 5.

Table 5: Summary of datasets.

Dataset Order Max Mode Size nnz Density
dellicious3d 3 17.3M 140M 6.5e − 12

nell1 3 25.5M 144M 9.3e − 13
synt3d 3 15M 200M 5.3e − 12
flickr 4 28M 112M 1.1e − 14

delicious4d 4 17.3M 140M 4.3e − 15

6.3 Reference Algorithms
To evaluate the performance of the CSTF algorithms on 3rd-order
CP decomposition algorithm we use BIGtensor [16], a recent large-
scale tensor mining library which runs on Hadoop. It supports var-
ious tensor operations and factorizations including the 3rd-order
CP routine. The BIGtensor Library uses the implementation for the
distributed CP algorithm from GigaTensor [9]. To provide a fair and
comprehensive comparison, we process all the three algorithms
(BIGtensor-CP, CSTF-COO and CSTF-QCOO ) for 20 iterations on
the same cluster with the Rank of tensor factorization fixed to 2.
We vary the worker nodes from 4 to 32, for all three algorithms
on the datasets (nell1, and delicious3d, and synt3d), and record the
average execution time for a CP-ALS iteration of the three algo-
rithms. To evaluate the performance provided by CSTF-QCOO for
4th-order CP decompositions, CSTF-COO is chosen as the baseline
for comparison because BIGtensor only supports 3rd-order tensors.

6.4 Performance Results and Analysis
CSTF versus BIGTensor on 3rd-order tensors. In Figure 2, we
compare the performance of CSTF-COO and CSTF-QCOO with
BIGtensor. Both the CSTF-COO and CSTF-QCOO algorithms show
performance improvements over the BIGtensor library by a large
margin. On delicious3d, CSTF-COO achieves a 3.0× to 6.9× speedup
while CSTF-QCOO achieves a 3.8× to 6.5× speedup as shown in
Figure 2(a). For nell1, CSTF-COO achieves 2.6× to 4.7× speedup
while CSTF-QCOO achieves a 3.9× to 5.2× speedup as shown in
Figure 2(b). Figure 2(c) shows CSTF-COO achieves 2.2× to 5.8×
speedup while CSTF-QCOO achieves a 3.7× to 5.2× speedup.

Unfolding or the matricization operations on the input tensor in
BIGtensor increases communication overheads on a distributed plat-
form. The bin() function used in BIGtensor also increases commu-
nication. However, the implementations of CSTF-COO and CSTF-
QCOO avoid expensive and unnecessary unfolding operations and
explicit generation of the Khatri-Rao product by fully exploiting the
sparsity of tensor. Also the in-memory caching provided by Spark
enables faster data access throughout the tensor factorization in
CSTF. Through this combination of algorithm improvements, the
CSTF algorithms are able to achieve better performance than the
reference implementation—BIGtensor.

CSTF-COOversusCSTF-QCOO for 3rd-order and 4th-order
tensors.When comparing the performance across different num-
bers of nodes, the running time for CSTF-QCOO and CSTF-COO
are relatively close for small clusters, but the gap widens as the
number of nodes and the dimension of tensor increases. QCOO
performs about 1.1× worse than CSTF-COO for a 4 node cluster on
the delicious3d tensor, but then improves as more nodes are added.
As shown in Figure 2(a), CSTF-QCOO improves performance from
.92× to 1.24× on delicious3d. On nell1 there are performance im-
provements from 1.1× to 1.49× shown by Figure 2(b). For synt3d,
CSTF-QCOO achieves 0.90× to 1.7× speedup over COO shown in
Figure 2(c). On flickr there are gains from .98× to 1.27× shown
by Figure 3(b). On delicious4d the speedups range from 1.06× to
1.67× shown by Figure 3(a). The difference between CSTF-COO
and CSTF-QCOO performances are because of the reuse provided
by Queue strategy.

6.5 Communication Cost
Data communication is the major performance bottleneck in the
large-scale tensor decomposition algorithms. In the following sec-
tion, we discuss our metrics for measuring this communication and
show that CSTF reduces data communication through data-reuse,
caching, and an overall reduced number of transformations. We use
Spark’s [27] built-in metrics collection service to collect the data on
shuffle communication costs while running CSTF-COO and CSTF-
QCOO.We focus on the metrics of remote bytes read and local bytes
read. Remote bytes are the bytes read from all remote processors
across all shuffle phases in Spark. Lower amounts of remote bytes
are indicative of reduced network traffic. Local bytes represents the
total number of bytes read from a partition without communication
during the Spark shuffle phases for all processors. Figure 4 displays
the information that was collected on these metrics for a single
CP-ALS iteration.
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Figure 2: Runtime for CSTF-COO, CSTF-QCOO, and BIGtensor CP-ALS on 3rd-order tensors.
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Figure 3: Runtime for CSTF-COO and CSTF-QCOO for CP-ALS on 4th-order tensors

As shown in Figure 4(a), CSTF-QCOO reads a total of 20.8 GB
remote data from other nodes while CSTF-COO reads 31.9 GB
remote data read for the delicious3d tensor. CSTF-QCOO reduces
the shuffle cost by 35% compared to CSTF-COO. The Figure 4(a)

also shows CSTF-QCOO reads a total of 23.8 GB data remotely from
other nodes while CSTF-COO reads 34.4 GB remote data for the
flickr tensor. CSTF-QCOO reduces the shuffle cost by 31% compared
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Figure 4: Remote and local data read in CSTF (COO and QCOO) for delicious3d and flickr on an 8 nodes cluster.

to CSTF-COO. These values show that our QCOO algorithm is able
to decrease the overall network communication overhead.

The experiments demonstrating the local data read are ran on
8 nodes. As shown in Figure 4(b), CSTF-COO reads 4.68GB from
local processors while CSTF-QCOO consumes 3.0 GB for the deli-
cious3d tensor. CSTF-QCOO reduces the local data read by 36.0%
for delicious-3d. Figure 4(b) also shows CSTF-COO reads 5.13 GB
from the file-system while CSTF-QCOO uses 3.34 GB for the flickr
tensor. CSTF-QCOO reduces the local communication by 35.0% for
flickr.

The saved shuffle cost in experiments fits well with the theo-
retical analysis demonstrated in Section 5. Because of data reuse
provided by CSTF-QCOO, it also requires less transformations (e.g.,
map, filter and join) to perform a sequence of MTTKRP operations
which can be seen in Table 2. This reduction in transformations is
reflected in 4(b). If there are less transformations being performed
on each RDD then there should also be less overall bytes read
from local partitions. By reducing local and global communication,
the performance of tensor decomposition algorithms is enhanced
significantly.

6.6 Mode Behavior
For MTTKRP operations along different modes for the nell1 tensor,
as shown in Figure 5(a), CSTF-COO achieves 4.0× to 6.1× speedup
over BIGtensor; CSTF-QCOO achieves 4.3× to 6.3× speedup over
BIGtensor. For MTTKRP operations along different modes for de-
licious3d, shown by the Figure 5(b), CSTF-COO achieves 5.6× to
6.3× speedup on delicious3d over BIGtensor; CSTF-QCOO achieves
4.3× to 9.5× speedup on delicious3d over BIGtensor.

Figure 5 shows that the the CSTF algorithms delivers relatively
similar performance benefits for all modes because it partitions
and parallelizes the non-zeros of tensor. This is especially apparent
for delicious which is an "oddly" shaped tensor. CSTF-QCOO is
able to achieve up to 9.5× speedup. As shown in 5, the runtime for
MTTKRP along mode-1 in CSTF-QCOO exceeds CSTF-COO by 30%
on nell1 and 35% on delicious3d tensor. This extra overhead comes
from initialization of Queue data structure in the CSTF-QCOO
algorithm.

7 CONCLUSION
In this paper, we propose CSTF, which is composed of two highly
efficient distributed algorithms for a sparse and higher-order tensor
CP decomposition on distributed platforms. CSTF-COO is proposed
to decompose large scale sparse tensors stored in the COO format
based on the MapReduce paradigm using the Spark engine. We
also propose CSTF-QCOO which introduces a queuing strategy
to reducing data communications in the CP-ALS algorithm. The
experiments show that our proposed CSTF-QCOO can outperform
BIGtensor (the state-of-the-art tensor decomposition tool based
on Hadoop) on tested 3rd-order sparse tensor datasets with a 3.9×
to 6.5× speedup. For higher-order sparse tensors across all cluster
sizes, CSTF-QCOO achieves speedups of 0.98× to 1.7× speedup
over CSTF-COO.
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