
Designing a Heuristic Cross-Architecture Combination for Breadth-First Search

Yang You∗, David A. Bader†, Maryam Mehri Dehnavi‡
∗Department of Computer Science and Technology, Tsinghua University, Beijing, China

†School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, USA

Abstract—Breadth-First Search (BFS) is widely used in
real-world applications including computational biology, social
networks, and electronic design automation. The most effective
BFS approach has been shown to be a combination of top-down
and bottom-up approaches. Such hybrid techniques need to i-
dentify a switching point which is conventionally found through
expensive trial-and-error and exhaustive search routines. We
present an adaptive method based on regression analysis that
enables dynamic switching at runtime with little overhead. We
improve the performance of our method by exploiting popular
heterogeneous platforms and efficiently design the approach
for a given architecture. An 155x speedup is achieved over
the standard top-down approach on GPUs. Our approach is
the first to combine top-down and bottom-up across different
architectures. Unlike combination on a single architecture,
a mistuned switching point may significantly decrease the
performance of cross-architecture combination. Our adaptive
method can predict the switching point with high accuracy,
leading to an 695x speedup compared the worst switching point.

Keywords-Graph Algorithm; Data-intensive; Cross-
architecture Optimization; Knights Corner MIC; Kepler K20x
GPU; Combination; Regression Analysis

I. INTRODUCTION

Breadth-First Search (BFS) is widely used in real-world

applications including social networks [1], protein interac-

tion analysis [2] and electronic design automation [3]. Top-

down and bottom-up are two versions of BFS. Since both

top-down and bottom-up have unique advantages over each

other, Beamer et al. [4] proposed a combination approach

that can switch between top-down and bottom-up in different

situations. However, previous naive combinations use trial-

and-error and exhaustive search to find the best switching

point, which can not be used at runtime because they will

significantly increase the execution time. To solve this prob-

lem, we design a novel adaptive method based on regression

analysis [5]. Compared to the previous naive combination

methods, our on-line approach can find the switching point at

runtime with little overhead (less than 0.1% of the execution

time).

Heterogeneous platforms are becoming more and more

popular in recent years because the computing power of co-

processors (e.g. GPUs and Xeon Phi) are much stronger than

CPUs. For example, each node of the Tianhe-2 supercom-

puter, which is ranked first on the 41st and 42st Top500 lists

[6], contains three Intel Xeon Phi co-processors. To make

full use of the existing heterogeneous platforms and improve

the performance of the combination method, we propose an

effective technique to merge CPU and GPU using the most

suitable approach for a given architecture. The proposed

approach achieves 8.5×, 2.6×, and 2.2× average speedup

over a MIC combination, a CPU combination, and a GPU

combination respectively. Our approach is the first to com-

bine the top-down and bottom-up methods across different

architectures. Unlike combination on a single architecture,

a mistuned switching point may significantly decrease the

performance of cross-architecture combination. Our adaptive

method can predict the switching point with high accuracy,

leading to 695× speedup compared to the worst switching

point. Our contributions are:

(1) an original adaptive method based on regression

analysis, which allows the combination technique to be used

at runtime and achieves 695× speedup compared to the

worst switching point.

(2) the first cross-architecture combination for top-down

and bottom-up, which achieves 8.5×, 2.6×, and 2.2×
average speedup over MIC, CPU and GPU combinations

respectively.

(3) a pairwise comparison between CPU, GPU and MIC,

which can hopefully help the readers select the best archi-

tectures for similar applications.

We achieve 16−63× (average 29×) speedups over using

the Graph 500 benchmark. We also achieve 13× speedup

over the state-of-the-art implementation on MIC (Intel Xeon

Phi Co-processor).

II. BACKGROUND

A. Two BFS approaches: top-down and bottom-up

We use G(V,E) to denote a graph where V is the set of

vertices and E is the set of edges. Given a vertex vs, BFS

systematically visits every vertex that is reachable from vs.

For a vertex v that is reachable from vs, v is in level n if the

distance from vs to v is n. The vertices in level n+1 will not

be visited until all the vertices in level n have been visited.

If BFS reaches vertex v via the edges (u, v) from vertex u,

we call u the parent or predecessor of v. The general output

of BFS is a predecessor map and a level map, which record

the parent and level of each vertex.

The pseudocode of the top-down BFS is shown in Algo-

rithm 1. The top-down first finishes the initialization (lines

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.16

70

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.16

70

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.16

70

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.16

70

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.16

70

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.16

70

1-4): putting the source vertex vs in the current queue (CQ),

setting the predecessor of source vertex as itself, and setting

the predecessors of all the other vertices as NULL. We

use the predecessor map (Pred) to decide whether a given

vertex has been visited (line 9). The top-down then traverses

graph until the CQ is empty (lines 5-13). In each level of

graph traversal, top-down first empties the next queue (line

6), then visits all the vertices in the CQ (line 7). For a given

vertex u in the CQ, the top-down checks all the neighboring

vertices of u (line 8). If a neighboring vertex v has not been

visited (line 9), it will be added to the next queue (line 10)

and its predecessor will be set as u (line 11). After each

level of graph traversal, the CQ will be updated by the next

queue (line 13).

Another BFS design is the bottom-up approach [4], de-

scribed in Algorithm 2. The major difference between these

two methods is that each vertex in the CQ tries to set all its

unvisited neighboring vertices as its children in the top-down

approach (line 7-12 in Algorithm 1) while each unvisited

vertex searches for one vertex from the CQ as its parent

in the bottom-up approach (line 7-12 in Algorithm 2). The

top-down approach will always visit |E|cq (the number of

edges in CQ) edges while the bottom-up approach at most

visits |E|un (the number of edges that have not been visited)

edges.

Algorithm 1: top-down approach for BFS

Input: V is the set of vertices;

E is the set of edges;

vs is the source vertex;

CQ is the current queue for vertices;

NQ is the next queue for vertices.

Output: Pred is the predecessor map.

1 CQ← vs
2 for vi ∈ V do
3 Pred[vi]← −1
4 Pred[vs]← vs
5 while CQ �= ∅ do
6 NQ← ∅
7 for u ∈ CQ do
8 for v ∈ V and (u, v) ∈ E do
9 if Pred[v] = −1 then

10 NQ← NQ ∪ v
11 Pred[v]← u
12 continue

13 CQ← NQ

B. Combination of Top-down and Bottom-up

For most real-world graphs [4], the number of vertices and

edges in the CQ are often small at first, then increase and

Algorithm 2: bottom-up approach for BFS

Input: the same with Algorithm 1

Output: the same with Algorithm 1

1 CQ← vs
2 for vi ∈ V do
3 Pred[vi]← −1
4 Pred[vs]← vs
5 while CQ �= ∅ do
6 NQ← ∅
7 for v ∈ V do
8 if Pred[v] = −1 then
9 for u ∈ CQ and (v, u) ∈ E do

10 NQ← NQ ∪ v
11 Pred[v]← u
12 break

13 CQ← NQ

peak in the middle, and finally become small again (Fig.

1 and Fig. 2). The large number of vertices in CQ are a

better candidate for the bottom-up approach because each

unvisited vertex will terminate the traversal once its parent

is found. With more vertices in CQ, the unvisited vertex

can find its parent easier. On the contrary, an increasing

number of vertices in the CQ has a negative effect on the top-

down approach since the number of edges to travel (|E|cq)

is increasing.

Fig. 3 shows that bottom-up is much slower than top-

down at first. This is because bottom-up has to travel a

large number of unvisited edges while the top-down only

needs to visit a small number of edges in the CQ. As

the level increases, the number of vertices in CQ become

larger and peak in the middle. Thus, bottom-up becomes

faster than top-down. In the final levels, top-down is slightly

better than bottom-up because the number of vertices in

CQ decreases significantly compared to the middle part.

To improve performance, Beamer et al. [4] proposed a

combination technique that can switch between top-down

and bottom-up. To show the switching point between top-

down and bottom-up, we define two parameters, i.e., M and

N . When the number of edges in CQ (i.e. |E|cq) is less

than |E|/M and the number of vertices in CQ (i.e. |V |cq)

is less than |V |/N , BFS switches to top-down. Otherwise,

it switches to bottom-up (Fig. 4).

C. Regression Analysis

Regression analysis [5] is a statistical technique used to

model the relationship between a scalar target variable y and

a vector sample X . A regression model is first generated

based on the training data. The training data contains two

parts: Xi, i ∈ 1, 2, ..., n and yi, i ∈ 1, 2, ..., n. Xi is a

training sample (vector) that contains many features. yi is

717171717171

Figure 1. The number of vertices in CQ is small
at first, then increases and peaks in the middle. For
each graph, the number of vertices is 2SCALE ,
the number of edges is 2SCALE+4.

Figure 2. The number of edges in CQ is small at
first, then increases and peaks in the middle. For
each graph, the number of vertices is 2SCALE ,
the number of edges is 2SCALE+4.

Figure 3. In the beginning bottom-up takes more
time than top-down. In the middle bottom-up is
faster than top-down. Finally bottom-up becomes
slower than top-down.

|E|cq>=|E|/M or |V|cq>=|V|/N

|E|cq<|E|/M and |V|cq<|V|/N

Bottom-upTop-down

Figure 4. This is the illustration of switching point. When the number
of edges in CQ (|Ecq |) is sufficiently large (≥ |E|/M) or the number
of vertices in CQ (|Vcq |) is sufficiently large (≥ |V |/N), the program
switches to bottom-up. Otherwise, it switches to top-down.

the target value that corresponds to one and only one training

sample Xi. n denotes the number of the training samples

(or the target values). A regression model is the relationship

between y and X . For example, e.g., a function whose input

is a sample and output is a target value. In practice, the

target value of a new sample is often unknown. Thus, the

regression model can be used to predict the target value

based on the information of a new sample. Figure 5 is a

simple example of regression analysis.

In this paper, we use Support Vector Machine (SVM) [7]

regression. The reason we select SVM over other regression

approaches is that SVM is a good candidate for parallel

processing on Multi-Core and Many-Core architectures [8],

[9]. SVM can also get good prediction accuracy even with

small number of training samples [7]. A practical open-

source SVM and a detailed tutorial can be found in [10].

D. Related Terms and Parameters

We use the Graph 500 benchmark [11] to describe the

graph information and performance metric, the related terms

are in Table I. Our experiments are based on the popular

Multi-Core (8-core Intel Sandy Bridge CPU) and Many-Core

(61-core Intel Knights Corner MIC and 2496-core NVIDIA

Kepler K20x GPUs) architectures. The related parameters of

these architectures are listed in Table II.

III. ADAPTIVE COMBINATION

We illustrate the adaptive combination technique in this

section, and then present the cross-architecture optimization

Figure 5. This figure illustrates a simple case of regression analysis.
Suppose the training vector X only has one feature, i.e, X can be seen as
a scalar. The red nodes are training samples, which we use to generate a
model. The model is represented by the line in the figure. Once a new X
(e.g. X = 3) is obtained, we can predict its target value using the model.
The blue triangle is an example of prediction, and the black square is the
true value. In practice, there is a difference between the predicted and the
true values. A well-trained regression model can minimize this difference.

Table I
RELATED TERMS USED IN GRAPH 500 [11]

Terms Descriptions

TEPS Traversed Edges Per Second, the

performance metric of BFS

SCALE The logarithm base two of the

number of vertices

2SCALE The number of vertices

edgefactor Half the average degree of

a vertex in the graph

2SCALE × edgefactor The number of edges

A,B,C,D Statistical parameters used in

graph construction (Section V)

in Section IV. In order to obtain the best switching point

between top-down and bottom-up, we need to get the best

settings for M and N . We will only illustrate how to get

the best M . The best N can be obtained the same way.

A. Algorithm and Parallelism Comparison

The computational complexity of the conventional top-

down approach is Θ(V + E) [12] and for a sparse graph

727272727272

Table II
ARCHITECTURE PARAMETERS

Architecture CPU MIC GPU

Frequency (GHz) 2.00 1.09 0.73

DP Peak Performance (Gflops) 128 1010 1320

SP Peak Performance (Gflops) 256 2020 3950

L1 cache (KB) 32/core 32/core 64/SM

L2 cache (KB) 256/core 512/core 1536/card

L3 cache (MB) 20/socket 0 0

Coherent cache L3 L2 L2

Theoretical bandwidth (GB/s) 51.2 352 250

Measured bandwidth (GB/s) 34 159 188

SP RCMB (flops/B) 7.52 12.70 21.01

DP RCMB (flops/B) 3.76 6.35 7.02

with E = Θ(V) is Θ(V). Since the bottom-up approach may

need to check all the vertices at each level, the time could be

Θ(DV) (D is the maximum level). Together with the time

spent on edge exploration, the computational complexity of

the bottom-up approach is Θ(DV + E). Because we are

focusing on real-world graphs, Θ(D) is extremely small

and E = Θ(V). Thus, the computational complexity of the

bottom-up approach is also Θ(V).
In each level, top-down only travels the vertices in CQ

while bottom-up has to travel all graph vertices. Since the

average degree of vertices in our graph is constant (e.g. 16),

the work for visiting the edges of each vertex (line 8-12 in

Algorithm 1 and Algorithm 2) can be considered constant.

Therefore, the parallelism of top-down and bottom-up are

decided by the loop controls (line 7 in Algorithm 1 and

Algorithm 2). If we use a greedy scheduler [13], the work

and span of the outer loop control in the bottom-up approach

(line 7 in Algorithm 2) is Θ(V) and Θ(lgV) respectively.

Therefore, the parallelism of bottom-up approach at each

level is Θ(V/lgV). Similarly, the parallelism of top-down

approach at each level is Θ(VCQ/lgVCQ) where VCQ is the

number of vertices in the Current Queue. Because V is larger

than VCQ, bottom-up has higher parallelism than top-down.

B. Bottleneck Analysis

1) Ratio of Computation to Memory Access (RCMA):
BFS can be seen as a specific case of Sparse Matrix Vector

multiplication (SpMV) [14]. Take y = Ax for example, y
is a dense vector that represents NQ, A is the adjacency

matrix of the graph, and x is a dense vector that represents

CQ. x(u) = 1 means vertex u is in the CQ and x(u) = 0
indicates the opposite. y(u) ≥ 1 means that vertex u is in

the next queue and y(u) = 0 suggests the opposite. As for

the sparse matrix A, A[u][v] = 1 means that there is an

edge from vertex u to vertex v.

For an n × n matrix, to complete a matrix-vector multi-

plication, the processors need to fetch (n×n+n) elements

from the memory. To compute an element of the result vector

Table III
THE BEST SWITCHING POINTS (M) OF DIFFERENT GRAPHS ON CPUS.

SCALE 21 21 21 22 22 22 23 23 23

edgefactor 8 16 32 8 16 32 8 16 32

Best M 60 114 73 275 258 54 258 97 56

(e.g. y(u)), the processors must do n multiply operations

and n − 1 add operations. Therefore, the processor has to

do n × (2n − 1) operations to compute y. If an integer

is 4 bytes, the RCMA is
n×(2n−1)

4×(n×n+n) = 0.5 (computed by

Equation (1)).

RCMA =
num of flops for computation

num of bytes for memory access
(1)

2) Ratio of Computation to Memory Bandwidth (RCMB):
Similar to RCMA (Equation (1)), the RCMB of a specific

architecture is defined in Equation (2). Compared to the

RCMBs of the evaluated architectures (Table II), the al-

gorithmic RCMA is much lower. For example, the RCMB

of Intel Knights Corner MIC is 12.7 while the RCMA

of our algorithm is about 0.5, which means the limited

memory bandwidth may not match the high processing

power required for BFS exploration.

RCMB =
theoretical peak performance

theoretical memory bandwidth
(2)

C. Influencing Factors of the Best Switching Point
Previous research shows that different graphs have dif-

ferent best switching points on the same platform [4]. After

extending the search range of the best switching point (from

[1, 30] to [1, 300]), we find that the best switching point

changes significantly among different graphs (Table III).

We also find that the platforms have a significant impact

on selecting the best switching point. For the same graph,

using the best switching point of CPUs for GPUs can lead

to 2×−3× performance decrease. This is because bottom-

up and top-down have different parallelism (section III-A)

and memory-access patterns. In general, the best switching

point of the combination method is closely related to the

graph information and the experimental platform informa-

tion. Specifically, in our experiment, the graph information

includes the number of vertices, the number of edges, and the

four statistical parameters used in graph construction (A, B,

C, D in Table I). The architecture information includes the

peak performance, the memory bandwidth, and the L1 cache

size (Figure 7). Because the graph and platform information

consist of more than ten parameters in our experiments,

it is almost impossible to predict the best switching point

manually (e.g. develop a formula). Thus, we use regression

to predict the best switching point in real time.

D. Getting the Switching Point through Regression Analysis
To implement the regression method (Section II-C), we

need to know what information to include in the training

737373737373

Figure 6. Each sample corresponds to the information of one BFS traversal (graph and architectures). For the off-line approach, we use exhaustive
search to get the target value (best M) for each sample. The regression model is then generated through the training based on these samples and their
corresponding target values. For the on-line case (at runtime), we use the regression model to predict the best M for the BFS traversal based on the new
graph and the new architecture information.

sample X and target value y. As illustrated in Fig. 7,

each training sample Xi corresponds to the information

of one graph traversal. Specifically, each sample contains

the graph information (Gi), top-down architecture informa-

tion (Arch−TDi), and bottom-up architecture information

(Arch−BUi). Arch−TDi and Arch−BUi are the same if

top-down and bottom-up are on the same architecture. The

target value yi of Xi is the best switching point for exploring

Gi on Arch−TDi and Arch−BUi. For example, suppose

the peak performance, L1 cache size, and the memory

bandwidth of Arch−TDi are 512 Gflops, 512 KB, and 100

GB/s respectively. For Arch − BUi, they are 1024 Gflops,

768 KB, and 128 GB/s. The number of vertices, number of

edges, A, B, C, and D of Gi is 32 million, 256 million,

0.57, 0.19, 0.19, and 0.05, respectively. The best switching

point is 96. In this case, the training sample is (96: 32, 256,

0.57, 0.19, 0.19, 0.05, 512, 512, 100, 1024, 768, 128).

Illustrated in Figure 6, the regression process can be divid-

ed into two stages: off-line training and on-line prediction.

We can get the model from the training stage and use the

model to make predictions in the prediction phase. Although

generating a model can be time-consuming, it is a one-time

cost. Once we have a model, it can be used for different

BFS traversals at runtime.

The training stage can be described by the following steps:

step 1) For a test graph Gi that is explored by top-down

on architecture A − TDi and bottom-up on architecture

A−BUi, we run the algorithm repeatedly using all possible

switching points (M1, M2 ... Mn in Fig. 6). At the same

time we use an exhaustive search to get the best switching

point (M) resulting in maximum performance.

step 2) We use Gi, A − TDi, and A − BUi to build a

training sample Xi (Fig. 7). M is the target variable of Xi,

which is referred to as yi.

step 3) We can produce N training samples (N = 140 in

our experiment) and their target variables. The regression

P1EV P2 L1 L2M/N A B C D B1 B2
Sample Part (1):
Graph Information

Target
Value

Sample Part (2):
Architecture Information

Figure 7. Each training sample contains the graph and the architecture
information. V and E are the number of vertices and edges respectively. A,
B, C, D are the parameters used in graph construction (Table I). P1, L1,
and B1 are the peak performance, L1 cache size, and memory bandwidth,
respectively, of the platform that top-down method runs on. P2, L2, B2
are those of the platform that bottom-up method runs on.

model is generated through the training based on these

samples and target variables.

More information about this machine learning process can

be found in [10]. For on-line prediction at runtime (left part

of Fig. 6), the program can use the regression model to

predict the best M based on the new sample information.

The new sample corresponds to the information of a new

graph traversal. The format of this new sample is identical to

the format of the training sample (Fig. 7), which includes the

information of the new graph, the new top-down and the new

bottom-up architectures. The program then uses M as the

best switching point for the new graph traversal (Algorithm

3).

E. Effects of the Regression Method

In previous naive combinations ([15], [4]), for a new

graph the switching point has to be set manually. From a

statistical perspective, regression prediction is more reliable

than guessing. Naive combination needs repeated trial-and-

error experiments [4]. Although trial-and-error could find a

good switching point (90% of the best performance in [4]), it

can not be used in practice because the best switching point

needs to be searched manually from thousands of possi-

ble cases. Moreover, cross-architecture combination requires

more complicated switching points, which is extremely hard

to do via manual trial-and-error. Automatic trial-and-error

747474747474

Figure 8. For each graph, the switching points are selected from 1,000 possible cases. Random shows the performance when picking the switching
point randomly. Average represents the average performance over 1,000 switching points. Regression shows the performance when using the regression
method to predict the switching point. Exhaustive shows the performance when the switching point is obtained via exhaustive search, which is the
theoretical best. The speedups on the vertical coordinate are over the worst case. The value on top of each bar is the speedup over the Random case.

is exhaustive search (hybrid-oracle in [4]), which can get

the best solution through searching all the possible cases.

However, it can not be used at runtime because it is

extremely time-consuming. For example, searching among

1, 000 possible points will at least take 1, 000× of BFS

execution-time. Compared to exhaustive search, regression

prediction is much faster. The execution-time of regression

prediction is less than 0.1% of BFS execution-time.

To further evaluate our regression method, we select

the switching points from 1,000 possible cases for each

graph traversal and summarize the results in Fig. 8. For

each graph traversal, three methods are used to select the

best switching point: 1) random (Random); 2) regression

prediction (Regression), which is based on 140 training

samples; 3) exhaustive search (Exhaustive). We also cal-

culate the average performance of these 1,000 switching

points (Average). In our experiment, the average perfor-

mance of Regression is 95% of Exhaustive, which is

the theoretical best performance (Fig. 8). The prediction

accuracy will be higher with more training samples [13].

The average speedup of Regression over Random is 6×.

On the other hand, Regression has 695× and 7× speedup

over the worst switching point and Average (Fig. 8), which

means a mistuned switching point can have a significant

influence on the overall performance for cross-architecture

combination. Therefore, the regression technique can get

perfect performance with little runtime overhead.

IV. CROSS-ARCHITECTURE COMBINATION

We first do combination on a single architecture (CPUs,

GPUs, and MIC). The combination technique for graph

traversal performs better on GPUs compared to CPUs. Take

a graph with 8 million vertices and 128 million edges as an

example (Table IV), the combination technique (GPUCB)

achieves speedups of 16.5× and 15.7× over top-down (G-

PUTD) and bottom-up (GPUBU), respectively. On the CPU,

the speedup is 3.4× and 2.8× over top-down (CPUTD)

and bottom-up (CPUBU) respectively. There are two main

reasons behind this.

From Table IV, we find that 97% of GPUBU time is spent

on the first two levels, which is the main reason behind the

lower performance compared to CPUBU. In the first level,

only the source vertex is in CQ (line 1 in Algorithm 2).

For a better bottom-up implementation, we use the CSR

(Compressed Sparse Row) format [4] to store the graph and

use bitmap [16] for the CQ. In this case, each vertex has

to visit almost all of its edges to decide whether the source

vertex is its neighbor or not. Therefore, bottom-up has to

fetch all the data (vertices and edges) from memory in the

first level (line 7-9 in Algorithm 2). As mentioned in section

III-B2, the RCMA of BFS is much lower on the RCMB of

our architectures. Because of being memory-bound, higher

architectural RCMB will intensify the mismatch between the

application and architecture. Thus, GPUBU pays a severe

penalty.

Table IV shows that 99.7% of GPUTD time is spent on

the middle four levels (level 2-5). This is similar to CPUTD,

which spends 98.5% of the time on the middle four two

levels (level 2-5); the reason is elaborated in Section II-B).

For both GPUTD and GPUBU, the time spent on each level

is extremely imbalanced. However, this characteristic also

makes GPU a good candidate for the combination technique.

In the following we further analyze the combination on

GPU (GPUCB) and the combination on CPU (CPUCB)

(Table IV). In the first two steps, both GPU and CPU use

top-down, where the CPU has 11× speedup over GPU. From

level 3 to 7, both GPU and CPU use bottom-up and the GPU

achieves 3× speedup over CPU. As mentioned in section

III-A, this is because bottom-up provides higher parallelism

and thus is more suitable for the massive lightweight threads

757575757575

Table IV
STEP-BY-STEP OPTIMIZATION, LEVEL TIME IS MEASURED IN SECONDS, THE EVALUATED GRAPH HAS 8 MILLION VERTICES AND 128 MILLION EDGES.

TD: TOP-DOWN, BU: BOTTOM-UP, CB: COMBINATION OF TOP-DOWN AND BOTTOM-UP.

Approach GPUTD GPUBU GPUCB CPUTD CPUBU CPUCB CPUTD+GPUBU CPUTD+GPUCB

Level 1 Time 0.000230 0.438904 0.000230 TD 0.000779 0.053730 0.000728 TD 0.002151 CPUTD 0.002239 CPUTD

Level 2 Time 0.157750 0.131876 0.021164 TD 0.001945 0.032186 0.001208 TD 0.002731 CPUTD 0.002608 CPUTD

Level 3 Time 0.155881 0.010673 0.008493 BU 0.074355 0.015300 0.015643 BU 0.005293 GPUBU 0.005922 GPUBU

Level 4 Time 0.261753 0.002783 0.002675 BU 0.072465 0.012448 0.011732 BU 0.002288 GPUBU 0.002424 GPUBU

Level 5 Time 0.044015 0.001590 0.001600 BU 0.011941 0.006933 0.006914 BU 0.001653 GPUBU 0.001658 GPUBU

Level 6 Time 0.000882 0.001474 0.001502 BU 0.000980 0.005121 0.005515 BU 0.001601 GPUBU 0.001596 GPUBU

Level 7 Time 0.000233 0.001468 0.001498 BU 0.000705 0.004987 0.005406 BU 0.001602 GPUBU 0.000286 GPUTD

Level 8 Time 0.000229 0.001466 0.000237 TD 0 0.004972 0.000716 TD 0.001599 GPUBU 0.000234 GPUTD

Level 9 Time 0 0.001466 0.000230 TD 0 0 0 0 0.000230 GPUTD

Total Time 0.620973 0.591701 0.037629 0.163170 0.135677 0.047862 0.018918 0.017196

Speedup 1.0× 1.1× 16.5× 3.8× 4.6× 13.0× 32.8× 36.1×

Table V
SPEEDUPS OF CPUTD+GPUCB OVER GPUTD FOR CERTAIN GRAPHES

|V | 2M 2M 2M 4M 4M 4M 8M

|E| 32M 64M 128M 64M 128M 256M 128M

Speedup 44× 75× 155× 37× 35× 67× 36×

on GPUs. Since 57% of GPUCB time is spent on the

first two levels, using CPUTD to replace GPUTD in the

first few levels is extremely necessary for performance

improvement. Thus, the two BFS approaches are combined

across the architectures, which allows CPU to do top-down

and GPU to do bottom-up (CPUTD+GPUBU in Table IV).

CPUTD+GPUBU achieves 32.8× speedup over GPUTD.

At levels 8 and 9 of GPUCB and CPUCB, both GPU

and CPU switch back to top-down. However, GPU becomes

faster than CPU. We believe this is bacause of the low

number of vertices and edges in the CQ since processors

do not have to fetch a large amount of data from memory.

In the compute-intensive scenario, with stronger processing

power and memory bandwidth, GPU has certain advantages

over CPU. Therefore, it is meaningless for the CPU+GPU

solution to switch back to CPU in the last levels. For

better performance, the CPU+GPU solution switches from

GPUBU to GPUTD in the last few levels since GPUTD is

faster than GPUBU when the number of vertices and edges

is small (Table IV). Our best solution is CPUTD+GPUCB,

which achieves from 35× to 155× (average is 64×) speedup

over GPUTD for a series of test graphs (Table V). The CPU-

GPU cross-architecture combination achieves 8.5×, 2.6×,

and 2.2× average speedup over the MIC, CPU, and GPU

combination respectively (Figure 9). This proves that the

cross-architecture combination is necessary for performance

improvement. The CPUTD+GPUCB solution is described in

Algorithm 3.

Algorithm 3: CPU + GPU Combination

Input: Graph Information (GI)

CPU Information (CPUI)

GPU Information (GPUI)

1 (M1, N1)← RegressionModel(GI, CPUI, GPUI)

2 (M2, N2)← RegressionModel(GI, GPUI, GPUI)

3 BFS Initialization

4 while ture do
5 if CQ = ∅ then
6 break
7 else
8 calculate |E|cq and |V |cq
9 if |E|cq < |E|/M1 and |V |cq < |V |/N1 then

10 do the top-down on CPU

11 else
12 while ture do
13 if |E|cq < |E|/M2 and |V |cq < |V |/N2

then
14 do the top-down on GPU

15 else
16 do the bottom-up on GPU

17 if CQ = ∅ then
18 break
19 else
20 calculate |E|cq and |V |cq

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Implementation Details

We use the CSR (Compressed Sparse Row) format to store

the graph and bit-map or bool-map to store the queue vector.

The compilers are CUDA 5.5 and icc 14.0.2. Multi-threading

767676767676

Figure 9. This figure shows the performances for different graphs achieved by different versions of combinations. For each graph, the number of vertices
is 2SCALE and the number of edges is edgefactor × 2SCALE . The value on top of each bar is the speedup over the MIC combination.

on CPUs and MIC are based OpenMP. The implementations

are evaluated based on the R-MAT graph used in the Graph

500 benchmark [11]. The R-MAT graph is a scale-free graph

generated by the Kronecker generator. The graph is divided

into four partitions. The initial graph is empty, and edges

are added to the graph one by one. Each edge selects one

of the four partitions with probabilities A, B, C and D.

To generate a specific kind of graph, the users need to set

the parameters A, B, C, and D. In our experiment, we set

A = 0.57, B = 0.19, C = 0.19, and D = 0.05 respectively.

The random numbers used in Fig. 8 are based on the rand()

function of C stdlib.h library.

B. Strong and Weak Scaling

The strong scaling results (Figure 10(a)) show that per-

formance grows with increasing number of cores. Since the

larger graphs in the weak scaling test generally increase the

usage of computation units (from one core to multiple cores),

it is beneficial to reduce the memory-bound overhead. Thus,

our implementation obtains a good weak scaling (Figure

10(b)).

C. MIC Performance

In our experiments, the 8-core single socket CPU has an

average 3.3× speedup over the 60-core MIC. Since both

CPU and MIC show good strong scaling (Fig. 10(a)), we

believe the reason behind the performance gap between CPU

and MIC is the difference between their serial versions,

which is decided by the single core capacities. A MIC core

is much simpler compared to a Sandy Bridge core because

it is based on the Intel P54 (the first generation of Pentium)

micro-architecture. Take the graph with 4 million vertices

as an example, the serial version on CPU has a 20.6×
average speedup over MIC for a variety of edgefactors (16,

32, 64). We think that the significant difference comes from

(a) Strong Scaling

(b) Weak Scaling

Figure 10. (a): The results in this figure are based on the graph with 4
million vertices (SCALE=22) and varied edges (4× edgefactor million.
(b): Each CPU core loads 1 million vertices and edgefactor million edges.
Each MIC core loads 0.25 million vertices and 0.25× edgefactor edges.
As the number of cores increases, the total workload increases while the
workload of each core remains the same.

three major factors: the first is the 2× clock rate difference

between the CPU and the MIC; the second is that the MIC

core cannot execute two instructions from the same thread

in consecutive cycles, which would add another factor of 2;

the third reason is the absence of an L3 cache and the lack

of support for out-of-order execution in the MIC core, which

accounts for another factor of 5. One the other hand, we use

777777777777

Table VI
AVERAGE PERFORMANCES FOR DIFFERENT DATA SIZE ON DIFFERENT

ARCHITECTURES (GTEPS).

Architectures 2M vertices 4M vertices 8M vertices

CPU/GPU/MIC 3.06/6.32/1.64 6.14/6.23/1.55 5.66/5.00/1.33

the same source code for CPU and MIC without specific

optimizations for MIC. SIMD does lead to performance

enhancement in our approach because it greatly increases

the number of edges to travel. Thus, we abandon the SIMD

optimization for the major computation part. This, however,

may have the most impact on MIC because MIC is 512-

bit SIMD, which would have been a unique advantage. This

maybe another reason why the performance of MIC is much

lower than CPU and GPU.

D. Comparison against other implementations

The highest published performance on CPUs and GPUs

is achieved by Beamer et al. [4]. Our approach achieves an

average 1.12× speedup over theirs on similar architectures

(16-core Sandy Bridge CPUs) for R-MAT graphs. However,

this is not our major contribution, we only want to justi-

fy that our CPU implementation is state-of-art. Beamer’s

switching points are obtained through trial-and-error and

exhaustive search, which can not be used in practice. The

highest published performance on MIC is reported by Gao et

al. [17]. Their best reported performance is 0.14 GigaTEPS

for a graph with 64 million vertices and 1024 million edges.

We achieve a 13× speedup for the same graph and on the

same platform. The Graph 500 benchmark also provides

parallel implementation source codes, we run them on an 8-

core CPU platform to provide a point-to-point comparison.

Our CPU implementation achieves 4.96−21.0× (average is

11.0×) speedups over theirs.

These comparisons justify that our regression-analysis

approach is effective on different architectures. The addi-

tional speedups achieved by adding the cross-architecture

technique justify the added optimizations are highly efficient.

For example, our cross-architecture combination achieves

16.4 − 63.2× (average is 29.3×) speedups over the Graph

500 implementations.

VI. RELATED WORK

We [18] previously proposed a level synchronized par-

allel algorithm based on Cray MTA-2, which makes full

use of the massive fine-grained threads and low overhead

synchronization provided by the system. Merrill et al. [19]

achieved a fine-grained parallelization through efficient pre-

fix sum on GPUs. Leiserson and Schardl [20] designed an

original multi-set data structure, called bag, to replace the

conventional FIFO queue. Agarwal et al. [16] developed an

efficient multi-socket algorithm with optimizations on the

memory locality and cache utilization. Chhugani et al. [21]

did a series of architectural optimizations (e.g. lock-free,

atomic-free, vertices rearrangement) to maximize the single-

node efficiency on a dual-socket CPUs platform. Li et al.

[22] proposed a runtime system able to dynamically tran-

sition between different implementations on GPUs. Nasre

et al. [23] designed a hybrid approach of data-driven and

topology-driven for graph algorithms on GPUs.

Beamer et al. [4] and Hong et al. [15] are the closest

work to ours. In [4] the authors apply a combination of top-

down and bottom-up approaches only on CPU. In [15] the

authors apply the combination of purely top-down methods

on CPU and also use the same combination strategy on

GPU. In our approach, the hybrid method applies the top-

down method on CPU and the bottom-up/top-down mixed

method on GPU. To our knowledge, this is the first attempt

to use different architectures for combining the top-down

and bottom-up. Compared to trail-and-error or exhaustive

search based heuristics (e.g. hybrid-oracle method in [4]) in

their work, more importantly, we propose a fast and accurate

switching strategy based on regression. The regression tech-

nique is able to put the combination method into practice

since it ensures perfect performance (at least 95% of best

performance with 140 training samples) and brings little

runtime overhead (less than 0.1% of BFS execution-time).

VII. CONCLUSION

In order to get the best switching point automatically in

real time, we propose a combination technique based on re-

gression analysis, which is much more convenient and time-

efficient compared to previous trail-and-error or exhaustive

search based approaches. Our approach can achieve 695×
speedup over the worst switching point and only increases

less than 0.1% of the execution time while the exhaustive

search may increase the execution time a thousand times.

Furthermore, our cross-architecture combination efficiently

uses the popular heterogeneous platforms and greatly im-

proves the performance of BFS, and the average additional

speedup is 3× behind different architectures.

Although the flops peak performance of GPUs is much

better than that of CPU, CPUs achieves better performance

for graphs with large data sizes. This is because CPU is

equipped with a more matchable memory bandwidth than

the computation-intensive GPUs. For MIC, the lower clock

rate, constrained instruction-execution scheme, and reduced

cache size make the performance of the serial version much

worse than that of CPU, which is one of the major reasons

for the low overall performance.

VIII. ACKNOWLEDGE

We would like to thank Dr. Haohuan Fu at Tsinghua

University and Dr. Amanda Randles at LLNL for their

discussions with us. Dr. David A. Bader is partially sup-

ported by the NSF Grant ACI-1339745 (XScala) and the

Defense Advanced Research Projects Agency (DARPA)

787878787878

under agreement #HR0011-13-2-0001. The content, views

and conclusions presented in this paper do not necessarily

reflect the position or the policy of DARPA or the U.S.

Government, no official endorsement should be inferred.

Distribution Statement: Approved for public release; distri-

bution is unlimited.

REFERENCES

[1] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao,
“User interactions in social networks and their implications,”
in Proceedings of the 4th ACM European conference on
Computer systems. ACM, 2009, pp. 205–218.

[2] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani,
“Global protein function prediction from protein-protein in-
teraction networks,” Nature Biotechnology, vol. 21, no. 6, pp.
697–700, 2003.

[3] Y. Deng, B. D. Wang, and S. Mu, “Taming irregular EDA
applications on GPUs,” in IEEE/ACM International Confer-
ence on Computer-Aided Design, 2009. ICCAD 2009. IEEE,
2009, pp. 539–546.

[4] S. Beamer, K. Asanovic, and D. Patterson, “Direction-
optimizing breadth-first search,” in 2012 International Con-
ference for High Performance Computing, Networking, Stor-
age and Analysis (SC). IEEE, 2012, pp. 1–10.

[5] N. R. Draper, H. Smith, and E. Pownell, Applied regression
analysis. Wiley New York, 1966, vol. 3.

[6] J. Dongarra. (June 2013) Top500 list. [Online]. Available:
http://www.top500.org/lists/2013/06/

[7] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[8] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support
vector machine training and classification on graphics proces-
sors,” in Proceedings of the 25th International Conference on
Machine Learning. ACM, 2008, pp. 104–111.

[9] Y. You, S. Song, and H. Fu, “MIC-SVM: Designing a highly
efficient support vector machine for advanced modern multi-
core and many-core architectures,” in 2014 IEEE 28th In-
ternational Symposium on Parallel & Distributed Processing
(IPDPS). IEEE, 2014, pp. 809–818.

[10] C. Lin. (2014) Libsvm – a library for support vector machines.
[Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/libsvm/

[11] Graph500. (2013) Graph500. [Online]. Available:
http://www.graph500.org/

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
“Introduction to Algorithms, 3rd edition,” The MIT Press,
2009.

[13] R. D. Blumofe and C. E. Leiserson, “Scheduling multithread-
ed computations by work stealing,” Journal of the ACM
(JACM), vol. 46, no. 5, pp. 720–748, 1999.

[14] U. V. Catalyurek and C. Aykanat, “A hypergraph-partitioning
approach for coarse-grain decomposition,” in ACM/IEEE
2001 Conference on Supercomputing. IEEE, 2001, pp. 42–
42.

[15] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel
graph exploration on multi-core CPU and GPU,” in Paral-
lel Architectures and Compilation Techniques (PACT), 2011
International Conference on. IEEE, 2011, pp. 78–88.

[16] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable
graph exploration on multicore processors,” in Proceedings
of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society, 2010, pp. 1–11.

[17] G. Tao, L. Yutong, and S. Guang, “Using MIC to accelerate
a typical data-intensive application: the breadth-first search,”
in 2013 IEEE 27th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW).
IEEE, 2013, pp. 1117–1125.

[18] D. A. Bader and K. Madduri, “Designing multithreaded algo-
rithms for breadth-first search and st-connectivity on the Cray
MTA-2,” in International Conference on Parallel Processing.
ICPP 2006. IEEE, 2006, pp. 523–530.

[19] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU
graph traversal,” in ACM SIGPLAN Notices, vol. 47, no. 8.
ACM, 2012, pp. 117–128.

[20] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel
breadth-first search algorithm (or how to cope with the non-
determinism of reducers),” in Proceedings of the 22nd ACM
symposium on Parallelism in algorithms and architectures.
ACM, 2010, pp. 303–314.

[21] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast
and efficient graph traversal algorithm for CPUs: Maximizing
single-node efficiency,” in 2012 IEEE 26th International Par-
allel & Distributed Processing Symposium (IPDPS). IEEE,
2012, pp. 378–389.

[22] D. Li and M. Becchi, “Deploying graph algorithms on GPUs:
An adaptive solution,” in 2013 IEEE 27th International
Symposium on Parallel & Distributed Processing (IPDPS).
IEEE, 2013, pp. 1013–1024.

[23] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus
topology-driven irregular computations on GPUs,” in 2013
IEEE 27th International Symposium on Parallel & Distribut-
ed Processing (IPDPS). IEEE, 2013, pp. 463–474.

797979797979

