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Abstract—This paper proposes a novel aggregation algorithm,
called Hybrid DAG Aggregation (HDagg), that groups iterations
of sparse matrix computations with loop carried dependence
to improve their parallel execution on multicore processors.
Prior approaches to optimize sparse matrix computations fail
to provide an efficient balance between locality, load balance,
and synchronization and are primarily optimized for codes
with a tree-structure data dependence. HDagg is optimized for
sparse matrix computations that their data dependence graphs
(DAGs) do not have a tree structure, such as incomplete matrix
factorization algorithms. It uses a hybrid approach to aggregate
vertices and wavefronts in the DAG of a sparse computation to
create well-balanced parallel workloads with good locality.

Across three sparse kernels, triangular solver, incomplete
Cholesky, and incomplete LU, HDagg outperforms existing sparse
libraries such as MKL with an average speedup of 3.56×
and is faster than state-of-the-art inspector-executor approaches
that optimize sparse computations, i.e. DAGP, LBC, wavefront
parallelism techniques, and SpMP by an average speedup of
3.87×, 3.41×, 1.95×, and 1.43× respectively.

Index Terms—Parallelism, Sparse Matrix Computations, Loop-
carried Dependence

I. INTRODUCTION

Sparse matrix computations are an important class of al-

gorithms frequently used in scientific simulations. The per-

formance of these simulations relies heavily on the parallel

implementations of sparse matrix computations used to solve

systems of linear equations. Independent iterations should

be evenly distributed amongst cores to achieve high parallel

efficiency in sparse matrix codes while minimizing synchro-

nization overhead. Data locality should also be improved by

exploiting data reuse between iterations of the sparse com-

putation. Finding an efficient balance between locality, load

balance, and synchronization is often challenging in sparse

codes due to the existing irregularities in the data structures

and the indirect memory access patterns and dependencies in

the computations. This problem is exacerbated when the data

dependencies in the sparse computation do not have a tree

structure.

Data dependencies between iterations of a loop with partial

parallelism are described with a data-flow directed acyclic

graph (DAG). Then a scheduling algorithm is applied to con-

struct an efficient order to execute iterations of the sparse ker-

nel in parallel. DAG partitioning techniques such as DAGP [1]

partition the vertices in the DAG while minimizing edge cuts

between partitions to improve locality. Independent partitions

are scheduled to execute in parallel. However, the partitioned

graph of DAGP has restricted average parallelism, resulting in

insufficient parallel workloads for all cores, which leads to a

load-imbalanced schedule.

Wavefront parallelism techniques [2], [3] traverse the DAG

in topological order to create a list of wavefronts. Each

wavefront represent iterations which are scheduled to execute

in parallel. A global synchronization, i.e. barrier, is used after

each wavefront to satisfy data-dependence relations. However,

this can lead to high overheads since the number of wavefronts

increases with the DAG’s critical path. Wavefront parallelism

techniques can also lead to load imbalance because workloads

in sparse kernels are often non-uniform. If dependent iterations

in the sparse kernel are executed on the same core, the data

reuse between their computations can turn into a locality.

However, wavefront parallelism techniques often do not take

advantage of this property because of the global synchroniza-

tion between wavefronts.

The SpMP method proposed in [4] improves load balance in

wavefront parallelism approaches by grouping vertices inside a

wavefront to create balanced workloads for all cores. In SpMP,

the grouped vertices in each core are executed wavefront after

wavefront. The execution of groups from different wavefronts

is overlapped using point-to-point synchronization between

the groups to further improve load balance. SpMP suffers

from poor data locality as vertices are executed based on

the wavefront order, similar to the wavefront parallelism

techniques.

Wavefront-coarsening approaches [5], [6] are used to merge

vertices across wavefronts to create well-balanced coarsened

wavefronts, mitigating load imbalance and excessive synchro-

nization present in wavefront parallelism techniques. Load-

Balanced level Coarsening (LBC) [7], implemented inside the

ParSy inspector-executor framework [8], is an example of

wavefront coarsening. Its algorithm is optimized for the class

of sparse computations that their data dependence graphs are

trees such as the elimination tree [9] in Cholesky factorization.

LBC creates an initial coarse wavefront to create enough well-

balanced workloads for all cores. To find an initial cut, LBC

relies on the fact that each vertex in a tree has one outgoing

edge, and hence its algorithm is optimized for DAGs that

are trees. Also, because of wavefront coarsening in LBC,



Fig. 1. Figures (a)–(e) show the schedules generated by the five algorithms when applied to the DAG shown in Figure 1(a). Blue and green vertices execute
in order in cores 0 and 1. Figure 1(a) shows the schedule of wavefront parallelism techniques with five wavefronts running sequentially. The vertices inside
a wavefront execute in parallel, in any order, and are separated from other wavefronts with a global barrier, i.e. the horizontal solid lines. The schedule in
Figure 1(b) is created by SpMP where it groups vertices within a wavefront and maps groups to cores. Vertices across wavefronts can be overlapped due to
point-to-point synchronization, i.e. orange arrows. Figure 1(c) is the LBC schedule where the DAG is converted to a tree by adding extra edges. Some extra
edges are shown with purple. LBC coarsens wavefronts up to the level annotated with the word cut. Before cut, enough workloads exist for all cores, vertices
after cut execute sequentially. The partitioning created by DAGP is shown in Figure 1(d). The objective of this partitioning is to minimize edge cuts. Both
partitions execute on the same core due to the existing dependency between the partitions.

iterations with shared data might be mapped to different

coarsened wavefronts and thus do not efficiently use data

locality opportunities.

A large class of sparse matrix computations operate on

DAGs with non-tree structure. For example, incomplete ma-

trix factorization methods such as the sparse incomplete

Cholesky zero (SpIC0) and the sparse incomplete LU zero

(SpILU0) [10] preconditioners have non-tree DAGs. Other

sparse kernels, such as the sparse triangular solver (SpTRSV),

often operate on non-tree DAGs when used inside a precondi-

tioned iterative solver. For sparse kernels with non-tree DAGs,

LBC uses chordalization to convert the DAG to a tree. This

process introduces additional edges to the DAG and hence

degrades parallelism.

We propose an algorithm called Hybrid DAG Aggregation

(HDagg) and implement it in an inspector-executor framework.

The inspector statically partitions the DAG of the sparse matrix

computation using the HDagg algorithm. HDagg groups itera-

tions in sparse codes with non-tree DAGs to create an efficient

final schedule for execution. To improve data locality in the fi-

nal schedule, it first finds groups of densely connected vertices

inside the DAG and merges the vertices inside each group.

HDagg then uses a novel wavefront coarsening strategy, called

load-balance persevering (LBP), that efficiently coarsens non-

tree DAGs. A novel bin-packing approach is also used in LBP

to find a balance between locality and synchronization.

II. MOTIVATING EXAMPLE

Figures 1(a)–(e) compare the schedule created by HDagg

with that of wavefront parallelism techniques, SpMP, LBC,

and DAGP. All methods are applied to the same DAG and on a

processor with two cores. Each of these scheduling algorithms

provides a different order of execution for the outermost

loop of the sparse kernel. The order of execution affects

locality, load balance, and the number of synchronizations.

In the following, we first use an example sparse kernel to

demonstrate how a DAG is created from the sparse code. We

then compare the schedules created from the aforementioned

scheduling methods.

The algorithms in Figure 1 operate on the DAG of a sparse

kernel. The structure of the DAG depends on the type of

sparse kernel and the sparsity pattern of the input matrix. Each

vertex in the DAG represents an iteration of the outermost loop

of a kernel. The data dependencies between the outermost-

loop iterations are represented with directed edges between

vertices. As an example, we show in Listing 1 the code for the



sparse triangular solve kernel in the Compressed Sparse Row

(CSR) storage format, where n, Ap, Ai, and Ax represent the

number of rows, row pointer, column index, and non-zeros

respectively. The outermost loop (Line 1) iterates over each

row i of the matrix A, and the inner loop (Line 3) iterates

over column indices in row i. The outermost loop carries

dependence because x[k], written in iteration k, can be read

in a proceeding iteration c. For example, if a non-zero exists

in row 3 and column 0 in A, then iterations 0 and 3 will be

dependent. Hence a directed edge from vertex 0 to vertex 3
would exist in the DAG of this computation.

1 for(int i = 0; i < n; i++){
2 x[i] = b[i];
3 for(int j = Ap[i]; j < Ap[i + 1] - 1; j++){
4 x[i] -= Ax[j] * x[Ai[j]];
5 }
6 x[i] /= Ax[Ap[i + 1] - 1];
7 }

Listing 1. The SpTRSV code for the CSR storage format.

The wavefront parallelism technique is shown in Figure 1(a)

where five global barriers are used to ensure correctness. Each

iteration performs a different number of operations depending

on the number of non-zeros per row of the matrix. Thus,

running iterations in parallel makes wavefront parallelism load

imbalanced. The SpMP schedule shown in Figure 1(b) solves

the load imbalance issue in wavefront parallelism techniques

by using point to point synchronization, which allows for

the execution of vertices across different wavefronts to be

overlapped. For example, vertices 2 and 4 can be executed

immediately after 1 and 3 since their dependence relations

are satisfied, and thus unlike a global barrier, they do not

need to wait for vertex 7. Wavefront parallelism techniques

and SpMP typically do not take advantage of the data reuse

opportunities between iterations. For instance, the available

data reuse between 1 and 2 might not turn into locality because

vertex 3 is executed immediately after vertex 1.

To improve locality in wavefront parallelism techniques,

the LBC and DAGP methods group iterations by inspecting

the DAG as shown in Figure 1(c) and Figure 1(d), respec-

tively. DAGP partitions vertices to minimize edge cuts and

to improve data reuse between iterations of a partition, e.g.

enabling data reuse between iterations 0, 1, and 2 in the first

partition, colored in green. However, because of the existing

dependencies between the two partitions, they cannot execute

in parallel resulting in load imbalance. LBC analyzes the DAG

using a wavefront coarsening approach to find enough parallel

workloads for all cores. To find a coarsened wavefront, LBC

first chordalizes the DAG by adding more edges and then

converts it to a tree as shown in Figure 1(c). It then inspects

the wavefronts, starting from the last wavefront, and selects

a wavefront with more than two vertices, e.g. wavefront 2
in Figure 1(c) and creates two parallel workloads for the

two cores. However, because of the added edges, the final

coarsened wavefront only has one component and has a large

computation load, leading to load imbalance. Applying LBC

directly to the DAG of Figure 1(a) results in the coarsened

wavefronts 1–4 with only one connected component which

also creates load imbalance.

As shown in Figure 1(e), the HDagg strategy creates

three global barriers, which is lower than that of Wavefront

parallelism techniques. Unlike LBC and DAGP, the created

partitions from HDagg provide balanced parallelism within

each coarsened wavefront. For example, in Figure 1(e), the

three coarsened wavefronts have enough workloads for the

two cores. Also, to ensure that wavefront coarsening does

not reduce locality, HDagg groups vertices 1 and 2 prior to

wavefront coarsening to ensure they will execute on the same

thread. The schedule created by HDagg provides an efficient

parallel implementation for SpTRSV, SpIC0, and SpILU0 and

is faster than DAGP, LBC, wavefront parallelism techniques,

and SpMP with an average speedup of 3.87×, 3.41×, 1.95×,

and 1.43× respectively.

1 #include "HDagg.h"
2 int main() {
3 Sparse A("path/to/mat.mtx");
4 Kernel ILU0;
5 /*********** Inspector ***********/
6 Graph G = ILU0.DAG(A);
7 Cost C = ILU0.cost(A);
8 Schedule S = HDagg(G, C, num_cores(), epsilon());

9 /*********** Executor ***********/
10 Factor f = ilu0_omp(A, S);
11 return 0;
12 }

Listing 2. The inspector-executor driver code of HDagg for SpILU0.

III. FRAMEWORK OVERVIEW

We implement HDagg in an inspector-executor framework.

The inspector creates an efficient order of execution for the

sparse kernel using the HDagg algorithm. The kernel code in

the executor is transformed using the created partitions from

the inspector and is executed in parallel using OpenMP. Both

the inspector and the executor are implemented in C++.

The inspector and executor are used as a library as shown

in the SpILU0 driver code in Listing 2. The driver code first

loads the input matrix in Line 3. It then creates the DAG

for the sparse computation and computes the cost of each

iteration using a kernel-specific embedded library in Lines 6

and 7 respectively. To compute the DAG of the three supported

kernels, i.e. SpTRSV, SpIC0, and SpILU0, we use the input

matrix [8], [11]. We do not create the DAG explicitly for

efficiency and instead reuse the input matrix as the DAG.

The computed DAG and the cost in Line 8 are used by

the algorithm to build the schedule. num_cores in Line 8

returns the number of physical cores in the target processor.

A predefined load balance threshold is returned by calling

epsilon in Line 8. The parallel kernel code in Line 10 goes

over the created schedule and runs the iterations of the sparse

kernel in parallel.

IV. HYBRID DAG AGGREGATION ALGORITHM

The HDagg algorithm statically partitions the DAG of a

sparse matrix computation using a hybrid approach during



Algorithm 1 The HDagg Algorithm.

Input: G, C, p, ε
Output: S

/*Step1: Aggregating Densely Connected Vertices*/

1: G′ = TransitiveReduction(G)
2: T .append(G′.Sink())
3: for (i = 0; i < T .size(); i = i+ 1) do
4: H = Ti
5: for (j = 0; j < H.size(); j = j + 1) do
6: v = Hj

7: A = parents(G′, v)
8: if {v} ∪A is tree then
9: H.append(A)

10: else
11: for (c ∈ A) do
12: if isNotV isited(c) then
13: T .append([c]); visit(c);
14: end if
15: end for
16: end if
17: end for
18: Ti = H
19: end for
20: G′′ = Coarsened DAG(G′, T )

/*Step2: Load-balance Preserving Wavefront Coarsening*/

21: W, l = Wavefront(G′′)
22: cut = 0
23: Scurr = Sprev = BinPack(CC(W [0 : 1]), C, p)
24: for (i = 1; i ≤ l; i = i+ 1) do
25: Scurr = BinPack(CC(W [cut : i]), C, p)
26: if PGP (Scurr) > ε then
27: if cut == i− 1 then � Single Unbalanced Wave

28: S.append(Scurr)
29: else
30: S.append(Sprev)
31: end if
32: cut = i
33: end if
34: Sprev = Scurr

35: end for
36: if PGP (S) < ε then
37: S.DisableBinPack()
38: end if

inspection. Its objective is to create a partitioning of a general

DAG (DAGs that do not necessarily have a tree structure)

that when executed provides a good load balance and low

synchronization cost while improving locality. HDagg first

groups vertices that form densely connected regions inside

the DAG to ensure they execute on the same thread to

improve locality. As a result, a grouped DAG is created where

each vertex corresponds to a group of vertices. Then, to

reduce synchronization costs and to improve load balance and

locality, HDagg coarsens wavefronts of the grouped DAG. The

proposed wavefront coarsening uses a novel cost model called

the potential gain proxy (PGP) that provides enough parallel

and balanced workloads for all cores when applied to a general

DAG.

A. Input and Outputs

HDagg takes the dependency graph G, the cost function C,

the number of cores p, and the load balance threshold ε as

inputs and builds the schedule S. G is defined as G = (V, E)
where V is the set of vertices and E is the set of directed edges

between the vertices. Integer numbers are used to represent

vertices in the DAG. For example, i ∈ V means that the

vertex with id i belongs to the set V . Directed edges are

shown with i → j where i is the parent of j, i.e. there

exists an outgoing edge from i to j. Each vertex i is annotated

with a cost shown with Ci. The number of non-zero elements

touched is used as the cost function C [7]. The computed

schedule from HDagg is shown with S. The created schedule

is composed of a set of disjoint partitions called coarsened

wavefronts. Each coarsened wavefront is composed of one or

more disjoint partitions called width-partitions. The coarsened

wavefronts execute sequentially and width-partitions of a

coarsened wavefront run in parallel. As an example, schedule

S for the DAG in Figure 2(a) is shown in Figure 2(d). This

example schedule has three coarsened wavefronts, the first

coarsened wavefront has two width-partitions {0, 1, 2, 3} and

{5, 6, 7}.

B. Aggregating Densely Connected Vertices

The objective of the first step of HDagg is to aggregate

vertices that benefit from executing sequentially and on the

same core because of being highly dependent with many edges

connecting them. The computations associated with these

vertices share a lot of data, i.e. they are densely connected

vertices. Densely connected components in a DAG are often

converted to subtrees if their transitive edges are removed. A

transitive edge is an edge that, if removed, does not violate any

dependence in the computation [4]. Leveraging this feature,

the first step of HDagg removes transitive edges and detects

subtrees from the reduced DAG to efficiently find densely

connected vertices in the input.

HDagg removes transitive edges from the input DAG G and

builds a reduced graph G′ using a two-hop transitive edge

reduction approximation method [4]. This method removes an

edge i → f , if there is a vertex j with incoming edge i → j
and outgoing edge j → f . After building the reduced graph

G′, HDagg uses a modified breadth-first search (BFS) traversal

method to find subtrees that represent densely connected

vertices. The algorithm finds a subtree by defining a sink

vertex and then groups vertices with the sink vertex if they

form a connected subtree. A sink vertex is defined as a vertex

that does not have any outgoing edges to another vertex in its

subtree. Each tree only has one sink vertex, HDagg uses this

property to find subtrees in the reduced DAG.

Densely connected vertices are detected in Lines 1–20 in

Algorithm 1. The transitive reduction of the input DAG G is

computed in Line 1 using TransitiveReduction and is stored



Fig. 2. Steps in HDagg to build the schedule in Figure 1(e) from the DAG in Figure 1(a). The first step of the algorithm removes transitive edges (shown with
red edges in Figure 2(a)) and constructs DAG G′ in Figure 2(b). Then vertices that form a subtree are merged to improve locality as shown in Figure 2(c). Pink
vertices in DAG G′′ in Figure 2(c) represent a merged subtree. The second step of HDagg coarsens wavefronts of G′′ to improve locality while preserving
load balance as shown in Figure 2(d).

as G′. Line 2 of Algorithm 1 uses the list of sink vertices

in the reduced graph G′ as the initial partitioning for T .

Then, in Lines 3–19, the algorithm iterates over every entry in

H ∈ T to determine if H can be expanded as a subtree. For

this purpose, HDagg finds the parent vertices of every vertex

v ∈ H using parents in Line 7. If v and all of its parents A
create a tree, i.e. each vertex in A only has one outgoing edge,

the algorithm expands the subtree in H with vertices in A in

Line 9. Otherwise, each vertex in A is appended to T as sink

vertices in upcoming iterations.

Example. Figure 2(a) shows graph G with its transitive

edges colored in red. The output of the transitive reduction

is graph G′ shown in Figure 2(b) which has 6 less edges

compared to DAG G. The original G only has one subtree, i.e.

vertices 1 and 2, while the reduced DAG G′ has two additional

subtrees formed by the set of {11, 12} and {5, 6, 7, 8}. Sink

vertices of G′ are {{2}, {4}, {9}, {10}, {12}}; used to pre-

initialize the partitioning T . A BFS from vertex 12 results in

groupings 12 and 11. Vertex 8 has multiple outgoing edges and

thus is added as a sink vertex to T and will not be grouped

with vertices 11 and 12. When the traversal starts from vertex

8, merging vertex 8 with its parents does not form a subtree.

However, grouping vertex 7 with its parents {5, 6} creates in

a subtree, thus, these vertices are grouped.

C. Load-balance Preserving Wavefront Coarsening

When applying wavefront coarsening to trees, the number of

independent workloads is known from the number of vertices

in the wavefronts. However, non-tree DAGs have irregular

outgoing edges, and thus it is challenging to ensure load

balance with wavefront coarsening. The second step of HDagg

coarsens wavefronts using a load-balance preserving (LBP)

strategy that uses a novel cost metric, i.e. potential gain proxy

(PGP), to measure workloads. Using a bin packing strategy,

LBP further explores the trade-off between locality and load

balance.

Because vertices of a general DAG have different number of

outgoing edges, wavefront coarsening can significantly affect

the number of connected components and thus load balance.

HDagg merges wavefronts up until the wavefront that LBP

can ensure load balance using a bin packing strategy and with

respect to the PGP metric.

LBP first coarsens the wavefronts of the grouped DAG

resulting from the first step and finds connected components

(CCs) in each coarsened wavefront using a variant of the

Shiloach-Vishkin [12] algorithm. It then packs vertices of

a coarsened wavefront into a maximum of p bins using a

bin packing strategy to make approximately equal bins with

respect to the PGP metric. For low overhead packing, HDagg

uses a first-fit strategy [13] where a connected component

is assigned to the first bin that is not balanced. Along with

packing, vertices are ordered inside bins with the smallest ID

first to improve spatial locality.

In Lines 21–35, HDagg starts from the first wavefront and

then merges consecutive wavefronts until a wavefront cut. A

cut occurs if continuing to merge with the next wavefront

results in load imbalance. In Line 21, the algorithm computes

wavefronts of the grouped DAG G′′ and in Lines 22–23, it

initializes variables with the first two wavefronts. Then as

shown in Line 25, HDagg finds connected components for

the selected range of wavefronts (W [cut : i]) and packs them

into a maximum of p bins (BinPack). The algorithm uses PGP

to determine if the partitioning is balanced with respect to the

load balance threshold ε (Line 26). The balanced partitions

(Sprev) are put into the final schedule as shown in Line 30.

The created coarsened wavefronts are not always balanced

because some matrices do not have enough workloads due

to their sparsity pattern. Also, for some matrices with many

wavefronts, the accumulated load imbalance of coarsened

wavefronts becomes noticeable. Thus, the HDagg algorithm

in Lines 36–38 computes the accumulation of imbalance cost

across all coarsened wavefronts using the PGP metric. If the

accumulated cost is higher than the load balance threshold, it

creates fine-grain tasks by disabling bin packing. Fine-grain

tasks allow the scheduler to create a balance execution at

runtime. When the final schedule is balanced, bin packing is



Fig. 3. Using a binary tree, this figure shows the decision space of wavefront
coarsening choices that LBP explores for four wavefronts of the DAG shown
in Figure 2(a). The highlighted path (in orange) from the root to the leaf
vertex S11 shows how LBP coarsens wavefronts in the DAG. Each vertex
in the path corresponds to a wavefront. An incoming edge to a vertex shows
if the wavefront is merged with previous coarsened wavefronts. For instance,
S5 shows W3 will not be merged with merged W1 and W2 ([W1,W2])
and S6 shows that W3 is not merged with [W1,W2].

enabled which in return improves locality.

Example. Figure 2(d) shows the created schedule for two

cores using the second step of HDagg. The input DAG to

the second step along with its initial wavefront W is shown in

Figure 2(c). DAG G′′ has l = 4 wavefronts which are stored in

W . The second step of HDagg starts from the first wavefront

and merges wavefronts as shown in Figure 3. Each circle in

Figure 3 represents a decision related to a wavefront, and each

edge shows a choice (merged or not merged) that HDagg

makes during the second step. The algorithm first coarsens

W1 and W2. Then it detects two connected components,

{{1, 2}, 0, 3} and {5, 6, 7}, from these coarsened wavefronts.

Assuming p = 2, the bin pack algorithm assigns the first

connected component to the first bin, i.e. the first core, and

the second one to the second bin. By merging wavefronts W3
with the coarsened wavefront [W1,W2] shown as CW1 in

figure 2(d), one connected component consist of {1, 2, 3, . . . 8}
vertices will be formed, which would result in one connected

component that is not enough for all cores. Thus, the algo-

rithm does not merge CW1 with W3. The final coarsened-

wavefronts are [[W1,W2], [W3], [W4]]. Waves W1 and W2
are merged but W3 and W4 are not merged. In Figure 2(d),

CW1, CW2, and CW3 correspond to [W1,W2], [W3], and

[W4] respectively, where the bin packing strategy is applied

to coarsened wavefronts.

D. Potential Gain Proxy

The Potential Gain Proxy (PGP) is a metric to measure the

load balance of aggregated iterations statically. It shows the

reduction in runtime if all cores have a balanced workload.

Fig. 4. The correlation between the potential gain proxy (PGP) metric and
the measured potential gain (PG) for different matrices for SpTRSV.

Consider the set B = {B1, B2, . . . Bp} where Bi is the amount

of workloads assigned to each core. Each Bi is computed as

Bi =
∑

j∈Ii
Cj where Ii is the list of vertices assigned to

core i and Cj is the cost assigned to vertex j ∈ Ii. PGP is

computed via:

PGP = 1− B̄
max1≤i≤p(Bi)

(1)

where B̄, and max1≤i≤p(Bi) are the average and maximum

values over the set B respectively.

When the schedule is balanced, i.e. all cores have the same

amount of workload, PGP becomes zero. In the worse case

scenario, all workloads are assigned to a single core leading

to PGP of 1−1/p. Any value in between shows the percentage

that the runtime can be improved by making the schedule

balanced. For instance, assuming p = 2 and that all tasks

are assigned to one core, PGP becomes 1 − 1/2 = 50%.

This means that runtime is reduced (improved) by 50% from

improving load balance. To show the accuracy of PGP, we

measure the potential gain (PG) using CPU compute time

obtained from using PAPI [14] and Vtune. We also compute

PGP using the cost function C. Figure 4 shows the correlation

between PGP and the measured PG for our dataset and for

SpTRSV. As shown, there is a linear correlation between

PGP and the measured potential gain with the coefficient

of determination or R2= 0.83, this indicates PGP is a good

approximation of PG.

E. Computational Complexity

For the theoretical complexity of inspector overhead, we

use an approximation of transitive reduction from [4] with

the time complexity of O(|E| ×E[D] + |V| × V ar[D]) where

|V| and |E| are the number of vertices and the number of

edges in the DAG respectively. D is defined as the average

number of non-zeros per row of each matrix and E[D] and

V ar[D] are the expected value and the variance of D [4]

respectively. Aggregating densely connected vertices and the

modified BFS algorithm in the first step have a time com-

plexity of O(|E| + |V|). Finding connected components after

merging two consecutive wavefronts is the most computa-

tionally expensive stage in the second step. The connected

component algorithm in HDagg [12] has the computational



Fig. 5. The performance of SpTRSV (top), SpIC0 (middle), and SpILU0 (bottom) in GFlops. Different steps in HDagg are shown in the stacked bar, Step 1
is the effect of aggregating densely connected vertices, Step 2 shows the effect of wavefront coarsening combined with the bin packing scheme.

complexity of O(|E| × log(|V|) on a single core. Since the

connected component algorithm is called at most the number

of wavefronts, l, its complexity is O(l× |E|× log(|V|)). With

enough parallel cores the complexity of this step converges to

O(l × log(|V|)) [12].

V. EXPERIMENTAL RESULTS

We compare the performance of HDagg with MKL [15],

DAGP [1], LBC [7], wavefront parallelism techniques [2]

(which we refer to as Wavefront), and SpMP [4] for

sparse matrix computations. Three sparse kernels, namely,

SpTRSV, SpIC0, and SpILU0, are used for comparison.

Since MKL’s implementations of SpILU0 and SpIC0 are not

parallel, we only compare to MKL for SpTRSV. HDagg’s

code is available from https://github.com/sympiler/aggregation
and the HDagg evaluation framework is available from

https://github.com/BehroozZare/HDagg-benchmark.

We use 34 symmetric positive definite (SPD) matrices

from the Suite Sparse matrix collection [16]; SPD matrices

are selected so that SpIC0 becomes numerically stable. To

demonstrate the scalability of HDagg we choose matrices of

different sizes from 51×103 number of non-zeros to 59×106

number of non-zeros. The matrix sparsity patterns are diverse

not to favor one algorithm. For example, (i) some have many

chains in their DAGs, helping DAGP; (ii) some matrices

have large average parallelism, where average parallelism is

obtained by dividing the number of vertices by the number of

wavefronts, helping Wavefront/SpMP; (iii) and some need a

small number of edges to become chordal, helping LBC.

The algorithms/libraries are executed on an AMD and an

Intel processor. All analysis is conducted on Intel. The Intel
processor is an Intel(R) Xeon(R) Gold 6248 CPU with a

2.50GHz clock rate and 28MB LLC cache with 20 cores.

The AMD processor is AMD EPYC 7742 with a 2.25GHz

clock rate and 256MB LLC cache with 64 cores. DAGP,

LBC, and SpMP libraries are open source and their latest

publicly available version is used, and the MKL version is

2020.4.304. The default settings or best performing configu-

rations of each library are used for comparison. We use the

MKL inspector and set the expected_call parameter to

1000 to ensure that MKL applies all the optimizations and

achieves its maximum performance when executing in parallel.

For a fair comparison with DAGP, different partition numbers

(k) are investigated, and the result for partitioning with the

best speedup, i.e. k = 1000, is reported. All source codes are

compiled with GCC v.8.3.0 using the -O3 optimization flag

with “close” thread-binding. The median of 10 executions for

each experiment is reported. For all algorithms, the matrices

are first reordered with Metis [17] and then passed as input.



TABLE I
THE AVERAGE SPEEDUP OF HDAGG COMPARED TO OTHER ALGORITHMS

FOR THREE SPARSE KERNELS ON INTEL AND AMD ARCHITECTURES

.
Kernel DAGP LBC Wavefront SpMP MKL

In
te

l SpTRSV 3.8× 5.3× 2.9× 1.56× 3.56×
SpIC0 4.12× 2.67× 1.52× 1.34× −

SpILU0 3.41× 2.82× 1.62× 1.47× −

A
M

D SpTRSV 8.34× 4.67× 13.53× 1.13× 3.36×
SpIC0 10.01× 10.62× 1.31× 1.12× −

SpILU0 7.13× 6.96× 1.27× 1.06× −

A. Executor Evaluation

Table I shows the average speedup of HDagg over other

algorithms on Intel and AMD processors. Across three kernels,

SpTRSV, SpIC0, and SpILU0, HDagg outperforms DAGP,

LBC, Wavefront, and SpMP with an average speedup of

3.87×, 3.41×, 1.95×, and 1.43× on Intel processor and

8.41×, 7.01×, 2.83×, and 1.10× on AMD processor respec-

tively. Hereafter, we will use results on Intel to analyze the

performance of HDagg.

Figure 5 shows, per matrix, the performance of HDagg

versus the algorithms mentioned above on the Intel processor.

For the SpTRSV and SpIC0 kernels, HDagg provides better

performance in over 94% of the matrices, while for SpILU0,

we beat other algorithms in 73% of the matrices. SpILU0 is

more challenging to optimize, and HDagg does not provide

strong speedups on some matrices for this kernel. Hence, we

will use SpILU0 for analysis and comparison for the rest of

this section.

To analyze the performance of HDagg, DAGP, LBC, Wave-

front, and SpMP, we use the three performance metrics of

locality, load balance, and synchronization (Figure 6). The

average memory access latency [18] is used as a metric to

measure locality. To measure load balance, we compute the po-

tential gain as described in Section IV-D; the number of cycles

per core is used as the cost function (C) in Equation 1. The

number of point-to-point synchronization for each algorithm

is measured to evaluate synchronization overhead. PAPI’s

performance counters [14] are used to measure architecture

information needed in computations related to the locality

and load balance metrics. For algorithms that use global

barriers, we calculate its equivalent number of point-to-point

synchronization by multiplying the number of global barriers

by p× log(p) [4] where p is the number of cores.

Figure 6 compares the performance metrics in HDagg

to DAGP, LBC, Wavefront, and SpMP for SpILU0 on the

Intel processor. Table II summarizes Figure 6 with each

row showing the average improvement of a performance

metric in HDagg compared to aforementioned algorithms. As

demonstrated, compared to DAGP and LBC, HDagg improves

locality and load balance. However, compared to SpMP and

Wavefront, HDagg does not improve load balance but provides

better locality and less synchronization. In the following, we

compare the performance of each algorithm with HDagg using

the performance metrics shown in Figure 6 and Table II.

TABLE II
PERFORMANCE METRICS IN HDAGG VS. OTHER ALGORITHMS FOR

SPILU0 ON THE INTEL PROCESSOR.

Performance Metrics DAGP LBC Wavefront SpMP

Locality Improvement 2.66× 2.33× 1.52× 1.44×
Load Balance Improvement 2.60× 2.27× 0.56× 0.34×
Synchronization Reduction 5.07× 0.07× 7.95× 1.49×

Fig. 6. Performance metrics of different algorithms for SpILU0 on the Intel
processor. The top plot shows locality measured by average memory access
latency (in log scale). The middle plot demonstrates load balance using the
potential gain metric, and the bottom plot shows the number of point-to-point
synchronizations used that indicate synchronization overhead (in log scale).

HDagg compared to DAGP. As shown in Figure 6, for all

matrices in our benchmark, HDagg outperforms DAGP on the

performance metrics leading to the performances reported in

Figure 5. Per Table II, HDagg improves locality and load bal-

ance over DAGP on average 2.66× and 2.60× respectively and

reduces synchronization 5.07× over DAGP. We use Figure 7

to analyze the load balance trend shown in Figure 6 middle.

A wavefront is imbalanced if the number of independent

workloads in the wavefront is less than the number of cores

p. Figure 7 shows the ratio of imbalanced wavefronts over

the total number of wavefronts per matrix/algorithm (we call

this the load imbalance ratio, the lower, the better). As

demonstrated, DAGP has the highest load imbalance ratio

compared to other algorithms leading to an imbalanced load



TABLE III
MATRIX CATEGORIZATION BASED ON THE NUMBER OF NON-ZEROS (nnz) AND AVERAGE PARALLELISM. ALL COLUMNS EXCEPT FAST MATRICES

PERCENTAGE ARE THE REPORT AVERAGE AMONGST MATRICES FOR THAT CLASS. THE FAST MATRICES PERCENTAGE AND SPEEDUP COLUMNS ARE

MEASURED WITH RESPECT TO THE BEST OF SPMP AND WAVEFRONT.

Category
Average nnz

per Wavefront
Locality

Improvement
Load Balance
Improvement

Fast Matrices
Percentage

Speedup

nnz > 107 61747 1.90 0.47 93% 1.75

nnz < 107, Average Parallelism > 400 47280 1.37 0.43 100% 1.26

nnz < 107, Average Parallelism < 400 7787 0.92 0.22 63% 0.90

Fig. 7. The ratio of imbalanced wavefronts over the total number of
wavefronts per matrix/algorithm, i.e. load imbalance ratio. Lower is better.

execution. HDagg also improves locality and synchronization

over DAGP. Hence we outperform DAGP on all matrices.

HDagg compared to LBC. HDagg outperforms LBC for all

matrices in our dataset per Figure 5. As shown in Figure 6,

HDagg improves load balance and locality over LBC for all

matrices with an average of 2.27× and 2.33× respectively

(from Table II). LBC always creates two wavefronts where

one of the wavefronts has fewer than p (the number of cores)

workloads, resulting in a load imbalance ratio of 50% for

all matrices. For most matrices, HDagg has a load imbalance

ratio of less than 50% and hence a better load balance than

LBC. As shown in Table II, the number of synchronizations

in LBC is on average 0.07× lower than HDagg. However,

synchronization is not a bottleneck in HDagg’s execution. The

synchronization overhead in HDagg contributes to on average

0.0011% of the execution time, which is negligible. Hence,

with only improving load balance and locality HDagg is able

to outperform LBC on all matrices.

HDagg compared to SpMP and Wavefront. HDagg is faster

than SpMP/Wavefront in 88% of matrices (Figure 5) with an

average speedup of 1.47×. It improves locality in most of the

matrices compared to SpMP/Wavefront. However, as shown

in Figure 6, SpMP/Wavefront overall provides a better load

balance compared to HDagg (as also demonstrated in Figure

7 with a lower load imbalance ratio for SpMP/Wavefront

for most matrices). Synchronization overhead is improved in

HDagg for most matrices. However, because the time spent on

synchronization is negligible in HDagg, the locality and load

balance metrics are the major contributing factors to HDagg’s

speedup or slowdown.

Table III categorizes the matrices in our dataset, based on

Fig. 8. The correlation between HDagg’s speedup over SpMP/Wavefront,
shown as Speedup, and HDagg’s improvement of locality over SpMP/Wave-
front.

matrix size (non-zeros in the matrix) and average parallelism.

Average parallelism is an indicator for load balance, obtained

by dividing the number of vertices by the number of wave-

fronts. For each category, we show the average number of

non-zeros per wavefront as a measure for potential locality

improvement. With more average number of non-zeros per

wavefront, the SpILU0 kernel accesses more of the already

computed factors while executing iterations of a wavefront,

which provides more opportunities to improve locality. As

shown in Table III for the first two categories (rows 1 and

2), HDagg outperforms SpMP/Wavefront on more than 90%

of the matrices. For the matrices in these two categories, the

average number of non-zeros per wavefront, an indicator of

data reuse between iterations across wavefronts, is relatively

large. Figure 8 shows that HDagg’s speedup over SpMP/Wave-

front is correlated to HDagg’s improvement of locality over

SpMP/Wavefront with a coefficient of determination (R2) of

95%, for the matrices in the first two categories in Table I.

This correlation indicates that HDagg’s two-step aggregation

method successfully utilizes reuse opportunities between iter-

ations across wavefronts and improves locality.

To summarize, for the matrices in the first two categories

in Table III, HDagg provides better performance than SpM-

P/Wavefront because locality is important for these matrices,

and HDagg improves locality noticeably more than SpM-

P/Wavefront. The matrices in the third category have a low

number of non-zero per wavefront. Thus, HDagg can not

always improve locality. Also, the average parallelism is low

in these matrices, and algorithms such as SpMP and Wavefront

with better load balance strategies will outperform HDagg in

some matrices in this category, i.e. in 37% of the matrices.



Fig. 9. The number of required kernel executions (NRE) to amortize the cost
of inspection for SpTRSV (top), SpIC0 (middle), and SpILU0 (bottom).

B. Inspection Overhead

Figure 9 shows the Number of Required kernel Executions

(NRE) to amortize the cost of inspection. NRE is calculated

from

NRE =
inspector time

(sequential time− parallel time)
(2)

Since DAGP needs an average of 5305 executions to amor-

tize its inspection time, we do not report its NRE in graphs.

LBC, Wavefront, SpMP, and HDagg, on average, require 24,

9.4, 21, and 16 kernel executions, respectively, to amortize

their inspector overhead for SpTRSV. These overheads are

quickly amortized in iterative solvers where a kernel is ex-

ecuted tens of thousands of times [19], [20]. For SpIC0,

and SpILU0, NRE of HDagg is on average 0.38 and 0.41,

respectively. An NRE of lower than one means that total

inspection and executor time (i.e. single kernel execution) is

smaller than the sequential time.

VI. RELATED WORK

Sparse matrix computations have been optimized in numer-

ous libraries each targeting a specific class of sparse kernels

and a specific computing platform. For example, the sparse

LU and Cholesky factorization methods have been accelerated

in work such as MKL [15], SuperLU [21], and PaStix [22]

on shared memory and distributed memory architectures [23],

[24]. The sparse triangular solve has been optimized in [25]–

[28]. Kernels with parallel loops such as the sparse matrix-

vector multiplication have also been optimized in implemen-

tations such as [29]–[32]. Libraries are often not portable

and have to be hand-optimized at a high cost, also their

optimizations are often specialized for a specific application.

For example, KLU is optimized for circuit simulation prob-

lems [33].

Domain-specific compilers leverage information from the

domain to determine a sequence of optimizations that the

compiler can apply to the sparse code. For example work

such as [34]–[36] optimize stencil computations, Taichi [37]

and TACO [38] optimize tensor algebra, and signal processing

applications are optimized in [21]. Recent work has extended

compilers to build inspectors that execute at runtime to analyze

the indirect memory access patterns in sparse kernels [2],

[39], [40]. Amongst these approaches, wavefront parallelism

techniques [2]–[4], [40]–[43] have gained notable popularity.

These approaches either use a manually written inspector [3],

[42], [43] or use automation to simplify parts of the inspector

[40], [44], [45]. The inspectors either schedule the wavefronts

to execute one after another [2] or works such as LBC use

load-balanced coarsening approaches [4] to create parallel

workloads for the sparse computation. DAG partitioning ap-

proaches such as DAGP [1] also inspect the dependencies in

the sparse computation and create a schedule for the sparse

computation that can execute in parallel.

VII. CONCLUSION

This paper proposes HDagg, a novel iteration aggregation

approach that creates an efficient partitioning of the data

dependence graphs from sparse matrix computations that do

not have a tree-structure DAG. The created partitions from

HDagg lead to a load-balanced parallel execution of the sparse

code and improve data locality. HDagg is composed of a vertex

aggregation phase and a novel wavefront coarsening step that

uses a load balancing metric called PGP. It is implemented

as an inspector-executor framework and outperforms state-of-

the-art iteration schedulers of sparse kernels such as SpTRSV

up to 13 fold.
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