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Today

Review of PCA

Matrix completion

Nonlinear dimensionality reduction (Auto-Encoders)

Exercise
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PCA - Projection onto a subspace

How to project onto a K-dimensional subspace?
▶ Idea: choose an orthonormal basis {u1,u2,⋯,uK} for S (i.e. all

unit vectors and orthogonal to each other)
▶ Project onto each unit vector individually (as in previous slide), and

sum together the projections.

Mathematically, the projection is given as:

ProjS(x) =
K

∑
i=1

ziui where zi = x
⊤
ui.

In vector form:

ProjS(x) = Uz where z = U
⊤
x
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PCA - Projection onto a subspace

We assumed the subspace passes through 0.

In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin µ̂.

z = U
⊤(x − µ̂)

In machine learning, x̃ is also called the reconstruction of x.

z is its representation, or code.
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PCA - Learning a Subspace

How to choose a good subspace S?
▶ Origin µ̂ is the empirical mean of the data
▶ Need to choose a D ×K matrix U with orthonormal columns.

Two criteria:
▶ Minimize the reconstruction error:

min
U

1

N

N

∑
i=1

∥x(i)
− x̃

(i)∥2

▶ Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

max
U

1

N
∑
i

∥x̃(i)
− µ̂∥2

▶ These two criteria are equivalent! I.e., we’ll show

1

N

N

∑
i=1

∥x(i)
− x̃

(i)∥2
= const −

1

N
∑
i

∥x̃(i)
− µ̂∥2
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called principal component analysis (PCA).

Consider the empirical covariance matrix:

Σ̂ =
1

N

N

∑
i=1

(x(i)
− µ̂)(x(i)

− µ̂)⊤

Recall: Σ̂ is symmetric and positive semidefinite.

The optimal PCA subspace is spanned
by the top K eigenvectors of Σ̂.

▶ More precisely, choose the first K of
any orthonormal eigenbasis for Σ̂.

These eigenvectors are called principal
components, analogous to the
principal axes of an ellipse.
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Recap

Recap:

Dimensionality reduction aims to find a low-dimensional
representation of the data.

PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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The Netflix problem

Movie recommendation: Users watch movies and rate them out of 5⭑.

User Movie Rating

Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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PCA as Matrix Factorization

Recall PCA: each input vector x
(i)

∈ RD
is approximated as

µ̂ +Uz
(i)
,

x
(i)

≈ x̃
(i)

= µ̂ +Uz
(i)

where µ̂ =
1
n
∑i x

(i)
is the data mean, U ∈ RD×K

is the orthogonal

basis for the principal subspace, and z
(i)

∈ RK
is the code vector,

and x̃
(i)

∈ RD
is x

(i)
’s reconstruction or approximation.

Assume for simplicity that the data is centered: µ̂ = 0. Then, the
approximation looks like

x
(i)

≈ x̃
(i)

= Uz
(i)
.
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PCA as Matrix Factorization
PCA(on centered data): input vector x

(i)
is approximated as Uz

(i)

x
(i)

≈ Uz
(i)

Write this in matrix form, we have X ≈ ZU
⊤
where X and Z are

matrices with one row per data point

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x(1)]⊤

[x(2)]⊤
⋮

[x(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×D
and Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[z(1)]⊤

[z(2)]⊤
⋮

[z(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×K

Can write the squared reconstruction error as

N

∑
i=1

∥x(i)
−Uz

(i)∥2
= ∥X − ZU

⊤∥2
F ,

∥ ⋅ ∥F denotes the Frobenius norm:

∥Y∥2
F = ∥Y⊤∥2

F = ∑
i,j

y
2
ij = ∑

i

∥y(i)∥2
.
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PCA as Matrix Factorization

So PCA is approximating X ≈ ZU
⊤
, or equivalently X

⊤
≈ UZ

⊤
.

Based on the sizes of the matrices, this is a rank-K approximation.

Since U was chosen to minimize reconstruction error, this is the
optimal rank-K approximation, in terms of error ∥X⊤ −UZ

⊤∥2
F .
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Matrix Completion

We just saw that PCA gives the optimal low-rank matrix
factorization to a matrix X.

Can we generalize this to the case where X is only partially
observed?

▶ A sparse 1000 × 1000 matrix with 50,000 observations (only 5%
observed).

▶ A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.

▶ Unfortunately, no closed form solution.
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or
bad.

User Movie Rating

Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Because users only rate a few items, one would like to infer their
preference for unrated items
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Matrix Completion

Matrix completion problem: Transform the table into a N users by M movies
matrix R

Data: Users rate some movies.
Ruser,movie. Very sparse

Task: Predict missing entries,
i.e. how a user would rate a
movie they haven’t previously
rated

Evaluation Metric: Squared
error (used by Netflix
Competition). Is this a
reasonable metric?
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Matrix Completion

In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

That is, we seek representations for movies and users as vectors in
RK

that can ultimately be translated to ratings.

For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like

▶ comedy
▶ drama
▶ action
▶ But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Matrix Completion

Let the representation of user i in the K-dimensional space be ui and
the representation of movie j be zj

▶ Intuition: maybe the first entry of ui says how much the user likes
horror films, and the first entry of zj says how much movie j is a
horror film.

Assume the rating user i gives to movie j is given by a dot product:

Rij ≈ u
⊤
i zj

In matrix form, if:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

— u
⊤
1 —
⋮

— u
⊤
N —

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Z

⊤
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣
z1 . . . zM
∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

then: R ≈ UZ
⊤

This is a matrix factorization problem!
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Matrix Completion

Recall PCA: To enforce X
⊤
≈ UZ

⊤
, we minimized

min
U,Z

∥X⊤
−UZ

⊤∥2
F = ∑

i,j

(xji − u
⊤
i zj)2

where ui and zi are the i-th rows of matrices U and Z,
respectively.

What’s different about the Netflix problem?
▶ Most entries are missing!
▶ We only want to count the error for the observed entries.
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Matrix Completion

Let O = {(n,m) ∶ entry (n,m) of matrix R is observed}
Using the squared error loss, matrix completion requires solving

min
U,Z

1

2
∑

(i,j)∈O
(Rij − u

⊤
i zj)

2

The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U
and optimize Z, and so on until convergence.
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Alternating Least Squares

Want to minimize the squared error cost with respect to the factor
U. (The case of Z is exactly symmetric.)

We can decompose the cost into a sum of independent terms:

∑
(i,j)∈O

(Rij − u
⊤
i zj)

2
= ∑

i

∑
j∶(i,j)∈O

(Rij − u
⊤
i zj)

2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
only depends on ui

This can be minimized independently for each ui.

This is a linear regression problem in disguise. Its optimal solution
is:

ui =
⎛
⎜
⎝

∑
j∶(i,j)∈O

zjz
⊤
j

⎞
⎟
⎠

−1

∑
j∶(i,j)∈O

Rijzj
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Alternating Least Squares

ALS for Matrix Completion problem

1. Initialize U and Z randomly

2. repeat until convergence

3. for i = 1, .., N do

4. ui = (∑j∶(i,j)∈O zjz
⊤
j )

−1 ∑j∶(i,j)∈O Rijzj

5. for j = 1, ..,M do

6. zj = (∑i∶(i,j)∈O uiu
⊤
i )

−1 ∑i∶(i,j)∈O Rijui
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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Autoencoders

An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.
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Linear Autoencoders

Why autoencoders?

Map high-dimensional data to two dimensions for visualization

Learn abstract features in an unsupervised way so you can apply
them to a supervised task

▶ Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

The simplest kind of autoencoder has one
hidden layer, linear activations, and squared
error loss.

L(x, x̃) = ∥x − x̃∥2

This network computes x̃ = W2W1x, which
is a linear function.

If K ≥ D, we can choose W2 and W1 such
that W2W1 is the identity matrix. This isn’t
very interesting.
But suppose K < D:

▶ W1 maps x to a K-dimensional space, so it’s doing dimensionality
reduction.
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Linear Autoencoders

Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of W2. This is
because x̃ = W2z

We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

The autoencoder can achieve this by setting W1 = U
⊤
and

W2 = U.

Therefore, the optimal weights for a linear autoencoder are just
the principal components!
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Nonlinear Autoencoders

Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

This manifold is the image of the decoder.

This is a kind of nonlinear dimensionality reduction.
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Nonlinear Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup
articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.
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Exercise

Recall that the PCA code vector for a data point x is given by
z = U

⊤(x − µ̂). Show that the entries of z are uncorrelated.
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Solution

Recall that the PCA code vector for a data point x is given by
z = U

⊤(x − µ̂). Show that the entries of z are uncorrelated.

Cov(z) = E [(z − E[z])(z − E[z])⊤]
= E [zz⊤]
= U

⊤E [(x − µ̂)(x − µ̂)⊤]U
= U

⊤
Σ̂U

= U
⊤
QΛQ

⊤
U

= (I 0)Λ (I
0
)

Which is the top K ×K block of Λ. Matrix Λ is diagonal ⟹

Uncorrelated features
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Exercise

Consider the following data matrix, representing four samples Xi ∈ R2
:

X =

⎛
⎜⎜⎜⎜⎜⎜
⎝

4 1
2 3
5 4
1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Compute the unit-length principal component directions of X, and
state which one the PCA algorithm would choose if you request
just one principal component.

Find the best (min reconstruction error) projection of X into a
1-dimensional subspace with the origin of zero.
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