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Today

e Review of PCA
o Matrix completion

e Nonlinear dimensionality reduction (Auto-Encoders)

o Exercise

Intro ML (UofT) CSC311-Tutorial 2/32



PCA - Projection onto a subspace

e How to project onto a K-dimensional subspace?

» Idea: choose an orthonormal basis {uy, uy, -+, ug} for S (i.e. all
unit vectors and orthogonal to each other)

» Project onto each unit vector individually (as in previous slide), and
sum together the projections.

e Mathematically, the projection is given as:
K

. T
Projs(x) = Zziui where z; = x u;.
i=1

e In vector form:

Projs(x) = Uz where z = U'x
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PCA - Projection onto a subspace

o We assumed the subspace passes through 0.

e In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin f.

| —, i:Uz+ﬁ::lu1+:2u2+ﬁ
\ T ~
\/’ , z=U (x-f)
u2 \
A u; ‘\'

o In machine learning, x is also called the reconstruction of x.

e z is its representation, or code.
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PCA - Learning a Subspace

e How to choose a good subspace S?

» Origin £ is the empirical mean of the data
» Need to choose a D X K matrix U with orthonormal columns.

@ Two criteria:
» Minimize the reconstruction error:

1 &Y ) )
rr%}n ¥ Z ”X(Z) _ i(z)HQ
i=1

» Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

1 (i) ~p2
mgx 7 1% - &l

» These two criteria are equivalent! I.e., we’ll show

N
1 NN ONE 1 () A2
5 2l =% = const = 5 11X~
=1 i
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called principal component analysis (PCA).

@ Consider the empirical covariance matrix:

N
o 1 (1) ang (i) T
z—N;(x - )" - )

o Recall: 3 is symmetric and positive semidefinite.

@ The optimal PCA subspace is spanned u
by the top K eigenvectors of s -
» More precisely, choose the first K of o o R
any orthonormal eigenbasis for X. 5 w X% X
@ These eigenvectors are called principal x
components, analogous to the
principal axes of an ellipse.

X

Intro ML (UofT) CSC311-Tutorial 6 /32



Recap

Recap:
e Dimensionality reduction aims to find a low-dimensional

representation of the data.

e PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

o The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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Intro ML (UofT)

The Netflix problem

User | Movie Rating

& Thor * Yok kX
& Chained * Kk kK
& Frozen * % ok 3 X
Chained * kK kK&
Bambi * % % % %
&) Titanic * % Kk K %
© Goodfellas | % % % % %
© Dumbo * Kk Kk K %
o Twilight * Kk K ok K
@ Frozen * %k k Kk K
@ Tangled * % K A %

preference for unrated items

Because users only rate a few items, one would like to infer their

CSC311-Tutorial

Movie recommendation: Users watch movies and rate them out of 5.
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PCA as Matrix Factorization

o Recall PCA: each input vector x e R is approximated as
[+ Uz(z),
(@)

xM =z = py U

DxK

where f1 = % Y x is the data mean, U € R is the orthogonal

basis for the principal subspace, and 2" € R is the code vector,
~(4) D . (i) . L
and x'’ € R™ is x'’’s reconstruction or approximation.

o Assume for simplicity that the data is centered: [t = 0. Then, the
approximation looks like

MONGFIONIE § SO}
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PCA as Matrix Factorization

e PCA(on centered data): input vector x s approximated as Uz
<D < ug®
@ Write this in matrix form, we have X = ZU" where X and Z are

matrices with one row per data point

(]! [«
(2)7T (2)1T

X=| XD | er™P qng z=| 271 | gk
[XU{’)]T [Z(]\})]T

o Can write the squared reconstruction error as
N (@) (@) 2 T2
> 1" - uz?)P = X - Z2U ||,
i=1

e || - || denotes the Frobenius norm:
2 T2 2 .9
IV = 1Y TIE = ui = 3 111
1] i
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PCA as Matrix Factorization

e So PCA is approximating X = ZUT, or equivalently x"~Uz".

XT U VAl

Q

one code
vector

—— N—— ~K—
one principal
component

o Based on the sizes of the matrices, this is a rank-K approximation.

e Since U was chosen to minimize reconstruction error, this is the
. . .. T T2
optimal rank-K approximation, in terms of error || X' —UZ |[|%.
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Matrix Completion

o We just saw that PCA gives the optimal low-rank matrix
factorization to a matrix X.

e Can we generalize this to the case where X is only partially
observed?
» A sparse 1000 X 1000 matrix with 50,000 observations (only 5%
observed).
» A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.
» Unfortunately, no closed form solution.

Intro ML (UofT) CSC311-Tutorial

13 /32



The Netflix problem

Movie recommendation: Users watch movies and rate them as good or

bad.

User | Movie Rating

& Thor * % K %
& Chained * ok %
& Frozen * Kk Kk %
Chained * ok ok Kk %
= Bambi * Kk Kk K &
© Titanic * %k ok k%
(@] Goodfellas | % % % % *
@] Dumbo * % %k Kk Kk
5] Twilight * ok % %
) Frozen * % ok Kk Kk
2 Tangled * % e %

Because users only rate a few items, one would like to infer their

preference for unrated items
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Matrix Completion

Matrix completion problem: Transform the table into a IV users by M movies
matrix R

Rating matrix

@ Data: Users rate some movies.
Ruser,movie- Very sparse

@ Task: Predict missing entries,

3 - r e i.e. how a user would rate a

) . . movie they haven’t previously
Nursey ? ? ? ? ? ? ? ?
rated

Tongey| ? . ? ? ? ? ? ? ?

e Evaluation Metric: Squared
Mewmllz @222 2 error (used by Netflix

> N - r n S ope .
LS S Competition). Is this a

reasonable metric?
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Matrix Completion

@ In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

e That is, we seek representations for movies and users as vectors in
R* that can ultimately be translated to ratings.

e For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like
» comedy
» drama
» action
» But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Matrix Completion

@ Let the representation of user i in the K-dimensional space be u; and
the representation of movie j be z;

» Intuition: maybe the first entry of u; says how much the user likes
horror films, and the first entry of z; says how much movie j is a
horror film.

@ Assume the rating user ¢ gives to movie j is given by a dot product:
T
R =u; z;

@ In matrix form, if:

U= : and Z' = Z1 ... Z)p

then: R =~ UZ'

@ This is a matrix factorization problem!
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Matrix Completion

o Recall PCA: To enforce X' = UZT, we minimized
. T T2 T 2
min X7 - UZ [l = ) ()i - i 2)
/L?J

where u; and z; are the i-th rows of matrices U and Z,
respectively.

e What’s different about the Netflix problem?

» Most entries are missing!
» We only want to count the error for the observed entries.
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Matrix Completion

Let O = {(n,m) : entry (n,m) of matrix R is observed}

Using the squared error loss, matrix completion requires solving

. 1 T 2
pes T (R -uln)

@ The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U
and optimize Z, and so on until convergence.
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Alternating Least Squares

e Want to minimize the squared error cost with respect to the factor
U. (The case of Z is exactly symmetric.)

o We can decompose the cost into a sum of independent terms:

Y (Ry-uln) =) Y (Ry-ul)

(4,5)€0 i g (4,5)€0

only depends on u;

This can be minimized independently for each u;.

@ This is a linear regression problem in disguise. Its optimal solution
is:

-1

T
u; = Z Z;Z; Z R;;z;

J:(i,5)€0 3:(4,5)€0
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Alternating Least Squares

ALS for Matrix Completion problem
1. Initialize U and Z randomly
2. repeat until convergence

3. fori=1,..,N do

-

T -1
u; = (Zj:(i,j)eO Z;Z; ) Zj:(i,j)eo R;jz;
5. for j=1,..,M do

. Ty 1
6. z; = (Zi:(i,j)EO wu; ) Y iijeo Rigti
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

o To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

784 units

100 units

reconstruction

decoder

20 units

input 784 units
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Linear Autoencoders

Why autoencoders?

e Map high-dimensional data to two dimensions for visualization

o Learn abstract features in an unsupervised way so you can apply
them to a supervised task

» Unlabled data can be much more plentiful than labeled data
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Linear Autoencoders

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared

error loss. X ‘ D units ‘
~ ~ 12 WQ decoder
L(x,x) =[x —x]|
Z | Kunits
o This network computes X = WoWx, which W, encoder

is a linear function.

o If K = D, we can choose W5 and W/ such ’
that WoWj is the identity matrix. This isn’t
very interesting.

@ But suppose K < D:

D units ‘

» W, maps x to a K-dimensional space, so it’s doing dimensionality
reduction.
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Linear Autoencoders

@ Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of Wy. This is
because X = Wz

o We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

@ The autoencoder can achieve this by setting Wy = U' and
W2 =U.

@ Therefore, the optimal weights for a linear autoencoder are just
the principal components!

X ‘ D units ‘
A
U decoder
Z | Kunits
A
UT encoder
X ‘ D units ‘
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Nonlinear Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

e This manifold is the image of the decoder.

e This is a kind of nonlinear dimensionality reduction.

100 units

100 units
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Nonlinear Autoencoders

o Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D /&3 4s &b QR
B / ; % LI S- &-?' d q zg-el::)auto

0 /& 3 4 5 L7 5 Q B
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup

articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.

Interbank Markets Monetary/Economic

-

Energy Markets

Disasters and
Accidents

L3}

Leading Ecnomlc

.' ’K h Legal/Judicial
Indicators N 2 \(

Government
: Borrowings

Accounts/
Earnings
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Exercise

Recall that the PCA code vector for a data point x is given by
Z = UT(X — f1). Show that the entries of z are uncorrelated.
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Solution

Recall that the PCA code vector for a data point x is given by
z = UT(X — f1). Show that the entries of z are uncorrelated.

Cov(z) = E [(Z - E[z])(z - E[Z])T]

= E[zzT]
=U'E[(x-a)(x-p)']U
=U'SU

-U'QAQ'U

= (I O)A((I))

Which is the top K X K block of A. Matrix A is diagonal —
Uncorrelated features
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Exercise

Consider the following data matrix, representing four samples X; € R%:

— ot N
S = W

e Compute the unit-length principal component directions of X, and
state which one the PCA algorithm would choose if you request
just one principal component.

e Find the best (min reconstruction error) projection of X into a
1-dimensional subspace with the origin of zero.
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