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Matrix Decomposition

We can decompose an integer into its prime factors, e.g.,
12=2x2x3.

e Similarly, matrices can be decomposed into product of other
matrices.

e Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, . . . .

e Here, we focus on Eigendecomposition and SVD

Intro ML (UofT) CSC311-Tut7 2/33



Eigenvector

@ An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v:

Av = v

@ The scalar X is known as the eigenvalue.
o If v is an eigenvector of A, so is any rescaled vector aw.

@ av has the same eigenvalue as v. Thus, we constrain the
eigenvector to be of unit length.
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Compute eigenvalues - characteristic polynomial

e Eigenvalue equation of matrix A:

Av =\
M —Av =0
(M —-Apv=0

o If nonzero solution for v exists, then it must be the case that:

det(A\l —A) =0

e Unpacking the determinant as a function of A , we get a
polynomial, called the characteristic polynomial:

Pa(\) = det(A\ — A) = X" + ¢ 1 A"+ .+ )+ co

e Compute eigenvalues of A — solve P4(A) =0
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Exercise
Consider the matrix:

=l

e What are the eigenvalues and eigenvectors of A?
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Solution

We first need to calculate the eigenvalues,

12—
= 2-2)?—-1=0 = A\ =3X\=1

det(A — AI) =0 —> det [2A 14 —0

Then, we solve (A — \;I)v; = 0 to find eigenvectors:

(A — Alf)Ul =0 = |:_11 _11:| v1 =0

1| normalize 1 1
— v = 1 — V1 = 72 1

Similarly,

1 [~
(A—)\QI)’UQZO —— 'U1:2|:11:|
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Eigendecomposition

e Spectral Theorem - Every symmetric matrix A € R™*™ has a
set of n orthonormal eigenvectors forming a basis. Furthermore,
all eigenvalues are real.

@ Therefore, A can be decomposed to the following form

A=PDpP7!

e P is an orthogonal matrix of the eigenvectors of A, and D is a
diagonal matrix of eigenvalues.
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Eigendecomposition

e Spectral Theorem - Every symmetric matrix A € R™*™ has a
set of n orthonormal eigenvectors forming a basis. Furthermore,
all eigenvalues are real.

@ Therefore, A can be decomposed to the following form

A=PDpP7!

e P is an orthogonal matrix of the eigenvectors of A, and D is a
diagonal matrix of eigenvalues.

Alvy,...,vp] = [Avy, ..., Avy,]
—
= M1, Aoy
Ao 0
= [U1,...,Up) .o
P 0 ... M\
—_————
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Intuitions of Eigendecomposition

e Diagonal matrix allows fast computations of their determinants,
powers and inverses.

e Eigendecomposition transforms a matrix into a diagonal form by
changing the basis.

det(A) = det(PDP™1) = det(P) det(D) det(P)~*
= det(D)

i
=1

A"l =pp 1p!
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Geometric intuitions of eigendecomposition

A€2

ey €
€]
—A—
€1

N

|
t Aopy

52\/'31 D A1p;

@ Top-left to bottom-left: P~! performs a basis change.
@ Bottom-left to bottom-right: D performs a scaling.

@ Bottom-right to top-right: P undoes the basis change.
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Singular Value Decomposition (SVD)

o If A€ R™" is not square, eigendecomposition is undefined.
e SVD is a decomposition of the form A = ULVT.

@ SVD is more general than eigendecomposition. Every real matrix
has a SVD.
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SVD - Terminology

e U and V are orthogonal matrices, and ¥ is a diagonal matrix (not
necessarily square).

e Diagonal entries of ¥ are called singular values of A.

o Columns of U are the left singular vectors, and columns of V are
the right singular vectors.
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SVD and eigendecomposition

SVD can be interpreted in terms of eigendecomposition.

Left singular vectors of A are the eigenvectors of AAT.

Right singular vectors of A are the eigenvectors of AT A

e Nonzero singular values of A are square roots of eigenvalues of
AT A and AAT. AT A and AAT are positive semi-definite (PSD),
thus their eigenvalues are positive.
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Informal Proof

Since B = AAT € R™*™ is symmetric, eigendecomposition holds
B=PDpP™!
Now, assume SVD exists, i.e., A = USV . Therefore,
B=AAT = (uxvH(vx'Uu) =vuzx'U"
Matching those two:
pPpP ' =Usx'UT
Therefore, U = P and ¥ = D2 or o; = \/d;.

A similar approach on C = AT A € R™*" leads to V.
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Exercise

Compute SVD of the matrix:

fry
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Solution
Here, we calculate U and X. First, define B = AAT
B_[s 2 2} g ; _{17 8}
2 3 -2 5 _9 8 17

Then, we can calculate the eigenvalues and eigenvectors (using characteristic

polynomial): Ay =25, s =9 and v; = % [_11} , Uy = % B] Therefore,
B = PDP~! where

We had U = P and ¥ = D3:

Find V for exercise.
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Rank-r approximation

e Given a matrix A, SVD allows us to find its “best” rank-r
approximation A, (r < n).

o Why? store less parameters

o We can write A=UXV ' as A = Sy aiuiviT , Where o; are sorted
from the largest to the smallest.
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Rank-r approximation

@ The rank-r approximation A, is defined as:

,

T

A= E iU ;
i=1

e A, is the best approximation of rank r by many norms, such as
spectral norm.

A
Ay = sup 12212
P el

o It means that ||A — A,||2 < ||A — Bl|2 for any rank r matrix B.
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Rank-r approximation

(a) Original image A. (b) Rank-1 approximation 2(1).(c) Rank-2 approximation 2(2).

(d) Rank-3 approximation A (3).(e) Rank-4 approximation A(4).(f) Rank-5 approximation A(5).
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Maximum Likelihood Estimation (MLE)

e Goal: estimate parameters 6 from observed data {1, -+ ,znN}

e Main idea: We should choose parameters that assign high
probability to the observed data:

= argmax L(0;z1, -+ ,zN)
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Three steps for computing MLE

@ Write down the likelihood objective:
L(9, L1,y ,xN) = HL(@,JZZ)
@ Transform to log likelihood:
N
i=1

@ Compute the critical point:
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Example - categorial distribution

X is a discrete random variable with the following probability mass
function (0 < 6 <1 is an unknown parameter):

X 0 1 2 3
PX) | 20/3 [6/3 | 20—0)/3 | (1—0)/3

o The following 10 independent observations were taken from X:
{3,0,2,1,3,2,1,0,2,1}.
e What is the MLE for 67
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Step 1: Likelihood objective

L(§) = P(X = 3)P(X = 0)P(X = 2)P(X = 1)P(X = 3)
x P(X =2)P(X = 1)P(X = 0)P(X = 2)P(X = 1)
_ (?)2(2)3(2(1; 9) )3((1 ; 9))2
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Step 2: Log likelihood

1(0) = log L(0)
2 1
= 2(log 3 +log ) + 3(log 3 + log 0)

2 2
+ 3(log 3 +log(1 —0)) + 2(log 3 +log(1 —0))
= C + 5(log 6 + log(1 — 0))
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Step 3: critical points

ol
%—0
1 1
G190
—~0=05
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Exercise

Suppose that X1, -+, X, form a random sample from a uniform
distribution on the interval (0, #), where of the parameter 6 > 0 but is
unknown. Find MLE of 6.
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Solution

- Calculate the likelihood:

I(X; e (0,6
L(X1,. ., X0 0) = [] PolX0) = HM
- Calculate the log-likelihood:

zlogHPg( Zlog 0 .0))

If X; ¢ (0,0), then log 0 will be undefined. Therefore, 6 € [max;{X;}, 00)

- What value of § maximizes [(€)? Given that 6 € [max;{X;}, 00), we have

= ZIOg% = —Zlog& = —nlogf

Since log is a monotonic function, increasing 6 will increase log 6 and decrease
1(#). Therefore, to maximize (f), we choose the smallest feasible value of 6,
i.C., 0= maxi{Xi}.
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Bayesian Inference - Philosophy

e Bayesian interprets probability as degrees of beliefs.
o Bayesian treats parameters as random variables.

e Bayesian learning is updating our beliefs (probability distribution)
based on observations.
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Bayesian versus Frequentist

e MLE is the standard frequentist inference method.

o Bayesian and frequentist are the two main approaches in
statistical machine learning. Some of their ideological differences
can be summarized as:

Frequentist Bayesian

Probability is | relative frequency | degree of beliefs

Parameter 6 is | unknown constant | random variable

Han Liu and Larry Wasserman, Statistical Machine Learning, 2014
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The Bayesian approach to machine learning

@ We define a model that expresses qualitative aspects of our
knowledge (eg, forms of distributions, independence assumptions).
The model will have some unknown parameters.

@ We specify a prior probability distribution for these unknown
parameters that expresses our beliefs about which values are more
or less likely, before seeing the data.

© We gather data.

@ We compute the posterior probability distribution for the
parameters, given the observed data.

@ We use this posterior distribution to draw scientific conclusions
and make predictions

Radford M. Neal, Bayesian Methods for Machine Learning, NIPS 2004 tutorial
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Computing the posterior

@ The posterior distribution is computed by the Bayes’ rule:

P(parameter)P(data|parameter)
P(data)

P(parameter|data) =

@ The denominator is just the required normalizing constant. So as
a proportionality, we can write:

posterior o prior X likelihood
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Exercise

@ Suppose you have a Beta(4, 4) prior distribution on the probability
0 that a coin will yield a ‘head’ when spun in a specified manner.

@ The coin is independently spun ten times, and ‘heads’ appear
fewer than 3 times. You are not told how many heads were seen,
only that the number is less than 3.

e Calculate your exact posterior density (up to a proportionality
constant) for 0 and sketch it.
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Solution

@ Prior:
1

B(4,4)

0 ~ Beta(4,4) = prior(f) = 03(1 — 6)3

where B(4,4) is a normalization constant.

@ Number of heads in n trials follows a binomial distribution
Binomial(k;n,0). For n =10, i.e.,

1
P(Heads = k;n = 10,0) = (:) 0k (1 — )10+

Therefore, the Likelihood:
L(less than 3 heads out of 10 samples; §)
2
= P(Heads = k;n = 10,6)

k=0
=(1-60)+10-0(1—0)°+45-6%(1 - 0)®
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Solution - Continue

@ Posterior:
posterior(f) o< L(less than 3 heads out of 10 samples; §) - prior(0)
x [(1=0)'""+10-0(1 —0)°+45-6%(1 —0)%] - 6°(1 — 0)*
=031 -0 4+10-0*°(1 —0)"2 +45-6°(1 — o)1
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