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Matrix Decomposition

We can decompose an integer into its prime factors, e.g.,
12 = 2× 2× 3.

Similarly, matrices can be decomposed into product of other
matrices.

Examples are Eigendecomposition, SVD, Schur decomposition, LU
decomposition, . . . .

Here, we focus on Eigendecomposition and SVD
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Eigenvector

An eigenvector of a square matrix A is a nonzero vector v such
that multiplication by A only changes the scale of v:

Av = λv

The scalar λ is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector αv.

αv has the same eigenvalue as v. Thus, we constrain the
eigenvector to be of unit length.
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Compute eigenvalues - characteristic polynomial

Eigenvalue equation of matrix A:

Av = λv

λv −Av = 0

(λI −A)v = 0

If nonzero solution for v exists, then it must be the case that:

det(λI −A) = 0

Unpacking the determinant as a function of λ , we get a
polynomial, called the characteristic polynomial:

PA(λ) = det(λI −A) = λn + cn−1λ
n−1 + . . .+ c1λ+ c0

Compute eigenvalues of A → solve PA(λ) = 0
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Exercise

Consider the matrix:

A =

[
2 1
1 2

]

What are the eigenvalues and eigenvectors of A?
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Solution

We first need to calculate the eigenvalues,

det(A− λI) = 0 =⇒ det

[
2− λ 1
1 2− λ

]
= 0

=⇒ (2− λ)2 − 1 = 0 =⇒ λ1 = 3, λ2 = 1

Then, we solve (A− λiI)vi = 0 to find eigenvectors:

(A− λ1I)v1 = 0 =⇒
[
−1 1
1 −1

]
v1 = 0

=⇒ v1 =

[
1
1

]
normalize
=⇒ v1 =

1√
2

[
1
1

]
Similarly,

(A− λ2I)v2 = 0 =⇒ v1 =
1√
2

[
−1
1

]
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Eigendecomposition

Spectral Theorem - Every symmetric matrix A ∈ Rn×n has a
set of n orthonormal eigenvectors forming a basis. Furthermore,
all eigenvalues are real.
Therefore, A can be decomposed to the following form

A = PDP−1

P is an orthogonal matrix of the eigenvectors of A, and D is a
diagonal matrix of eigenvalues.

A [v1, . . . , vn]︸ ︷︷ ︸
P

= [Av1, . . . , Avn]

= [λ1v1, . . . , λnvn]

= [v1, . . . , vn]︸ ︷︷ ︸
P

λ1 . . . 0
...

. . .
...

0 . . . λn


︸ ︷︷ ︸

D
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Intuitions of Eigendecomposition

Diagonal matrix allows fast computations of their determinants,
powers and inverses.

Eigendecomposition transforms a matrix into a diagonal form by
changing the basis.

det(A) = det(PDP−1) = det(P ) det(D) det(P )−1

= det(D)

=
n∏

i=1

λi

A−1 = PD−1P−1
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Geometric intuitions of eigendecomposition

Top-left to bottom-left: P−1 performs a basis change.

Bottom-left to bottom-right: D performs a scaling.

Bottom-right to top-right: P undoes the basis change.
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Singular Value Decomposition (SVD)

If A ∈ Rm×n is not square, eigendecomposition is undefined.

SVD is a decomposition of the form A = UΣV T .

SVD is more general than eigendecomposition. Every real matrix
has a SVD.
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SVD - Terminology

U and V are orthogonal matrices, and Σ is a diagonal matrix (not
necessarily square).

Diagonal entries of Σ are called singular values of A.

Columns of U are the left singular vectors, and columns of V are
the right singular vectors.
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SVD and eigendecomposition

SVD can be interpreted in terms of eigendecomposition.

Left singular vectors of A are the eigenvectors of AAT .

Right singular vectors of A are the eigenvectors of ATA

Nonzero singular values of A are square roots of eigenvalues of
ATA and AAT . ATA and AAT are positive semi-definite (PSD),
thus their eigenvalues are positive.
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Informal Proof

Since B = AA⊤ ∈ Rm×m is symmetric, eigendecomposition holds

B = PDP−1

Now, assume SVD exists, i.e., A = UΣV ⊤. Therefore,

B = AA⊤ = (UΣV ⊤)(V Σ⊤U⊤) = UΣΣ⊤U⊤

Matching those two:

PDP−1 = UΣΣ⊤U⊤

Therefore, U = P and Σ ≡ D
1
2 or σi =

√
di.

A similar approach on C = A⊤A ∈ Rn×n leads to V .
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Exercise

Compute SVD of the matrix:

A =

[
3 2 2
2 3 −2

]
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Solution

Here, we calculate U and Σ. First, define B = AA⊤

B =

[
3 2 2
2 3 −2

]3 2
2 3
2 −2

 =

[
17 8
8 17

]

Then, we can calculate the eigenvalues and eigenvectors (using characteristic

polynomial): λ1 = 25, λ2 = 9 and v1 = 1√
2

[
1
−1

]
, v2 = 1√

2

[
1
1

]
. Therefore,

B = PDP−1 where

P =
1√
2

[
1 1
−1 1

]
, D =

[
25 0
0 9

]
We had U = P and Σ ≡ D

1
2 :

Σ =

[
5 0 0
0 3 0

]
Find V for exercise.
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Rank-r approximation

Given a matrix A, SVD allows us to find its “best” rank-r
approximation Ar (r < n).

Why? store less parameters

We can write A = UΣV ⊤ as A =
∑n

i=1 σiuiv
⊤
i , where σi are sorted

from the largest to the smallest.
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Rank-r approximation

The rank-r approximation Ar is defined as:

A =

r∑
i=1

σiuiv
T
i

Ar is the best approximation of rank r by many norms, such as
spectral norm.

∥A∥2 := sup
x

∥Ax∥2
∥x∥2

It means that ∥A−Ar∥2 ≤ ∥A−B∥2 for any rank r matrix B.
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Rank-r approximation

Intro ML (UofT) CSC311-Tut7 18 / 33



Maximum Likelihood Estimation (MLE)

Goal: estimate parameters θ from observed data {x1, · · · , xN}
Main idea: We should choose parameters that assign high
probability to the observed data:

θ̂ = argmax L(θ;x1, · · · , xN )
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Three steps for computing MLE

1 Write down the likelihood objective:

L(θ;x1, · · · , xN ) =

N∏
i=1

L(θ;xi)

2 Transform to log likelihood:

l(θ;x1, · · · , xN ) =

N∑
i=1

logL(θ;xi)

3 Compute the critical point:

∂l

∂θ
= 0
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Example - categorial distribution

X is a discrete random variable with the following probability mass
function (0 ≤ θ ≤ 1 is an unknown parameter):

X 0 1 2 3

P (X) 2θ/3 θ/3 2(1− θ)/3 (1− θ)/3

The following 10 independent observations were taken from X:
{3, 0, 2, 1, 3, 2, 1, 0, 2, 1}.
What is the MLE for θ?
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Step 1: Likelihood objective

L(θ) = P (X = 3)P (X = 0)P (X = 2)P (X = 1)P (X = 3)

× P (X = 2)P (X = 1)P (X = 0)P (X = 2)P (X = 1)

= (
2θ

3
)2(

θ

3
)3(

2(1− θ)

3
)3(

(1− θ)

3
)2
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Step 2: Log likelihood

l(θ) = logL(θ)

= 2(log
2

3
+ log θ) + 3(log

1

3
+ log θ)

+ 3(log
2

3
+ log(1− θ)) + 2(log

2

3
+ log(1− θ))

= C + 5(log θ + log(1− θ))
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Step 3: critical points

∂l

∂θ
= 0

→ 5(
1

θ
− 1

1− θ
) = 0

→ θ̂ = 0.5
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Exercise

Suppose that X1, · · · , Xn form a random sample from a uniform
distribution on the interval (0, θ), where of the parameter θ > 0 but is
unknown. Find MLE of θ.
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Solution

- Calculate the likelihood:

L(X1, . . . , Xn; θ) =
∏
i

Pθ(Xi) =
∏
i

I (Xi ∈ (0, θ))

θ

- Calculate the log-likelihood:

l(θ) = log
∏
i

Pθ(Xi) =
∑
i

log
I (Xi ∈ (0, θ))

θ

If Xi ̸∈ (0, θ), then log 0 will be undefined. Therefore, θ ∈ [maxi{Xi},∞)

- What value of θ maximizes l(θ)? Given that θ ∈ [maxi{Xi},∞), we have

l(θ) =
∑
i

log
1

θ
= −

∑
i

log θ = −n log θ

Since log is a monotonic function, increasing θ will increase log θ and decrease

l(θ). Therefore, to maximize l(θ), we choose the smallest feasible value of θ,

i.e., θ̂ = maxi{Xi}.
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Bayesian Inference - Philosophy

Bayesian interprets probability as degrees of beliefs.

Bayesian treats parameters as random variables.

Bayesian learning is updating our beliefs (probability distribution)
based on observations.
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Bayesian versus Frequentist

MLE is the standard frequentist inference method.

Bayesian and frequentist are the two main approaches in
statistical machine learning. Some of their ideological differences
can be summarized as:

Frequentist Bayesian

Probability is relative frequency degree of beliefs

Parameter θ is unknown constant random variable

Han Liu and Larry Wasserman, Statistical Machine Learning, 2014
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The Bayesian approach to machine learning

1 We define a model that expresses qualitative aspects of our
knowledge (eg, forms of distributions, independence assumptions).
The model will have some unknown parameters.

2 We specify a prior probability distribution for these unknown
parameters that expresses our beliefs about which values are more
or less likely, before seeing the data.

3 We gather data.

4 We compute the posterior probability distribution for the
parameters, given the observed data.

5 We use this posterior distribution to draw scientific conclusions
and make predictions

Radford M. Neal, Bayesian Methods for Machine Learning, NIPS 2004 tutorial
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Computing the posterior

The posterior distribution is computed by the Bayes’ rule:

P (parameter|data) = P (parameter)P (data|parameter)

P (data)

The denominator is just the required normalizing constant. So as
a proportionality, we can write:

posterior ∝ prior × likelihood
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Exercise

Suppose you have a Beta(4, 4) prior distribution on the probability
θ that a coin will yield a ‘head’ when spun in a specified manner.

The coin is independently spun ten times, and ‘heads’ appear
fewer than 3 times. You are not told how many heads were seen,
only that the number is less than 3.

Calculate your exact posterior density (up to a proportionality
constant) for θ and sketch it.
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Solution

Prior:

θ ∼ Beta(4, 4) =⇒ prior(θ) =
1

B(4, 4)
θ3(1− θ)3

where B(4, 4) is a normalization constant.

Number of heads in n trials follows a binomial distribution
Binomial(k;n, θ). For n = 10, i.e.,

P (Heads = k;n = 10, θ) =

(
10

k

)
θk(1− θ)10−k

Therefore, the Likelihood:

L(less than 3 heads out of 10 samples; θ)

=

2∑
k=0

P (Heads = k;n = 10, θ)

= (1− θ)10 + 10 · θ(1− θ)9 + 45 · θ2(1− θ)8
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Solution - Continue

Posterior:

posterior(θ) ∝ L(less than 3 heads out of 10 samples; θ) · prior(θ)
∝

[
(1− θ)10 + 10 · θ(1− θ)9 + 45 · θ2(1− θ)8

]
· θ3(1− θ)3

= θ3(1− θ)13 + 10 · θ4(1− θ)12 + 45 · θ5(1− θ)11
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