CSC 311: Introduction to Machine Learning
 Tutorial - Matrix Decomposition \& Probabilistic Models

TA: Vahid Balazadeh

Instructors: Michael Zhang and Chandra Gummaluru

University of Toronto

Based on slides by Haonan Duan

Matrix Decomposition

- We can decompose an integer into its prime factors, e.g., $12=2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into product of other matrices.
- Examples are Eigendecomposition, SVD, Schur decomposition, LU decomposition,
- Here, we focus on Eigendecomposition and SVD

Eigenvector

- An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A only changes the scale of v :

$$
A v=\lambda v
$$

- The scalar λ is known as the eigenvalue.
- If v is an eigenvector of A, so is any rescaled vector αv.
- αv has the same eigenvalue as v. Thus, we constrain the eigenvector to be of unit length.

Compute eigenvalues - characteristic polynomial

- Eigenvalue equation of matrix A :

$$
\begin{aligned}
A v & =\lambda v \\
\lambda v-A v & =0 \\
(\lambda I-A) v & =0
\end{aligned}
$$

- If nonzero solution for v exists, then it must be the case that:

$$
\operatorname{det}(\lambda I-A)=0
$$

- Unpacking the determinant as a function of λ, we get a polynomial, called the characteristic polynomial:

$$
P_{A}(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\ldots+c_{1} \lambda+c_{0}
$$

- Compute eigenvalues of $A \rightarrow$ solve $P_{A}(\lambda)=0$

Exercise

Consider the matrix:

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

- What are the eigenvalues and eigenvectors of A ?

Solution

We first need to calculate the eigenvalues,

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 & \Longrightarrow \operatorname{det}\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right]=0 \\
& \Longrightarrow(2-\lambda)^{2}-1=0 \Longrightarrow \lambda_{1}=3, \lambda_{2}=1
\end{aligned}
$$

Then, we solve $\left(A-\lambda_{i} I\right) v_{i}=0$ to find eigenvectors:

$$
\begin{aligned}
\left(A-\lambda_{1} I\right) v_{1}=0 & \Longrightarrow\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] v_{1}=0 \\
& \Longrightarrow v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \stackrel{\text { normalize }}{\Longrightarrow} v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Similarly,

$$
\left(A-\lambda_{2} I\right) v_{2}=0 \Longrightarrow v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Eigendecomposition

- Spectral Theorem - Every symmetric matrix $A \in \mathbb{R}^{n \times n}$ has a set of n orthonormal eigenvectors forming a basis. Furthermore, all eigenvalues are real.
- Therefore, A can be decomposed to the following form

$$
A=P D P^{-1}
$$

- P is an orthogonal matrix of the eigenvectors of A, and D is a diagonal matrix of eigenvalues.

Eigendecomposition

- Spectral Theorem - Every symmetric matrix $A \in \mathbb{R}^{n \times n}$ has a set of n orthonormal eigenvectors forming a basis. Furthermore, all eigenvalues are real.
- Therefore, A can be decomposed to the following form

$$
A=P D P^{-1}
$$

- P is an orthogonal matrix of the eigenvectors of A, and D is a diagonal matrix of eigenvalues.

$$
\begin{aligned}
A \underbrace{\left[v_{1}, \ldots, v_{n}\right]}_{P} & =\left[A v_{1}, \ldots, A v_{n}\right] \\
& =\left[\lambda_{1} v_{1}, \ldots, \lambda_{n} v_{n}\right] \\
& =\underbrace{\left[v_{1}, \ldots, v_{n}\right]}_{P} \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right]}_{D}
\end{aligned}
$$

Intuitions of Eigendecomposition

- Diagonal matrix allows fast computations of their determinants, powers and inverses.
- Eigendecomposition transforms a matrix into a diagonal form by changing the basis.

$$
\begin{aligned}
\operatorname{det}(A)=\operatorname{det}\left(P D P^{-1}\right) & =\operatorname{det}(P) \operatorname{det}(D) \operatorname{det}(P)^{-1} \\
& =\operatorname{det}(D) \\
& =\prod_{i=1}^{n} \lambda_{i} \\
A^{-1}= & P D^{-1} P^{-1}
\end{aligned}
$$

Geometric intuitions of eigendecomposition

- Top-left to bottom-left: P^{-1} performs a basis change.
- Bottom-left to bottom-right: D performs a scaling.
- Bottom-right to top-right: P undoes the basis change.

Singular Value Decomposition (SVD)

- If $A \in \mathbb{R}^{m \times n}$ is not square, eigendecomposition is undefined.
- SVD is a decomposition of the form $A=U \Sigma V^{T}$.
- SVD is more general than eigendecomposition. Every real matrix has a SVD.

SVD - Terminology

- U and V are orthogonal matrices, and Σ is a diagonal matrix (not necessarily square).
- Diagonal entries of Σ are called singular values of A.
- Columns of U are the left singular vectors, and columns of V are the right singular vectors.

SVD and eigendecomposition

- SVD can be interpreted in terms of eigendecomposition.
- Left singular vectors of A are the eigenvectors of $A A^{T}$.
- Right singular vectors of A are the eigenvectors of $A^{T} A$
- Nonzero singular values of A are square roots of eigenvalues of $A^{T} A$ and $A A^{T} . A^{T} A$ and $A A^{T}$ are positive semi-definite (PSD), thus their eigenvalues are positive.

Informal Proof

Since $B=A A^{\top} \in \mathbb{R}^{m \times m}$ is symmetric, eigendecomposition holds

$$
B=P D P^{-1}
$$

Now, assume SVD exists, i.e., $A=U \Sigma V^{\top}$. Therefore,

$$
B=A A^{\top}=\left(U \Sigma V^{\top}\right)\left(V \Sigma^{\top} U^{\top}\right)=U \Sigma \Sigma^{\top} U^{\top}
$$

Matching those two:

$$
P D P^{-1}=U \Sigma \Sigma^{\top} U^{\top}
$$

Therefore, $U=P$ and $\Sigma \equiv D^{\frac{1}{2}}$ or $\sigma_{i}=\sqrt{d_{i}}$.
A similar approach on $C=A^{\top} A \in \mathbb{R}^{n \times n}$ leads to V.

Exercise

Compute SVD of the matrix:

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]
$$

Solution

Here, we calculate U and Σ. First, define $B=A A^{\top}$

$$
B=\left[\begin{array}{ccc}
3 & 2 & 2 \\
2 & 3 & -2
\end{array}\right]\left[\begin{array}{cc}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right]=\left[\begin{array}{cc}
17 & 8 \\
8 & 17
\end{array}\right]
$$

Then, we can calculate the eigenvalues and eigenvectors (using characteristic polynomial): $\lambda_{1}=25, \lambda_{2}=9$ and $v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Therefore, $B=P D P^{-1}$ where

$$
P=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
25 & 0 \\
0 & 9
\end{array}\right]
$$

We had $U=P$ and $\Sigma \equiv D^{\frac{1}{2}}$:

$$
\Sigma=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]
$$

Find V for exercise.

Rank-r approximation

- Given a matrix A, SVD allows us to find its "best" rank-r approximation $A_{r}(r<n)$.
- Why? store less parameters
- We can write $A=U \Sigma V^{\top}$ as $A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{\top}$, where σ_{i} are sorted from the largest to the smallest.

Rank-r approximation

- The rank-r approximation A_{r} is defined as:

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

- A_{r} is the best approximation of rank r by many norms, such as spectral norm.

$$
\|A\|_{2}:=\sup _{x} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

- It means that $\left\|A-A_{r}\right\|_{2} \leq\|A-B\|_{2}$ for any rank r matrix B.

Rank-r approximation

(a) Original image \boldsymbol{A}.

(d) Rank-3 approximation $\widehat{\boldsymbol{A}}(3)$.(e) Rank-4 approximation $\widehat{\boldsymbol{A}}(4)$.(f) Rank-5 approximation $\widehat{\boldsymbol{A}}(5)$.

Maximum Likelihood Estimation (MLE)

- Goal: estimate parameters θ from observed data $\left\{x_{1}, \cdots, x_{N}\right\}$
- Main idea: We should choose parameters that assign high probability to the observed data:

$$
\hat{\theta}=\operatorname{argmax} L\left(\theta ; x_{1}, \cdots, x_{N}\right)
$$

Three steps for computing MLE

(1) Write down the likelihood objective:

$$
L\left(\theta ; x_{1}, \cdots, x_{N}\right)=\prod_{i=1}^{N} L\left(\theta ; x_{i}\right)
$$

(2) Transform to log likelihood:

$$
l\left(\theta ; x_{1}, \cdots, x_{N}\right)=\sum_{i=1}^{N} \log L\left(\theta ; x_{i}\right)
$$

(3) Compute the critical point:

$$
\frac{\partial l}{\partial \theta}=0
$$

Example - categorial distribution

\mathbf{X} is a discrete random variable with the following probability mass function ($0 \leq \theta \leq 1$ is an unknown parameter):

\mathbf{X}	0	1	2	3
$P(\mathbf{X})$	$2 \theta / 3$	$\theta / 3$	$2(1-\theta) / 3$	$(1-\theta) / 3$

- The following 10 independent observations were taken from \mathbf{X} : $\{3,0,2,1,3,2,1,0,2,1\}$.
- What is the MLE for θ ?

Step 1: Likelihood objective

$$
\begin{aligned}
L(\theta) & =P(X=3) P(X=0) P(X=2) P(X=1) P(X=3) \\
& \times P(X=2) P(X=1) P(X=0) P(X=2) P(X=1) \\
& =\left(\frac{2 \theta}{3}\right)^{2}\left(\frac{\theta}{3}\right)^{3}\left(\frac{2(1-\theta)}{3}\right)^{3}\left(\frac{(1-\theta)}{3}\right)^{2}
\end{aligned}
$$

Step 2: Log likelihood

$$
\begin{aligned}
l(\theta) & =\log L(\theta) \\
& =2\left(\log \frac{2}{3}+\log \theta\right)+3\left(\log \frac{1}{3}+\log \theta\right) \\
& +3\left(\log \frac{2}{3}+\log (1-\theta)\right)+2\left(\log \frac{2}{3}+\log (1-\theta)\right) \\
& =C+5(\log \theta+\log (1-\theta))
\end{aligned}
$$

Step 3: critical points

$$
\begin{aligned}
& \frac{\partial l}{\partial \theta}=0 \\
\rightarrow & 5\left(\frac{1}{\theta}-\frac{1}{1-\theta}\right)=0 \\
\rightarrow & \hat{\theta}=0.5
\end{aligned}
$$

Exercise

Suppose that X_{1}, \cdots, X_{n} form a random sample from a uniform distribution on the interval $(0, \theta)$, where of the parameter $\theta>0$ but is unknown. Find MLE of θ.

Solution

- Calculate the likelihood:

$$
L\left(X_{1}, \ldots, X_{n} ; \theta\right)=\prod_{i} P_{\theta}\left(X_{i}\right)=\prod_{i} \frac{\mathbb{I}\left(X_{i} \in(0, \theta)\right)}{\theta}
$$

- Calculate the log-likelihood:

$$
l(\theta)=\log \prod_{i} P_{\theta}\left(X_{i}\right)=\sum_{i} \log \frac{\mathbb{I}\left(X_{i} \in(0, \theta)\right)}{\theta}
$$

If $X_{i} \notin(0, \theta)$, then $\log 0$ will be undefined. Therefore, $\theta \in\left[\max _{i}\left\{X_{i}\right\}, \infty\right)$

- What value of θ maximizes $l(\theta)$? Given that $\theta \in\left[\max _{i}\left\{X_{i}\right\}, \infty\right)$, we have

$$
l(\theta)=\sum_{i} \log \frac{1}{\theta}=-\sum_{i} \log \theta=-n \log \theta
$$

Since \log is a monotonic function, increasing θ will increase $\log \theta$ and decrease $l(\theta)$. Therefore, to maximize $l(\theta)$, we choose the smallest feasible value of θ, i.e., $\hat{\theta}=\max _{i}\left\{X_{i}\right\}$.

Bayesian Inference - Philosophy

- Bayesian interprets probability as degrees of beliefs.
- Bayesian treats parameters as random variables.
- Bayesian learning is updating our beliefs (probability distribution) based on observations.

Bayesian versus Frequentist

- MLE is the standard frequentist inference method.
- Bayesian and frequentist are the two main approaches in statistical machine learning. Some of their ideological differences can be summarized as:

	Frequentist	Bayesian
Probability is	relative frequency	degree of beliefs
Parameter θ is	unknown constant	random variable

Han Liu and Larry Wasserman, Statistical Machine Learning, 2014

The Bayesian approach to machine learning

(1) We define a model that expresses qualitative aspects of our knowledge (eg, forms of distributions, independence assumptions). The model will have some unknown parameters.
(2) We specify a prior probability distribution for these unknown parameters that expresses our beliefs about which values are more or less likely, before seeing the data.
(3) We gather data.
(1) We compute the posterior probability distribution for the parameters, given the observed data.
© We use this posterior distribution to draw scientific conclusions and make predictions

Computing the posterior

- The posterior distribution is computed by the Bayes' rule:

$$
P(\text { parameter } \mid \text { data })=\frac{P(\text { parameter }) P(\text { data } \mid \text { parameter })}{P(\text { data })}
$$

- The denominator is just the required normalizing constant. So as a proportionality, we can write:

$$
\text { posterior } \propto \text { prior } \times \text { likelihood }
$$

Exercise

- Suppose you have a $\operatorname{Beta}(4,4)$ prior distribution on the probability θ that a coin will yield a 'head' when spun in a specified manner.
- The coin is independently spun ten times, and 'heads' appear fewer than 3 times. You are not told how many heads were seen, only that the number is less than 3.
- Calculate your exact posterior density (up to a proportionality constant) for θ and sketch it.

Solution

- Prior:

$$
\theta \sim \operatorname{Beta}(4,4) \Longrightarrow \operatorname{prior}(\theta)=\frac{1}{B(4,4)} \theta^{3}(1-\theta)^{3}
$$

where $B(4,4)$ is a normalization constant.

- Number of heads in n trials follows a binomial distribution $\operatorname{Binomial}(k ; n, \theta)$. For $n=10$, i.e.,

$$
P(\text { Heads }=k ; n=10, \theta)=\binom{10}{k} \theta^{k}(1-\theta)^{10-k}
$$

Therefore, the Likelihood:
L (less than 3 heads out of 10 samples; θ)

$$
\begin{aligned}
& =\sum_{k=0}^{2} P(\text { Heads }=k ; n=10, \theta) \\
& =(1-\theta)^{10}+10 \cdot \theta(1-\theta)^{9}+45 \cdot \theta^{2}(1-\theta)^{8}
\end{aligned}
$$

Solution - Continue

- Posterior:
$\operatorname{posterior}(\theta) \propto L($ less than 3 heads out of 10 samples; $\theta) \cdot \operatorname{prior}(\theta)$

$$
\begin{aligned}
& \propto\left[(1-\theta)^{10}+10 \cdot \theta(1-\theta)^{9}+45 \cdot \theta^{2}(1-\theta)^{8}\right] \cdot \theta^{3}(1-\theta)^{3} \\
& =\theta^{3}(1-\theta)^{13}+10 \cdot \theta^{4}(1-\theta)^{12}+45 \cdot \theta^{5}(1-\theta)^{11}
\end{aligned}
$$

