CSC 311: Introduction to Machine Learning Final Exam Review

University of Toronto

Ensemble Methods

Question: Recall that in bagging, we compute an average of the predictions $y_{\text {avg }}=\frac{1}{m} \sum_{i=1}^{m} y_{i}$. Recall that these predictions are not fully independent, i.e., they are correlated because their training sets come from the same underlying dataset. Suppose $\operatorname{Var}\left[y_{i}\right]=\sigma^{2}$ and the correlation between y_{i} and y_{j} is ρ for $i \neq j$. Calculate the variance $\operatorname{Var}\left[y_{\mathrm{avg}}\right]$.

Ensemble Methods

First, note that

$$
\begin{aligned}
& \operatorname{Var}\left(y_{\text {avg }}\right)=\operatorname{Var}\left(\frac{1}{m} \sum_{i=1}^{m} y_{i}\right) \\
& \frac{1}{m^{2}} \operatorname{Var}\left(\sum_{i=1}^{m} y_{i}\right)=\frac{1}{m^{2}} \operatorname{Cov}\left(\sum_{i=1}^{m} y_{i}, \sum_{i=1}^{m} y_{i}\right)
\end{aligned}
$$

Now, since Covariance is a linear operation, we'll have

$$
\begin{aligned}
\operatorname{Cov}\left(\sum_{i=1}^{m} y_{i}, \sum_{j=1}^{m} y_{j}\right)=\sum_{i=1}^{m} \operatorname{Cov}\left(y_{i}, \sum_{j=1}^{m} y_{j}\right) & =\sum_{i=1}^{m} \sum_{j=1}^{m} \operatorname{Cov}\left(y_{i}, y_{j}\right) \\
& =\sum_{i=1}^{m} \operatorname{Var}\left(y_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(y_{i}, y_{j}\right) \\
& =m \sigma^{2}+m(m-1) \rho \sigma^{2}
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}\left(y_{\text {avg }}\right)=\frac{1}{m^{2}}\left[m \sigma^{2}+m(m-1) \rho \sigma^{2}\right]=\frac{1}{m} \sigma^{2}+\frac{m-1}{m} \rho \sigma^{2}
$$

Ensemble Methods

Question: Suppose your classifier achieves poor accuracy on both the training and test sets. Does bagging improve the performance? Justify your answer.

Ensemble Methods

Question: Suppose your classifier achieves poor accuracy on both the training and test sets. Does bagging improve the performance? Justify your answer.

- The model is underfitting, and has a high bias.
- Bagging reduces variance but does not change the bias.
- Therefore, We wouldn't get a performance boost using bagging.

Probabilistic Models: Naive Bayes

Question: True or False: Naive Bayes assumes that all features are independent.

Probabilistic Models: Naive Bayes

Question: True or False: Naive Bayes assumes that all features are independent.

False. Naive Bayes assumes that the input features x_{i} are conditionally independent give the class c :

$$
p\left(c, x_{1}, \ldots, x_{D}\right)=p(c) p\left(x_{1} \mid c\right) \cdots p\left(x_{D} \mid c\right)
$$

Probabilistic Models: Naive Bayes

Question: Which of the following diagrams could be a visualization of a Naive Bayes classifier? Select all that apply.
(a)

(c)

(b)

(d)

Probabilistic Models: Naive Bayes

Question: Which of the following diagrams could be a visualization of a Naive Bayes classifier? Select all that apply.
(a)

(c)

(b)

(d)

Answer: A, D

Principal Component Analysis (PCA)

Recall that the PCA code vector for a data point \mathbf{x} is given by $\mathbf{z}=\mathbf{U}^{\top}(\mathbf{x}-\hat{\boldsymbol{\mu}})$. Show that the entries of \mathbf{z} are uncorrelated.

Principal Component Analysis (PCA)

Recall that the PCA code vector for a data point \mathbf{x} is given by $\mathbf{z}=\mathbf{U}^{\top}(\mathbf{x}-\hat{\boldsymbol{\mu}})$. Show that the entries of \mathbf{z} are uncorrelated. Answer:

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{z}) & =\mathbb{E}\left[(\mathbf{z}-\mathbb{E}[\mathbf{z}])(\mathbf{z}-\mathbb{E}[\mathbf{z}])^{\top}\right] \\
& =\mathbb{E}\left[\mathbf{z z}^{\top}\right] \\
& =\mathbf{U}^{\top} \mathbb{E}\left[(\mathbf{x}-\hat{\boldsymbol{\mu}})(\mathbf{x}-\hat{\boldsymbol{\mu}})^{\top}\right] \mathbf{U} \\
& =\mathbf{U}^{\top} \hat{\mathbf{\Sigma}} \mathbf{U} \\
& =\mathbf{U}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{U} \\
& =\left(\begin{array}{ll}
\mathbf{I} & 0
\end{array}\right) \mathbf{\Lambda}\binom{\mathbf{I}}{0}
\end{aligned}
$$

Which is the top $K \times K$ block of $\boldsymbol{\Lambda}$. Matrix $\boldsymbol{\Lambda}$ is diagonal \Longrightarrow Uncorrelated features

Principal Component Analysis (PCA)

Consider the following data matrix, representing four samples $X_{i} \in \mathbb{R}^{2}$:

$$
\mathbf{X}=\left(\begin{array}{ll}
4 & 1 \\
2 & 3 \\
5 & 4 \\
1 & 0
\end{array}\right)
$$

1. Compute the unit-length principal component directions of \mathbf{X}, and state which one the PCA algorithm would choose if you request just one principal component.
2. Find the best (min reconstruction error) projection of \mathbf{X} into a 1-dimensional subspace with the origin of zero.

Principal Component Analysis (PCA)

1. We first center the data matrix, yielding

$$
\hat{X}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
2 & 2 \\
-2 & -2
\end{array}\right)
$$

We then calculate the empirical covariance

$$
\frac{1}{4} \hat{X}^{\top} \hat{X}=\frac{1}{4}\left(\begin{array}{cc}
10 & 6 \\
6 & 10
\end{array}\right)
$$

The eigenvectors are $\left(\begin{array}{ll}1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)^{\top}$ with eigenvalue 16 and $(1 / \sqrt{2}-1 / \sqrt{2})^{\top}$ with eigenvalue 4 . The former eigenvector is chosen.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

2. Recall that we showed the following equivalence in the lecture

$$
\min _{\mathbf{U}} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\hat{\mathbf{x}}^{(i)}\right\|^{2} \equiv \max _{\mathbf{U}} \frac{1}{N} \sum_{i=1}^{N}\left\|\hat{\mathbf{x}}^{(i)}-\hat{\mu}\right\|^{2}
$$

However, in the proof of the equivalence, we didn't use any property of $\hat{\mu}$ being the center of the data. Therefore, we can consider $\hat{\mu}=0$ for this problem. The only difference is that we won't center the data \mathbf{X} :

$$
\mathbf{X}^{\top} \mathbf{X}=\left(\begin{array}{ll}
46 & 30 \\
30 & 26
\end{array}\right)
$$

The eigenvectors corresponding to the largest eigenvalue is $\left(\begin{array}{ll}\frac{1+\sqrt{10}}{3} & 1\end{array}\right)^{\top}$.

Principal Component Analysis (PCA)

Probabilistic Models

The Laplace distribution, parameterized by μ and β, is defined as follows:

$$
\operatorname{Laplace}(w ; \mu, \beta)=\frac{1}{2 \beta} \exp \left(-\frac{|w-\mu|}{\beta}\right)
$$

We have a labeled training set $\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$ and the goal is to predict target t from covariates x. We assume a linear Gaussian model for the target variable, i.e.,

$$
t \mid \mathbf{w} \sim \mathcal{N}\left(t ; \mathbf{w}^{\top} \mathbf{x}, \sigma^{2}\right)
$$

We assume the following prior over the weights \mathbf{w} :

$$
w_{j} \sim \text { Laplace }(0, \beta)
$$

The Gaussian PDF is:

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Probabilistic Models

1. Give the cost function you would minimize to find the MAP estimate of \mathbf{w}.
To find the MAP estimation, we first write down the posterior distribution

$$
\begin{aligned}
\operatorname{posterior}(\mathbf{w} \mid \mathcal{D}) & \propto P(\mathcal{D} \mid \mathbf{w}) \cdot \operatorname{prior}(\mathbf{w}) \\
& \propto \prod_{i=1}^{N} P\left(t^{(i)} \mid x^{(i)} ; \mathbf{w}\right) \cdot \prod_{j} \exp \left(-\frac{\left|w_{j}\right|}{\beta}\right) \\
& \propto \prod_{i=1}^{N} \exp \left(-\frac{\left(t^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2}}{2 \sigma^{2}}\right) \cdot \prod_{j} \exp \left(-\frac{\left|w_{j}\right|}{\beta}\right)
\end{aligned}
$$

The MAP estimator is as follows:

$$
\begin{aligned}
\mathbf{w}_{\mathrm{MAP}} & =\underset{\mathbf{w}}{\operatorname{argmax}} \log \operatorname{posterior}(\mathbf{w} \mid \mathcal{D}) \\
& =\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{\beta} \sum_{j}\left|w_{j}\right|+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(t^{(i)}-\mathbf{w}^{\top} \mathbf{x}^{(i)}\right)^{2}
\end{aligned}
$$

Probabilistic Models: Naïve Bayes

Question:

- Consider the following problem, in which we have two classes: \{Tainted, Clean\}, and three covariate features: $\left(a_{1}, a_{2}, a_{3}\right)$.
- These attributes are also binary variables: $a_{1} \in\{$ on, off $\}$, $a_{2} \in\{$ blue, red $\}, a_{3} \in\{$ light, heavy $\}$.
- We are given a training set as follows:

1. Tainted: (on, blue, light) (off, red, light) (on, red, heavy)
2. Clean: (off, red, heavy) (off, blue, light) (on, blue, heavy)
(A) Manually construct Naïve Bayes Classifier based on the above training data. Compute the following probability tables:
a The class prior probability
b The class conditional probabilities of each attribute.

Probabilistic Models: Naïve Bayes

(a) Class prior probability:

- $p(c=$ Tainted $)=3 / 6=1 / 2$,
- $p(c=$ Clean $)=1 / 2$

Probabilistic Models: Naïve Bayes

(a) Class prior probability:

- $p(c=$ Tainted $)=3 / 6=1 / 2$,
- $p(c=$ Clean $)=1 / 2$
(b) The class conditional distributions:
- $p\left(a_{1}=\right.$ on $\mid c=$ Tainted $)=2 / 3, p\left(a_{1}=\right.$ off $\mid c=$ Tainted $)=1 / 3$

Probabilistic Models: Naïve Bayes

(a) Class prior probability:

- $p(c=$ Tainted $)=3 / 6=1 / 2$,
- $p(c=$ Clean $)=1 / 2$
(b) The class conditional distributions:
- $p\left(a_{1}=\right.$ on $\mid c=$ Tainted $)=2 / 3, p\left(a_{1}=\right.$ off $\mid c=$ Tainted $)=1 / 3$
- $p\left(a_{2}=\right.$ blue $\mid c=$ Tainted $)=1 / 3, p\left(a_{2}=\right.$ red $\mid c=$ Tainted $)=2 / 3$
- $p\left(a_{3}=\right.$ light $\mid c=$ Tainted $)=2 / 3, p\left(a_{3}=\right.$ heavy $\mid c=$ Tainted $)=1 / 3$
- $p\left(a_{1}=\right.$ on $\mid c=$ Clean $)=1 / 3, p\left(a_{1}=\right.$ off $\mid c=$ Clean $)=2 / 3$
- $p\left(a_{2}=\right.$ blue $\mid c=$ Clean $)=2 / 3, p\left(a_{2}=\operatorname{red} \mid c=\right.$ Clean $)=1 / 3$
- $p\left(a_{3}=\operatorname{light} \mid c=\right.$ Clean $)=1 / 3, p\left(a_{3}=\right.$ heavy $\mid c=$ Clean $)=2 / 3$

Probabilistic Models: Naïve Bayes

(B) Classify a new example (on, red, light) using the classifier you built above. You need to compute the posterior probability (up to a constant) of class given this example.

Probabilistic Models: Naïve Bayes

(B) Classify a new example (on, red, light) using the classifier you built above. You need to compute the posterior probability (up to a constant) of class given this example.

Answer: To classify $\mathbf{x}=$ (on, red, light), we have:

$$
p(c \mid \mathbf{x})=\frac{p(c) p(x \mid c)}{p(c=\text { Tainted }) p(x \mid c=\text { Tainted })+p(c=\text { Clean }) p(x \mid c=\text { Clean })}
$$

Computing each term:

$$
\begin{aligned}
p(c=T) p(x \mid c=T) & =p(c=T) p\left(a_{1}=o n \mid c=T\right) p\left(a_{2}=\operatorname{red} \mid c=T\right) \\
& p\left(a_{3}=\operatorname{light} \mid c=T\right) \\
& =\frac{1}{2} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \\
& =\frac{8}{54}
\end{aligned}
$$

Probabilistic Models: Naïve Bayes

(B) Classify a new example (on, red, light) using the classi er you built above. You need to compute the posterior probability (up to a constant) of class given this example.

Answer: Similarly,

$$
p(c=\text { Clean }) p(x \mid c=\text { Clean })=\frac{1}{2} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}=\frac{1}{54}
$$

Therefore, $p(c=$ Tainted $\mid \mathbf{x})=8 / 9$ and $p(c=$ Clean $\mid \mathbf{x})=1 / 9$. According to Naïve Bayes classifier this example should be classified as Tainted.

