
CSC 311: Introduction to Machine Learning
Final Exam Review

University of Toronto
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Ensemble Methods

Question: Recall that in bagging, we compute an average of the
predictions yavg =

1
m

∑m
i=1 yi. Recall that these predictions are not

fully independent, i.e., they are correlated because their training sets
come from the same underlying dataset. Suppose Var[yi] = σ2 and the
correlation between yi and yj is ρ for i ̸= j. Calculate the variance
Var[yavg].

2 / 18



Ensemble Methods

First, note that

Var(yavg) = Var(
1

m

m∑
i=1

yi)

1

m2
Var(

m∑
i=1

yi) =
1

m2
Cov(

m∑
i=1

yi,

m∑
i=1

yi)

Now, since Covariance is a linear operation, we’ll have

Cov(

m∑
i=1

yi,

m∑
j=1

yj) =

m∑
i=1

Cov(yi,

m∑
j=1

yj) =

m∑
i=1

m∑
j=1

Cov(yi, yj)

=

m∑
i=1

Var(yi) +
∑
i̸=j

Cov(yi, yj)

= mσ2 +m(m− 1)ρσ2

Therefore,

Var(yavg) =
1

m2

[
mσ2 +m(m− 1)ρσ2

]
=

1

m
σ2 +

m− 1

m
ρσ2
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Ensemble Methods

Question: Suppose your classifier achieves poor accuracy on both the
training and test sets. Does bagging improve the performance? Justify
your answer.

The model is underfitting, and has a high bias.

Bagging reduces variance but does not change the bias.

Therefore, We wouldn’t get a performance boost using bagging.
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Probabilistic Models: Naive Bayes

Question: True or False: Naive Bayes assumes that all features are
independent.

False. Naive Bayes assumes that the input features xi are
conditionally independent give the class c:

p(c, x1, . . . , xD) = p(c)p(x1|c) · · · p(xD|c)
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Probabilistic Models: Naive Bayes

Question: Which of the following diagrams could be a visualization of
a Naive Bayes classifier? Select all that apply.

(a) (b)

(c) (d)

Answer: A, D
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Principal Component Analysis (PCA)

Recall that the PCA code vector for a data point x is given by
z = U⊤(x− µ̂). Show that the entries of z are uncorrelated.

Answer:

Cov(z) = E
[
(z− E[z])(z− E[z])⊤

]
= E

[
zz⊤

]
= U⊤E

[
(x− µ̂)(x− µ̂)⊤

]
U

= U⊤Σ̂U

= U⊤QΛQ⊤U

=
(
I 0

)
Λ

(
I
0

)
Which is the top K ×K block of Λ. Matrix Λ is diagonal =⇒
Uncorrelated features
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Principal Component Analysis (PCA)

Consider the following data matrix, representing four samples Xi ∈ R2:

X =


4 1
2 3
5 4
1 0


1. Compute the unit-length principal component directions of X, and

state which one the PCA algorithm would choose if you request
just one principal component.

2. Find the best (min reconstruction error) projection of X into a
1-dimensional subspace with the origin of zero.
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Principal Component Analysis (PCA)

1. We first center the data matrix, yielding

X̂ =


1 −1
−1 1
2 2
−2 −2


We then calculate the empirical covariance

1

4
X̂⊤X̂ =

1

4

(
10 6
6 10

)
The eigenvectors are

(
1/

√
2 1/

√
2
)⊤

with eigenvalue 16 and(
1/
√
2 −1/

√
2
)⊤

with eigenvalue 4. The former eigenvector is chosen.
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

2. Recall that we showed the following equivalence in the lecture

min
U

1

N

N∑
i=1

∥x(i) − x̂(i)∥2 ≡ max
U

1

N

N∑
i=1

∥x̂(i) − µ̂∥2

However, in the proof of the equivalence, we didn’t use any property of µ̂
being the center of the data. Therefore, we can consider µ̂ = 0 for this
problem. The only difference is that we won’t center the data X:

X⊤X =

(
46 30
30 26

)

The eigenvectors corresponding to the largest eigenvalue is
(

1+
√
10

3 1
)⊤

.
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Principal Component Analysis (PCA)
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Probabilistic Models

The Laplace distribution, parameterized by µ and β, is defined as
follows:

Laplace(w;µ, β) =
1

2β
exp

(
−|w − µ|

β

)
We have a labeled training set D = {(x(i), t(i))}Ni=1 and the goal is to
predict target t from covariates x. We assume a linear Gaussian model
for the target variable, i.e.,

t|w ∼ N (t;w⊤x, σ2)

We assume the following prior over the weights w:

wj ∼ Laplace(0, β)

The Gaussian PDF is:

N (x;µ, σ2) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
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Probabilistic Models

1. Give the cost function you would minimize to find the MAP
estimate of w.

To find the MAP estimation, we first write down the posterior distribution

posterior(w|D) ∝ P (D|w) · prior(w)

∝
N∏
i=1

P (t(i)|x(i);w) ·
∏
j

exp

(
−|wj |

β

)

∝
N∏
i=1

exp

(
− (t(i) −w⊤x(i))2

2σ2

)
·
∏
j

exp

(
−|wj |

β

)
The MAP estimator is as follows:

wMAP = argmax
w

log posterior(w|D)

= argmin
w

1

β

∑
j

|wj |+
1

2σ2

N∑
i=1

(
t(i) −w⊤x(i)

)2
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Probabilistic Models: Näıve Bayes

Question:

Consider the following problem, in which we have two classes:
{Tainted,Clean}, and three covariate features: (a1, a2, a3).

These attributes are also binary variables: a1 ∈ {on, off},
a2 ∈ {blue, red}, a3 ∈ {light, heavy}.
We are given a training set as follows:

1. Tainted: (on,blue, light) (off, red, light) (on, red,heavy)
2. Clean: (off, red,heavy) (off,blue, light) (on,blue,heavy)

(A) Manually construct Näıve Bayes Classifier based on the above
training data. Compute the following probability tables:

a The class prior probability

b The class conditional probabilities of each attribute.
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Probabilistic Models: Näıve Bayes

(a) Class prior probability:

p(c = Tainted) = 3/6 = 1/2,

p(c = Clean) = 1/2

(b) The class conditional distributions:

p(a1 = on|c = Tainted) = 2/3, p(a1 = off|c = Tainted) = 1/3

p(a2 = blue|c = Tainted) = 1/3, p(a2 = red|c = Tainted) = 2/3

p(a3 = light|c = Tainted) = 2/3, p(a3 = heavy|c = Tainted) = 1/3

p(a1 = on|c = Clean) = 1/3, p(a1 = off|c = Clean) = 2/3

p(a2 = blue|c = Clean) = 2/3, p(a2 = red|c = Clean) = 1/3

p(a3 = light|c = Clean) = 1/3, p(a3 = heavy|c = Clean) = 2/3
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Probabilistic Models: Näıve Bayes

(B) Classify a new example (on, red, light) using the classifier you built
above. You need to compute the posterior probability (up to a
constant) of class given this example.

Answer: To classify x = (on, red, light), we have:

p(c|x) = p(c)p(x|c)
p(c = Tainted)p(x|c = Tainted) + p(c = Clean)p(x|c = Clean)

Computing each term:

p(c = T )p(x|c = T ) = p(c = T )p(a1 = on|c = T )p(a2 = red|c = T )

p(a3 = light|c = T )

=
1

2
× 2

3
× 2

3
× 2

3

=
8

54
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Probabilistic Models: Näıve Bayes

(B) Classify a new example (on, red, light) using the classi
er you built above. You need to compute the posterior probability (up
to a constant) of class given this example.

Answer: Similarly,

p(c = Clean)p(x|c = Clean) =
1

2
× 1

3
× 1

3
× 1

3
=

1

54

Therefore, p(c = Tainted|x) = 8/9 and p(c = Clean|x) = 1/9. According to

Näıve Bayes classifier this example should be classified as Tainted.
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