Gaussians

CSC311, Winter 2023

- 1. We draw 3 points from a Multivariate Gaussian (1,0), (0,1), and (2,2). Find the MLE for μ and Σ .
- 2. (a) True or False
 i) If X₁ and X₂ are both normally distributed and independent, then (X₁, X₂) must have multivariate normal distribution.
 ii) If (X₁, X₂) has multivariate normal distribution, then X₁ and X₂ are independent.
 - (b) Affine transformation $X = (X_1, X_2, ..., X_n)^T$ is an *n*-dimensional random vector which has multivariate normal distribution. If $X \sim N(\mu, \Sigma)$ and Y = BX + c is an affine transformation of X, where c is a constant $m \times 1$ vector and B is a constant $m \times n$ matrix, what is the mean and covariance of Y?
- 3. We are given a 2-dimensional multivariate Gaussian random variable Z, with mean $\mu = 0$ and covariance $\Sigma = \mathbf{I}$. Find the covariance matrix of a multivariate Gaussian such that the axes x_1 and x_2 of the isocontours of the density are elliptically shaped with major/minor axis lengths in a 4:3 ratio, and the axes are rotated 45 degrees counterclockwise.¹

¹Adapted from UC Berkeley problems