
Lecture 3: Notes on Linear regression

Notes by Roger Grosse

1 Introduction

Let’s jump right in and look at our first machine learning algorithm, linear
regression. In regression, we are interested in predicting a scalar-valued
target, such as the price of a stock. By linear, we mean that the target must
be predicted as a linear function of the inputs. This is a kind of supervised
learning algorithm; recall that, in supervised learning, we have a collection
of training examples labeled with the correct outputs.

Regression is an important problem in its own right. But today’s dis-
cussion will also highlight a number of themes which will recur throughout
the course:

• Formulating a machine learning task mathematically as an optimiza-
tion problem.

• Thinking about the data points and the model parameters as vectors.

• Solving the optimization problem using two different strategies: deriv-
ing a closed-form solution, and applying gradient descent. These two
strategies are how we will derive nearly all of the learning algorithms
in this course.

• Writing the algorithm in terms of linear algebra, so that we can think
about it more easily and implement it efficiently in a high-level pro-
gramming language.

• Making a linear algorithm more powerful using basis functions, or
features.

• Analyzing the generalization performance of an algorithm, and in par-
ticular the problems of overfitting and underfitting.

1.1 Learning goals

• Know what objective function is used in linear regression, and how it
is motivated.

• Derive both the closed-form solution and the gradient descent updates
for linear regression.

• Write both solutions in terms of matrix and vector operations.

• Be able to implement both solution methods in Python.

1



Figure 1: Three possible hypotheses for a linear regression model, shown in
data space and weight space.

• Know how linear regression can learn nonlinear functions using feature
maps.

• What is meant by generalization, overfitting, and underfitting? How
can we measure generalization performance in practice?

2 Problem setup

In order to formulate a learning problem mathematically, we need to define
two things: a model and a loss function. The model, or architecture
defines the set of allowable hypotheses, or functions that compute predic-
tions from the inputs. In the case of linear regression, the model simply
consists of linear functions. Recall that a linear function of D inputs is
parameterized in terms of D coefficients, which we’ll call the weights, and
an intercept term, which we’ll call the bias. Mathematically, this is written
as:

y =
∑
j

wjxj + b. (1)

Figure 1 shows two ways to visualize linear models. In this case, the data are
one-dimensional, so the model reduces to simply y = wx+ b. On one side,
we have the data space, or input space, where t is plotted as a function
of x. Three different possible linear fits are shown. On the other side, we
have weight space, where the corresponding pairs (w, b) are plotted. You should study these figures and

try to understand how the lines in
the left figure map onto the X’s on
the right figure. Think back to
middle school. Hint: w is the slope
of the line, and b is the y-intercept.

Clearly, some of these linear fits are better than others. In order to
quantify how good the fit is, we define a loss function. This is a function
L(y, t) which says how far off the prediction y is from the target t. In linear
regression, we use squared error, defined as

L(y, t) =
1

2
(y − t)2. (2)

This is small when y and t are close together, and large when they are far
apart. Why is there the factor of 1/2 in

front? It just makes the
calculations convenient.

In general, the value y − t is known as the residual, and we’d like
the residuals to be close to zero.

When we combine our model and loss function, we get an optimization
problem, where we are trying to minimize a cost function with respect
to the model parameters (i.e. the weights and bias). The cost function is
simply the loss, averaged over all the training examples. When we plug in

2



Figure 2: Left: three hypotheses for a regression dataset. Middle: Contour
plot of least-squares cost function for the regression problem. Colors of the
points match the hypotheses. Right: Surface plot matching the contour
plot. Surface plots are usually hard to interpret, so we won’t look at them
very often.

the model definition (Eqn. 1), we get the following cost function:

J (w1, . . . , wD, b) =
1

N

N∑
i=1

L(y(i), t(i)) (3)

=
1

2N

N∑
i=1

(
y(i) − t(i)

)2
(4)

=
1

2N

N∑
i=1

∑
j

wjx
(i)
j + b− t(i)

2

(5)

Our goal is to choose w1, . . . , wD and b to minimize J . Note the difference
between the loss function and the cost function. The loss is a function of the
predictions and targets, while the cost is a function of the model parameters.

The distinction between loss
functions and cost functions will
become clearer in a later lecture,
when the cost function is
augmented to include more than
just the loss — it will also include
a term called a regularizer which
encourages simpler hypotheses.

The cost function is visualized in Figure 2.

3 Solving the optimization problem

In order to solve the optimization problem, we’ll need the concept of partial
derivatives. If you haven’t seen these before, then you should go learn about
them, on Khan Academy.1 Just as a quick recap, suppose f is a function of
x1, . . . , xD. Then the partial derivative ∂f/∂xi says in what way the value
of f changes if you increase xi by a small amount, while holding the rest
of the arguments fixed. We can evaluate partial derivatives using the tools
of single-variable calculus: to compute ∂f/∂xi simply compute the (single-
variable) derivative with respect to xi, treating the rest of the arguments as
constants.

Whenever we want to solve an optimization problem, a good place to
start is to compute the partial derivatives of the cost function. Let’s do
that in the case of linear regression. Applying the chain rule for derivatives

1https://www.khanacademy.org/math/calculus-home/multivariable-calculus/

multivariable-derivatives#partial-derivatives

3

https://www.khanacademy.org/math/calculus-home/multivariable-calculus/multivariable-derivatives#partial-derivatives
https://www.khanacademy.org/math/calculus-home/multivariable-calculus/multivariable-derivatives#partial-derivatives


to Eqn. 5, we get

∂J
∂wj

=
1

N

N∑
i=1

x
(i)
j

∑
j′

wj′x
(i)
j′ + b− t(i)

 (6)

∂J
∂b

=
1

N

N∑
i=1

∑
j′

wj′x
(i)
j′ + b− t(i)

 . (7)

It’s possible to simplify this a bit — notice that part of the term in paren-
theses is simply the prediction. It’s always a good idea to try to

simplify equations by finding
familiar terms.

The partial derivatives can be rewritten
as:

∂J
∂wj

=
1

N

N∑
i=1

x
(i)
j (y(i) − t(i)) (8)

∂J
∂b

=
1

N

N∑
i=1

y(i) − t(i). (9)

Now, it’s good practice to do a sanity check of the derivatives. For instance,
suppose we overestimated all of the targets. Then we should be able to
improve the predictions by decreasing the bias, while holding all of the
weights fixed. Does this work out mathematically? Well, the residuals y(i)−
t(i) will be positive, so based on Eqn. 9, ∂J /∂b will be positive. This means
increasing the bias will increase J , and deceasing the bias will decrease J
— which matches up with our expectation. So Eqn. 9 is plausible. Try to
come up with a similar sanity check for ∂J /∂wj . Later in this course, we’ll

introduce a more powerful way to
test partial derivative
computations, but you should still
get used to doing sanity checks on
all your computations!

Now how do we use these partial derivatives? Let’s discuss the two
methods which we will use throughout the course.

3.1 Direct solution

One way to compute the minimum of a function is to set the partial deriva-
tives to zero. Recall from single variable calculus that (assuming a function
is differentiable) the minimum x? of a function f has the property that the
derivative df/dx is zero at x = x?. Note that the converse is not true: if
df/dx = 0, then x? might be a maximum or an inflection point, rather than
a minimum. But the minimum can only occur at points that have derivative
zero.

An analogous result holds in the multivariate case: if f is differentiable,
then all of the partial derivatives ∂f/∂xi are zero at the minimum. The
intuition is simple: if ∂f/∂xi is positive, then one can decrease f slightly
by decreasing xi slightly. Conversely, if ∂f/∂xi is negative, then one can
decrease f slightly by increasing xi slightly. In either case, this implies we’re
not at the minimum. Therefore, if the minimum exists (i.e. f doesn’t keep
growing as x goes to infinity), it occurs at a critical point, i.e. a point
where the partial derivatives are zero. This gives us a strategy for finding
minima: set the partial derivatives to zero, and solve for the parameters.
This method is known as direct solution.

Let’s apply this to linear regression. For simplicity, let’s assume the
model doesn’t have a bias term. (We actually don’t lose anything by getting

4



rid of the bias. Just add a “dummy” input x0 which always takes the value
1; then the weight w0 acts as a bias.) We simplify Eqn. 6 to remove the
bias, and set the partial derivatives to zero:

∂J
∂wj

=
1

N

N∑
i=1

x
(i)
j

 D∑
j′=1

wj′x
(i)
j′ − t

(i)

 = 0 (10)

Since we’re trying to solve for the weights, let’s pull these out:

∂J
∂wj

=
1

N

D∑
j′=1

(
N∑
i=1

x
(i)
j x

(i)
j′

)
wj′ −

1

N

N∑
i=1

x
(i)
j t(i) = 0 (11)

The details of this equation aren’t important; what’s important is that
we’ve wound up with a system of D linear equations in D variables. In
other words, we have the system of linear equations

D∑
j′=1

Ajj′wj′ − cj = 0 ∀j ∈ {1, . . . , D}, (12)

where Ajj′ = 1
N

∑N
i=1 x

(i)
j x

(i)
j′ and cj = 1

N

∑N
i=1 x

(i)
j t(i). As computer scien-

tists, we’re done, because this gives us an algorithm for finding the optimal
regression weights: we first compute all the values Ajj′ and cj , and then
solve the system of linear equations using a linear algebra library such as
NumPy. (We’ll give an implementation of this later in this lecture.)

Note that the solution we just derived is very particular to linear re-
gression. In general, the system of equations will be nonlinear, and except
in rare cases, systems of nonlinear equations don’t have closed form solu-
tions. Linear regression is very unusual, in that it has a closed-form solution.
We’ll only be able to come up with closed form solutions for a handful of
the algorithms we cover in this course.

3.2 Gradient descent

Now let’s minimize the cost function a different way: gradient descent.
This is an example of an iterative algorithm, which means that we apply
a certain update rule over and over again, and if we’re lucky, our iterates
will gradually improve according to our objective function. To do gradient
descent, we initialize the weights to some value (e.g. all zeros), and repeat-
edly adjust them in the direction that most decreases the cost function. If
we visualize the cost function as a surface, so that lower is better, this is the
direction of steepest descent. We repeat this procedure until the iterates
converge, or stop changing much. (Or, in practice, we often run it until
we get tired of waiting.) If we’re lucky, the final iterate will be close to the
optimum.

In order to make this mathematically precise, we must introduce the
gradient, the direction of steepest ascent (i.e. fastest increase) of a function.
The entries of the gradient vector are simply the partial derivatives with
respect to each of the variables:

∂J
∂w

=


∂J
∂w1

...
∂J
∂wD

 (13)

5



The reason that this formula gives the direction of steepest ascent is beyond
the scope of this course. (You would learn about it in a multivariable
calculus class.) But this suggests that to decrease a function as quickly
as possible, we should update the parameters in the direction opposite the
gradient.

We can formalize this using the following update rule, which is known
as gradient descent:

w← w − α∂J
∂w

, (14)

or in terms of coordinates,

wj ← wj − α
∂J
∂wj

. (15)

The symbol ← means that the left-hand side is updated to take the value
on the right-hand side; the constant α is known as a learning rate. The
larger it is, the larger a step we take. We’ll talk in much more detail later
about how to choose a learning rate, but in general it’s good to choose a
small value such as 0.01 or 0.001. If we plug in the formula for the partial
derivatives of the regression model (Eqn. 8), we get the update rule: In practice, we rarely if ever go

through this last step. From a
software engineering perspective,
it’s better to write our code in a
modular way, where one function
computes the gradient, and
another function implements
gradient descent, taking the
gradient as given.

wj ← wj − α
1

N

N∑
i=1

x
(i)
j (y(i) − t(i)) (16)

So we just repeat this update lots of times. What does gradient descent
give us in the end? For analyzing iterative algorithms, it’s useful to look for
fixed points, i.e. points where the iterate doesn’t change. By inspecting
Eqn. 14, setting the left-hand side equal to the right-hand side, we see that
the fixed points occur where ∂J /∂w = 0. Since we know the gradient
must be zero at the optimum, this is an encouraging sign that maybe it will
converge to the optimum. But there are lots of things that could go wrong,
such as divergence or local optima; we’ll look at these in more detail in a
later lecture. Lecture 9 discusses optimization

issues.You might ask: by setting the partial derivatives to zero, we compute the
exact solution. With gradient descent, we never actually reach the optimum,
but merely approach it gradually. Why, then, would we ever prefer gradient
descent? Two reasons:

1. We can only solve the system of equations explicitly for a handful of
models. By contrast, we can apply gradient descent to any model for
which we can compute the gradient. This is usually pretty easy to
do efficiently. Importantly, it can usually be done automatically, so
software packages like Theano and TensorFlow can save us from ever
having to compute partial derivatives by hand.

2. Solving a large system of linear equations can be expensive, possi-
bly many orders of magnitude more expensive than a single gradient
descent update. Therefore, gradient descent can sometimes find a rea-
sonable solution much faster than solving the linear system. There-
fore, gradient descent is often more practical than computing exact
solutions, even for models where we are able to derive the latter.

6



For these reasons, gradient descent will be our workhorse throughout the
course. We will use it to train almost all of our models, with the exception
of a handful for which we can derive exact solutions.

4 Vectorization

Now it’s time to bring in linear algebra. We’re going to rewrite the linear
regression model, as well as both solution methods, in terms of operations
on matrices and vectors. This process is known as vectorization. There
are two reasons for doing this: Vectorization takes a lot of

practice to get used to. We’ll cover
a lot of examples in the first few
weeks of the course. I’d
recommend practicing these until
they start to feel natural.

1. The formulas can be much simpler, more compact, and more readable
in this form.

2. Vectorized code can be much faster than explicit for-loops, for several
reasons.

• High-level languages like Python can introduce a lot of inter-
preter overhead, and if we explicitly write a for-loop correspond-
ing to Eqn. 16, this might be 10-100 times slower than the C
equivalent. If we instead write the algorithm in terms of a much
smaller number of linear algebra operations, then it can per-
form the same computations much faster with minimal inter-
preter overhead.

• Since linear algebra is used all over the place, linear algebra li-
braries have been extremely well optimized for various computer
architectures. Hence, they use much more efficient memory-
access patterns than a näıve for-loop, even one written in C.

• Matrix multiplication is inherently highly parallelizable and in-
volve little control flow. Hence, it’s ideal for graphics process-
ing unit (GPU) architectures. We’re not going to talk much
about GPUs in this course, but just think “matrix multiplication
+ GPU = good”. If you run vectorized code on a GPU using
a framework like TensorFlow or PyTorch, it may run 50 times
faster than the CPU version. As it turns out, most of the com-
putation in deep learning is matrix multiplications, which is why
it’s been such an incredibly good match for GPUs.

First, we need to represent the data and model parameters in the form of
matrices and vectors. If we have N training examples, each D-dimensional,
we will represent the inputs as an N × D matrix X. Each row of X cor-
responds to a training example, and each column corresponds to a single
input dimension. The weights are represented as a D-dimensional vector
w, and the targets are represented as a N -dimensional vector t. In general, matrices will be

denoted with capital boldface,
vectors with lowercase boldface,
and scalars with plain type.

The predictions are computed using a matrix-vector product

y = Xw + b1, (17)

where 1 denotes a vector of all ones. We can express the cost function in

7



vectorized form: You should stop now and try to
show that these equations are
equivalent to Eqns. 3–5. The only
way you get comfortable with this
is by practicing.

J =
1

2N
‖y − t‖2 (18)

=
1

2N
‖Xw + b1− t‖2 . (19)

Note that this is considerably simpler than Eqn. 5. Even more importantly,
it saves us from having to explicitly sum over the indices i and j. As our
models get more complicated, we would run out of convenient letters to use
as indices if we didn’t vectorize.

Now let’s revisit the exact solution for linear regression. We derived

a system of linear equations, with coefficients Ajj′ = 1
N

∑N
i=1 x

(i)
j x

(i)
j′ and

cj = 1
N

∑N
i=1 x

(i)
j t(i). In terms of linear algebra, we can write these as the

matrix A = 1
N X>X and c = 1

N X>t. The solution to the linear system
Aw = c is given by w = A−1c (assuming A is invertible), so this gives us
a formula for the optimal weights:

w =
(
X>X

)−1
X>t. (20)

An exact solution which we can express with a formula is known as a closed-
form solution.

Similarly, we can vectorize the gradient descent update from Eqn. 16:

w← w − α

N
X>(y − t), (21)

where y is computed as in Eqn. 17.

5 Feature mappings

Linear regression might sound pretty limited. What if the true relationship
between inputs and targets is nonlinear? Fortunately, there’s an easy way to
use linear regression to learn nonlinear dependencies: use a feature mapping.
I’ll introduce this by way of an example. Suppose we want to approximate it
with a cubic polynomial. In other words, we would compute the predictions
as:

y = w3x
3 + w2x

2 + w1x+ w0. (22)

This setting is known as polynomial regression.
Let’s use the squared error loss function, just as with ordinary linear re-

gression. The important thing to notice is that algorithmically, polynomial
regression is no different from linear regression. We can apply any of the
linear regression algorithms described above, using (x, x2, x3) as the inputs.
Mathematically, we define a feature mapping ψ, in this case Just as in Section 3.1, we’re

including a constant feature to
account for the bias term, since
this simplifies the notation.

ψ(x) =


1
x
x2

x3

 , (23)

and compute the predictions as y = w>ψ(x) instead of w>x. The rest of
the algorithm is completely unchanged.

8



Feature maps are a useful tool, but they’re not a silver bullet, for several
reasons:

• The features must be known in advance. It’s not always easy to pick
good features, and up until very recently, feature engineering would
take up most of the time and ingenuity in building a practical machine
learning system.

• In high dimensions, the feature representations can get very large. For
instance, the number of terms in a cubic polynomial is cubic in the
dimension! It’s possible to work with

polynomial feature maps efficiently
using something called the “kernel
trick,” but that’s beyond the scope
of this course.

In this course, rather than construct feature maps, we will use neural net-
works to learn nonlinear predictors directly from the raw inputs. In most
cases, this eliminates the need for hand-engineering of features.

6 Generalization

We don’t just want a learning algorithm to make correct predictions on
the training examples; we’d like it to generalize to examples it hasn’t
seen before. The average squared error on novel examples is known as the
generalization error, and we’d like this to be as small as possible.

Returning to the previous example, let’s consider three different polyno-
mial models: (a) a linear function, or equivalently, a degree 1 polynomial;
(b) a cubic polynomial; (c) a degree-10 polynomial. The linear function may
be too simplistic to describe the data; this is known as underfitting. The terms underfitting and

overfitting are a bit misleading,
since they suggest the two
phenomena are mutually exclusive.
In fact, most machine learning
models suffer from both problems
simultaneously.

The
degree-10 polynomial may be able to fit every training example exactly, but
only by learning a crazy function. It would make silly predictions every-
where except the observed data. This is known as overfitting. The cubic
polynomial is a reasonable compromise. We need to worry about both
underfitting and overfitting in pretty much every application of machine
learning.

The degree of the polynomial is an example of a hyperparameter.
Hyperparameters are values that we can’t include in the training procedure
itself, but which we need to set using some other means. Statisticians prefer the term

metaparameter since
hyperparameter has a different
meaning in statistics.

In practice, we nor-
mally tune hyperparameters by partitioning the dataset into three different
subsets:

1. The training set is used to train the model.

2. The validation set is used to estimate the generalization error of
each hyperparameter setting.

3. The test set is used at the very end, to estimate the generalization
error of the final model, once all hyperparameters have been chosen.

We will talk about validation and generalization in a lot more detail later
on in this course.

9


	Introduction
	Learning goals

	Problem setup
	Solving the optimization problem
	Direct solution
	Gradient descent

	Vectorization
	Feature mappings
	Generalization

