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Today

(&,}{

@ So far in this course: supervised learning no annckedion S

e Today we start unsupervised learning
» No labels, so the purpose is to find patterns in data
» Need to specity what kind of patterns to look for
@ This week: dimensionality reduction
» Linear dimensionality reduction (Principal Component Analysis)

» Matrix completion (needed for the project) is closely related to

PCA.

» Nonlinear dimensionality reduction (autoencoders)

© Week 11: clustering  k-wmeans
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Motivating Examples

Energy disaggregation
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Kolter and Johnson, “REDD: A public data set for energy disaggregation research”
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Motivating Examples

Modeling the change in scientific topics over time
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Motivating Examples

Modeling the change in scientific topics over time

Cold topics Hot topics
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Griffiths and Steyvers, “Finding scientific topics”
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Motivating Examples

The models for those tasks are fairly complicated. In this course, we’ll
focus on two simpler instances of unsupervised learning:

Clustering

Intro ML (UofT)

Dimensionality Reduction
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Linear Dimensionality Reduction yxp — Nxk
%ema\\\[ K<<

e We'll start with a simpler form of dimensionality reduction: linear
dimensionality reduction

o Example: suppose you're a psychologist interested in modeling
the variation in human personality

» You've asked lots of participants to take a survey with lots of
personality questions.

» By figuring out which questions are highly correlated with each
other, you can uncover the main factors describing human
personality.

@ A linear dimensionality reduction model called factor analysis
found five key personality traits called the Big Five:

> extraversion, agreeableness, openness to experience,
consclientiousness, neuroticism

@ In this lecture, we’ll consider a different but closely related model
called Principal Component Analysis (PCA).

Intro ML (UofT)
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PCA: Overview

e Principal Component Analysis (PCA) is our first unsupervised
learning algorithm, and an example of linear dimensionality

reduction.

@ Dimensionality reduction: map data to a lower dimensional space

» Save computation/memory

» Reduce overfitting, achieve better generalization 3

» Visualize in 2 dimensions

e Since PCA is a linear model, this mapping will be a projection.

oo
’ :\0 7 / /}%/// //
J

\L\(\ L ///I///A

Intro ML (UofT)

Second principal component

-0.5

1.0

0.5

0.0

-1.0

T T T T T
-1.0 -0.5 0.0 0.5 1.0
First principal component

Image credit: Elements of Statistical Learning
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Fuclidean projection

Projection onto a 1-D subspace

z X finding ql/( so et 1% '7\"‘"4

< S mtnt M\ZQO(

N \ S © Subspace S is the line along the
) <\ """""""""" unit vector u

g U~
x x » {u} is a basis for S: any point in
a S can be written as zu for some
L 2
xTw = X o= Il @
6 adj 6100\‘]'

@ Projection of x on S is denoted by Projs(x)

o Recall: x"u = [|x]|||ul| cos(8) = ||x]| cos(0) _ (K]
. T (tx
o Prois(9= xu - u
length of proj direction of proj (, AGeUmMes W ¢ o untt uecbr)
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T
W
(General subspaces Lot w ok wit, ,ﬁ/

(| wlle

e How to project onto a K-dimensional subspace?

» Idea: choose an orthonormal basis {u;,us, -+, ug} for S (i.e. all
unit vectors and orthogonal to each other)

» Project onto each unit vector individually (as in previous slide), and
sum together the projections.

e Mathematically, the projection is given as:
K

. T
Projs(x) = Zziui where z; =X u;.
i=1 ( .y

@ In vector form:

Projs(x) = Uz where z = U'x
L__J —_— N\

Intro ML (UofT)
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Projection onto a Subspace

@ So far, we assumed the subspace passes through O.

e In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin fs.

.\. pg— L7 + ﬁ = ziuy + zoug + ﬁ

\\‘x T(

@ In machine learning, x is also called the reconstruction of x.
— T N

@ 7z is its representation, or code.
e

Intro ML (UofT)
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Projection onto a Subspace

o If we have a K-dimensional subspace in a

D-dimensional input space, then x € RY
K
and z € R

e If the data points x all lie close to their
reconstructions, then we can approximate
distances, etc. in terms of these same
operations on the code vectors z. (a

o If K < D, then it’s much cheaper to work

with 7 than x. e

e A mapping to a space that’s easier to \ 48
manipulate or visualize is called a
representation, and learning such a
mapping is representation learning.

e Mapping data to a low-dimensional space is <
called dimensionality reduction.
KX
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Learning a Subspace ). <

e How to choose a good subspace S7

» Origin g is the empirical mean of the data
» Need to choose a D X K matrix U with orthonormal columns.

@ T'wo criteria:

» Minimize the reconstruction error:
N
.1 (1) ~(i) 2
min — ) ||[x" —x"||
u N ¢ -
1=

» Maximize the variance of reconstructions: Find a subspace where
data has the most variability.

~(z ~ 2
mwNzH)

» Note: The data and its reconstruction have the same means
(exercise)!

Intro ML (UofT)
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Learning a Subspace

@ These two criteria are equivalent! IL.e., we’ll show

N
1 () _ ()2 _ 1 () a2
w2 I =X = const = ) 15—
o Recall ¥\ = o+ Uz'” and 2 = UT(X(i) — [t).

@ Observation 1: Because the columns of U are orthogonal, U'U-= I, so
~ a2 2 To-T T 2
|Ix—al" =|Uz|[" =2 U Uz=2z z=|z||".

— norm of centered reconstruction is equal to norm of representation.
(If you draw it, this is obvious).

Intro ML (UofT)
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Pythagorean Theorem

@ Observation 1: ||5i(i) — ;1||2 = ||Z(Z.)||2

» Variance of reconstructions is equal to variance of code vectors:
~ (2 ~ 112 Y 1 2 ) :
% D ||X(Z) — ]| = % D . ||Z(Z)|| (exercise % > zH = 0)

L) _

@ Observation 2: orthogonality of 1 and fc(i) — x(i)

(Two vectors a,b are orthogonal &< a b = 0)

o Recall ¥V = i+ UU" (x'V) - ).

% (1)

~(17 ANl s ~(2 2
(X()_P’) (X()—X())
1 ~N 1 T, ~ 1 T 1 ~
----- = (x" - ) UU (p-x" + UUT (" - o))
- = ; i) ANT T, . i i) AT T i)
/ x =P uUT (p-x") + (xP-p)TUU T (% - )
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v D -

Pythagorean Theorem X Usge SVD 1o do PCA

The Pythagorean Theorem tells us:

() 2 (3) (G) A2
I = af]” + [lx7 —x |

=||x" = for each 1

By averaging over data and from observation 2, we obtain

() _ L o) o)
~ A 7 ~(2) 112
Zn +N;nx -%|

prOJected variance reconstruction error

IRNING
7 ~ 112
=5 lIx” -4l
=1

constant

Therefore,
projected variance = constant — reconstruction error

Maximizing the variance is equivalent to minimizing the reconstruction error!

Intro ML (UofT)
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize
the reconstruction error, is called principal component analysis (PCA).

@ Consider the empirical covariance matrix:
IR0 (4) T
S = ) o~ 1) o~
E—N;w p)(x" — fr)
1=

o Recall: 3 is symmetric and positive semidefinite.
@ The optimal PCA subspace is spanned

by the top K eigenvectors of X.. "

» More precisely, choose the first K of U Y
any orthonormal eigenbasis for 3.

» The general case is tricky, but we’ll . X
show this for K = 1. S xx

@ These eigenvectors are called principal

components, analogous to the
principal axes of an ellipse.

Intro ML (UofT)
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Deriving PCA

e For K =1, we are fitting a unit vector u, and the code is a scalar

(4) (4) _

-
2/ =u (x
observation 1, we have

1 (i) a2 1 ()2 1 T, (1) A \2
N;nx -l -Ng[z 1 -N;u (x" ~ @)

ft). Let’s maximize the projected variance. From

=u Xu
= uTQAQTu Spectral Decomposition 3 = QAQT
=a' Aa for a = QTu

D

Intro ML (UofT)
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Deriving PCA

o Maximize a' Aa = Z] LA a fora=Q u.
» This is a change- of—ba81s to the eigenbasis of X..

@ Assume the \; are in sorted order, Ay = Ay, > ...

@ Observation: since u IS a umt vector, then by umtarity, a is also a
T T
unit vector: a' a=u QQ u=u'u, ie. 2,0 —1

e By inspection, set a; = £1 and a; =0 for 7 # 1.

e Hence, u = Qa = q; (the top eigenvector).

@ A similar argument shows that the kth principal component is the
kth eigenvector of 3.

Intro ML (UofT)
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Recap

Recap:

e Dimensionality reduction aims to find a low-dimensional
representation of the data.

e PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction
error.

e The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

e PCA gives a set of decorrelated features.

CSC311-Lec 10 20 / 50
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Applying PCA to faces

zef
@ Consider running PCA on 2429 19x19 grayscale images (CBCL data)

@ Can get good reconstructions with only 3 components eonk 3 malfir

S A S

(B LT

@ PCA for pre-processing: can apply classifier to latent representation

» Original data is 361 dimensional

» For face recognition PCA with 3 components obtains 79% accuracy
on face/non-face discrimination on test data vs. 76.8% for a
Gaussian mixture model (GMM) with 84 states. (We’ll cover
GMNMs later in the course.)

@ Can also be good for visualization

CSC311-Lec 10 21 / 50
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Applying PCA to faces: Learned basis

Principal components of face * images (“eigenfaces”)

FRauNDER
HOREEENE
HHEGEEE Y
HEEARTEEN
SEEEREEN
EEEI-!.E
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Applying PCA to digits

764 <15
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder

Intro ML (UofT)
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Some recommender systems in action
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Ideally recommendations should combine global and seasonal interests, look at
your history if available, should adapt with time, be coherent and diverse, etc.
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Some recommender systems in action

Home TV Shows Movies Recently Added My List
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The Netflix problem

Movie recommendation: Users watch movies and rate them out of S5y%.

User | Movie Rating

-3 Thor * % K K %
& Chained * K W Y %
& Frozen * % K ¢ %
Chained * %k Kk Kk &
Bambi * % Kk Kk X
Titanic * k kK K
Goodfellas | % % % % *
Dumbo * % % % %
9 Twilight * Kk K h %
2 Frozen * % % % %
= Tangled * % W K

Because users only rate a few items, one would like to infer their

preference for unrated items

Intro ML (UofT)
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Netflix Prize
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: ot levs(fatings
PCA as Matrix Factorization =~ ____SS2e™H™

uses N [ ] XTK

@ Recall PCA: each input vector xV e RY is approximated as
[+ Uz(z),
(4)

MONESG (i)

=+ Uz

DxK .

where 1 = % D %" is the data mean, U € R is the orthogonal

basis for the principal subspace, and 29 € R is the code vector,
_ (i) D . (i), . .
and X'’ € R™ is x'’’s reconstruction or approximation.

@ Assume for simplicity that the data is centered: ft = 0. Then, the
approximation looks like

MONSFIONE § MO

Intro ML (UofT)
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PCA as Matrix Factorization

o PCA(on centered data): input vector x

MONGE § S0
@ Write this in matrix form, we have X = 7ZU" where X and Z are
matrices with one row per data point

(4) (4)

is approximated as Uz

RS (2]
X = [X(Q,)]T e RV*Y and Z = [Z(Q,)]T e RVH
_[x“zv i _[z“é i
e Can write the qul:flare(_iieconstruction EITor as > coene a5 PCA
> Ix - U = X - ZU ||,
i=1 — '
e || - || denotes the Frobenius norm:
Y15 = 1Y =) =) Iyl
CSCSll—LecZ’fO Z 30 / 50




PCA as Matrix Factorization

e So PCA is approximating X = ZUT, or equivalently X' ~UzZ'.
XT U Al
|
TN
— N
b b / Q,V\Ollﬂdﬂ.d‘:csone code
v(‘ R vector
mcA@
— N—— — K-
incipal onds
Componen PO Lac

@ Based on the sizes of the matrices, this is a rank-K approximation.

e Since U was chosen to minimize reconstruction error, this is the
: . . . T T2
optimal rank-K approximation, in terms of error || X —UZ |[|7.

Intro ML (UofT)
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PCA vs. SVD

This has a close relationship to the Singular Value Decomposition
(SVD) of X. This is a factorization

X =USV'

Properties:

o U, X, and v’ provide a real-valued matrix factorization of X, an
m X n matrix.

o U is a m X m matrix with orthonormal columns U' U = I,,, where
I,,, is the m X m identity matrix.

@ V is an orthonormal n X n matrix, V'V = L,.

@ X is a m X n diagonal matrix, with non-negative singular values,
01,02, ..., Omin{m,n}, ON the diagonal, where the singular values are
conventionally ordered from largest to smallest.

It’s possible to show that the first n singular vectors correspond to the
first n principal components; more precisely, Z = UX

Intro ML (UofT)
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PCA vs. SVD (optional)

X =USV'

M=U X V

mxn mxm mxn nNxn

[ [ ] 1[0

| oIGIE

U U* — Im

V V' = 1,

Intro ML (UofT)
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Matrix Completion

PIOJCD" o Pl /—L

@ We just saw that PCA gives the optimal low-rank matrix
factorization to a matrix X.

e Can we generalize this to the case where X is only partially
observed?

» A sparse 1000 X 1000 matrix with 50,000 observations (only 5%
observed).

» A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.

» Unfortunately, no closed form solution.

Intro ML (UofT)
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or

bad.

User | Movie Rating

& Thor * K X XX
& Chained * K W % %
& Frozen * k Kk W W
Chained * Kk Kk Kk &
Bambi * Kk Kk Kk K
Titanic * % K ¢ %
Goodfellas | % % % % %
Dumbo * % % % %k
9 Twilight * % % % %k
B Frozen * % % % X
3 Tangled * % K N %

Because users only rate a few items, one would like to infer their

preference for unrated items

Intro ML (UofT)
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Matrix Completion

Matrix completion problem: Transform the table into a N users by M movies
matrix R

geopid
N\

[Rating matrix . . @ Data: Users rate some movies.

Ruser,movie- Very Sparse

Ninja

Cat

@ Task: Predict missing entries,

angel IR ; . ; - ; : - i.e. how a user would rate a

. movie they haven’t previously
Nursey | ? ? ? ? ? ? ? ?7 A
rated
Tongey| ? ? ? ? ? ? ? 7?74 N N
. @ Evaluation Metric: Squared
Newralf 222272771 error (used by Netflix
S £ & & @ & & & & Competition). Is this a
& & S 5 ic?
<>°0 Jits reasonable metric’
m
o>
e\

Intro ML (UofT)
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Matrix Completion

e In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
tactors K inferred from the ratings patterns.

e That is, we seek representations for movies and users as vectors in
R”® that can ultimately be translated to ratings.

e For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like

> comedy
» drama
> action
» But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?

Intro ML (UofT)
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Intro ML (UofT)

Matrix Completion

@ Let the representation of user ¢ in the K-dimensional space be u; and

the representation of movie j be z;

» Intuition: maybe the first entry of u; says how much the user likes
horror films, and the first entry of z,; says how much movie j is a
horror film.

@ Assume the rating user ¢ gives to movie j is given by a dot product:

-
R;; = u; z;

@ In matrix form, if:

. T
U = : and Z = Zy ... Z )\

then: R ~ UZ'

@ This is a matrix factorization problem!

CSC311-Lec 10 38 / 50




Matrix Completion

(¥

X low
T T L rank
@ Recall PCA: To enforce X = UZ , we minimized opplckination

H

. T T2 T 2

min [| X7 = UZ "l = ) (2 — u; 2))

i,
k——/\,
where u; and z; are the i-th rows of matrices U and Z,

respectively.

e What’s different about the Netflix problem?

» Most entries are missing!
» We only want to count the error for the observed entries.

CSC311-Lec 10 39 /50
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Matrix Completion

@ Let O = {(n,m) : entry (n,m) of matrix R is observed}

@ Using the squared error loss, matrix completion requires solving

. 1 T 2
gyt ¥ (n-un)

guww'\ed oves

@ The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

@ As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means
and mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U
and optimize Z, and so on until convergence.

Intro ML (UofT)

CSC311-Lec 10 40/ 50




Alternating Least Squares

e Want to minimize the squared error cost with respect to the factor
U. (The case of Z is exactly symmetric.)

@ We can decompose the cost into a sum of independent terms:

Y (Rymuln) =Y Y (Rymnin)e gy

. . (
(i.4)€0 i ji(ig)e0 Coveiopat s

Y

only depends on u;

This can be minimized independently for each u;.

@ This is a linear regression problem in disguise. Its optimal solution

1S:
—1
T
u; X 2,7, Z sz]
3:(4,5)€0 3:(4,5)€0
CSC311-Lec 10 4150




Alternating Least Squares

N
O
ALS for Matrix Completion problem
1. Initialize U and Z randoml N« K« N ‘e
' Y p(@k‘td’ sceres 0N mssmﬁ

2. repeat until convergence emcies
3. for:=1,..,N do

T\ 1
4. u; = (Zj:(i,j)e() 252 ) ) j:(ij)eo RijZ;
D. for j =1,...M do

T -1
6. Z; = (Zi:(i,j)eO u; u; ) Zz’:(z’,j)eO Rijui
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Next

Two more interpretations of PCA, which have interesting
generalizations.

1. Matrix factorization

2. Autoencoder

Intro ML (UofT)
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Autoencoders

@ An autoencoder is a feed-forward neural net whose job is to take
an input x and predict x.

e To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

reconstruction 784 units

T

100 units decoder

T

code vector 20 units

T

100 units encoder

T

input 784 units
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Linear Autoencoders

Why autoencoders?

@ Map high-dimensional data to two dimensions for visualization

@ Learn abstract features in an unsupervised way so you can apply
them to a supervised task

» Unlabled data can be much more plentiful than labeled data

Intro ML (UofT)
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Linear Autoencoders

@ The simplest kind of autoencoder has one
hidden layer, linear activations, and squared

error loss. X D units
~ ~ 2 WQT decoder
L(x,%x) = ||x —x]|| |
y/ K units
@ This network computes x = WoWx. which
. . . b 2701 W, encoder
is a linear function. ,
D unit
o If K = D, we can choose W, and W/ such X o

that WoW is the identity matrix. This isn’t
very Interesting.
@ But suppose K < D:

» W; maps x to a K-dimensional space, so it’s doing dimensionality
reduction.
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Linear Autoencoders

@ Observe that the output of the autoencoder must lie in a
K-dimensional subspace spanned by the columns of W,. This is
because x = Woz

o We saw that the best possible (min error) K-dimensional linear
subspace in terms of reconstruction error is the PCA subspace.

@ The autoencoder can achieve this by setting W; = U' and
WQ = U.

@ Therefore, the optimal weights for a linear autoencoder are just
the principal components!

~

X D units
U T decoder
Z | Kunits

UTT encoder

X D units
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Nonlinear Autoencoders

@ Deep nonlinear autoencoders learn to project the data, not onto a
subspace, but onto a nonlinear manifold

@ This manifold is the image of the decoder.

e This is a kind of nonlinear dimensionality reduction.

2 units

T

100 units

T

1 unit

!

100 units

T

2 units
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Nonlinear Autoencoders

@ Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

real

D / a 3 Ll S‘C"?— é q 32;e[|:))auto

30-D
PCA
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Nonlinear Autoencoders

Here’s a 2-dimensional autoencoder representation of newsgroup

articles. They’re color-coded by topic, but the algorithm wasn’t given
the labels.
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