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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

p(x | t = k) for each class is shaped like an ellipse
=) we model each class as a multivariate Gaussian
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Overview

Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.

Continuous random variables:
I Manipulating Gaussians to tackle interesting problems requires lots

of linear algebra, so we’ll begin with a linear algebra review.
I Additional reference: See also Chapter 4 of Mathematics for

Machine Learning, by Desienroth et al.
https://mml-book.github.io/

Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

Generative classifier for continuous data: Gaussian
discriminant analysis, a Bayes classifier for continuous variables.

Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it o✏ine.
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Eigenvectors and Eigenvalues

Let B be a square matrix.

An eigenvector of B is a vector v such that

Bv = �v

for a scalar �, which is called an eigenvalue.

A matrix of size D ⇥D has at most D distinct eigenvalues,
but may have fewer.

We will focus on symmetric matrices.
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Spectral Theorem

For a symmetric D ⇥D matrix,

All of the eigenvalues are real-valued.

There is a full set of D linearly independent eigenvectors.
These eigenvectors form a basis for RD.

The eigenvectors can be chosen to be real-valued.

The eigenvectors can be chosen to be orthonormal.
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:

A = Q⇤Q>

where

Q is an orthogonal matrix
I The columns qi of Q are eigenvectors.

⇤ is a diagonal matrix.
I The diagonal entries �i are the corresponding eigenvalues.

Check that this is reasonable:

Aqi =
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Spectral Decomposition

Because A has a full set of orthonormal eigenvectors {qi},
we can use these as an orthonormal basis for RD.

A vector x can be written in an alternate coordinate system:

x = x̃1q1 + · · ·+ x̃DqD

Converting between the two coordinate systems:

x̃ = Q>x x = Qx̃

In the alternate coordinate system,
A acts by re-scaling the individual coordinates:

Ax = x̃1Aq1 + · · ·+ x̃DAqD

= �1x̃1q1 + · · ·+ �Dx̃DqD
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PSD Matrices

Symmetric matrices represent quadratic forms, f(v) = v>Av.

If v>Av > 0 for all v 6= 0, A is positive definite, denoted A � 0.

If v>Av � 0 for all v, A is positive semi-definite, denoted A ⌫ 0.

If v>Av < 0 for all v 6= 0, A is negative definite, denoted A � 0.

If v>Av can be positive or negative, A is indefinite.

positive definite non-strictly PSD

negative definite indefinite
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PSD Matrices

Exercise: Non-negative linear combinations of PSD matrices are
PSD.

Related: If A is a random matrix which is always PSD, then
E[A] is PSD.

Exercise: For any matrix B, the matrix BB> is PSD.

Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x� µ)(x� µ)>] is a PSD matrix. (Special case of
above, since x� µ is a column vector, i.e. a D ⇥ 1 matrix.)
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PSD Matrices

Claim: A is positive definite (PSD) if and only if
all of its eigenvalues are positive (non-negative).

Proof: Write v in terms of the eigenbases,

ṽ = Q>v.

Then, we have

v>Av = v>Q⇤Q>v

= ṽ>⇤ṽ

=
X

i

�iṽ
2
i

This is positive (nonnegative) for all v if and only if
all the �i are positive (nonnegative).
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PSD Matrices

If A is positive definite, then the contours of the quadratic form
are elliptical.

If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

A =

✓
0.5 0
0 1

◆

f(v) = v>Av

=
X

i

aiv
2
i
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PSD Matrices

For a positive definite A = Q⇤Q>, the contours of the quadratic form
are elliptical, and the principal axes of the ellipses are aligned with the
eigenvectors.

A =

✓
1 �1
�1 2

◆

f(v) = v>Q⇤Q>v

= ṽ>⇤ṽ

=
X

i

�iṽ
2
i

In this example, �1 > �2.
All symmetric matrices are diagonal if you choose the right coordinate
system.
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Matrix Powers

By the Spectral Decomposition, we can square a symmetric A:

A2 = (Q⇤Q>)2 = Q⇤Q>Q| {z }
=I

⇤Q> = Q⇤2Q>

We can take the k-th power of A:

Ak = Q⇤kQ>.

If A is invertible, we calculate its inverse:

A�1 = (Q>)�1⇤�1Q�1 = Q⇤�1Q>.

If A is PSD, then we can calculate its square root:

A1/2 = Q⇤1/2Q>.
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Determinant Properties

Claim: The determinant of a symmetric matrix equals
the product of its eigenvalues.

|A| = |Q⇤Q>
| = |Q||⇤||Q>

| = |⇤| =
Y

i

�i.

Corollary: The determinant of a PSD (positive definite) matrix is
non-negative (positive).
Basic properties of a determinant:

|BC| = |B| · |C|

|B| = 0 i↵ B is singular

|B�1
| = |B|

�1 if B is invertible (nonsingular)

|B>
| = |B|

If Q is orthogonal, then |Q| = ±1
(i.e. orthogonal transformations preserve volume)

If ⇤ is diagonal with entries {�i}, then |⇤| =
Q

i �i.
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Univariate Gaussian distribution

N (x;µ,�2) =
1

p
2⇡�

exp

✓
�
(x� µ)2

2�2

◆

Parameterized by mean µ and variance �2.

Why is Gaussian so popular?
I Sums of lots of independent random variables are approximately

Gaussian (Central Limit Theorem).
I Machine learning uses Gaussians a lot because they make the

calculations easy.
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Multivariate Mean and Covariance

Mean

µ = E[x] =

0

B@
µ1
...

µD

1

CA

Covariance

⌃ = Cov(x) = E[(x� µ)(x� µ)>] =

0

BBB@

�2
1 �12 · · · �1D

�12 �2
2 · · · �2D

...
...

. . .
...

�D1 �D2 · · · �2
D

1

CCCA

(µ and ⌃) uniquely define a multivariate Gaussian (or Normal)
distribution, denoted N (µ,⌃) or N (x;µ,⌃).
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PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution (d = 1, ⌃ = �2):

N (x;µ,�2) =
1

p
2⇡�

exp

✓
�
(x� µ)2

2�2

◆

PDF of the multivariate Gaussian distribution:

N (x;µ,⌃) =
1

(2⇡)d/2|⌃|1/2
exp


�
1

2
(x� µ)T⌃�1(x� µ)

�

Intro ML (UofT) CSC311-Lec8 19 / 53

nigh
I



Univariate Shift + Scale

All univariate Gaussian distributions are shaped like
the standard normal distribution.

Obtain N (µ,�2) by starting with N (0, 1), shifting by µ, and
stretching by � =

p

�2.
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Multivariate Shift + Scale

Start with a standard Gaussian x ⇠ N (0, I). So E[x] = 0 and
Cov(x) = I.

What happens if we apply the map x̂ = Sx+ b?

By linearity of expecation,

E[x̂] = SE[x] + b = b.

By the linear transformation rule for covariance,

Cov(x̂) = SCov(x)S> = SS>.

x̂ is also Gaussian distributed.
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Multivariate Shift + Scale

E[Sx+ b] = b

Cov(Sx+ b) = SS>.

To obtain N (µ,⌃), we start with N (0, I),
shift by µ, and scale by the matrix square root ⌃1/2.

I Recall: ⌃1/2 = Q⇤1/2Q.
I For each eigenvector qi with eigenvalue �i, we stretch by a factor of
p
�i in the direction qi.
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Bivariate Gaussian

⌃ =

✓
1 0
0 1

◆
⌃ = 0.5

✓
1 0
0 1

◆
⌃ = 2

✓
1 0
0 1

◆

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

⌃ =

✓
1 0
0 1

◆
⌃ =

✓
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◆
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✓
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◆

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian
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Figure: Probability density function

Figure: Contour plot of the pdf
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Maximum Likelihood for Multivariate Gaussian

Model the distribution of highest and lowest temperatures in Toronto
in March, and recorded the following observations

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution N (µ,⌃).
We want to estimate µ and ⌃ using data.
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Maximum Likelihood for Univariate Gaussian

@`

@µ
= �

1

�2

NX

i=1

x(i)
� µ = 0

µ̂ML =
1

N

NX

i=1

x(i)
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Maximum Likelihood for Univariate Gaussian

@`

@�
=

@

@�

"
NX

i=1

�
1

2
log 2⇡ � log � �

1

2�2
(x(i)

� µ)2
#

=
NX

i=1

�
1

2

@

@�
log 2⇡ �

@

@�
log � �

@

@�

1

2�
(x(i)

� µ)2

=
NX

i=1

0�
1

�
+

1

�3
(x(i)

� µ)2

= �
N

�
+

1

�3

NX

i=1

(x(i)
� µ)2 = 0

�̂ML =

vuut 1

N

NX

i=1

(x(i) � µ)2
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:

`(µ,⌃) = log
NY

i=1


1

(2⇡)d/2|⌃|1/2
exp

⇢
�
1

2
(x(i)

� µ)T⌃�1(x(i)
� µ)

��

=
NX

i=1

log


1

(2⇡)d/2|⌃|1/2
exp

⇢
�
1

2
(x(i)

� µ)T⌃�1(x(i)
� µ)

��

=
NX

i=1

� log(2⇡)d/2| {z }
constant

� log |⌃|
1/2
�

1

2
(x(i)

� µ)T⌃�1(x(i)
� µ)
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

d`

dµ
= �

NX

i=1

d

dµ

1

2
(x(i)

� µ)T⌃�1(x(i)
� µ)

= �
NX

i=1

⌃�1(x(i)
� µ) = 0 using identity rxx

>Ax = 2Ax

Solving for µ, we get

µ̂ =
1

N

NX

i=1

x(i).

The best estimate for µ is the sample mean of the observed values,
or the empirical mean.
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Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix ⌃.

@`

@⌃
= 0

⌃̂ =
1

N

NX

i=1

(x(i)
� µ̂)(x(i)

� µ̂)>

=
1

N
(X� 1µ>)>(X� 1µ>)

where 1 is an N -dimensional vector of 1s.

The best estimate for ⌃ is the empirical covariance.
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), t(i))}Ni=1

Linear model:
y = w>x

Squared error loss:

L(y, t) =
1

2
(t� y)2

L2 regularization:

R(w) =
�

2
kwk2

Closed-form solution:

w = (X>X+ �I)�1X>t

Gradient descent update rule:

w (1� ↵�)w � ↵X>(y � t)
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Linear Regression as Maximum Likelihood

Let’s give linear regression a probabilistic interpretation.

Assume a Gaussian noise model.

t |x ⇠ N (w>x, �2)

Linear regression is just maximum likelihood under this model:

1

N

NX

i=1

log p(t(i) |x(i);w, b) =
1

N

NX

i=1

logN (t(i);w>x,�2)

=
1

N

NX

i=1

log

"
1

p
2⇡�

exp

 
�
(t(i) �w>x)2

2�2

!#

= const�
1

2N�2

NX

i=1

(t(i) �w>x)2
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Regularization as MAP Inference

View an L2 regularizer as MAP inference with a Gaussian prior.

Recall MAP inference:

argmax
w

log p(w | D) = argmax
w

[log p(w) + log p(D |w)]

We just derived the likelihood term log p(D |w):

log p(D |w) = � 1
2N�2

NX

i=1

(t(i) �w>x)2 + const

Assume a Gaussian prior, w ⇠ N (m,S):

log p(w) = logN (w;m,S)

= log


1

(2⇡)D/2|S|1/2 exp
⇣
� 1

2 (w �m)>S�1(w �m)
⌘�

= � 1
2 (w �m)>S�1(w �m) + const

Commonly, m = 0 and S = ⌘I, so

log p(w) = � 1
2⌘

kwk2 + const.

This is just L2 regularization!
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Generative vs Discriminative (Recap)

Two approaches to classification:

Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

I Model p(t|x) directly (logistic regression models)

I Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

I Tries to solve: How do I separate the classes?

Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

I Model p(x|t)

I Apply Bayes Rule to derive p(t|x).

I Tries to solve: What does each class ”look” like?
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Classification: Diabetes Example

Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

Observation per patient: White blood cell count & glucose value.

p(x | t = k) for each class is shaped like an ellipse
=) we model each class as a multivariate Gaussian
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Gaussian Discriminant Analysis

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

Multivariate Gaussian distribution:

p(x | t = k) =
1

(2⇡)D/2|⌃k|
1/2

exp


�
1

2
(x� µk)

T⌃�1
k (x� µk)

�

where |⌃k| denotes the determinant of the matrix.

Each class k has associated mean vector µk and covariance matrix ⌃k

How many parameters?

I Each µk has D parameters, for DK total.
I Each ⌃k has O(D2) parameters, for O(D2K) — could be hard to

estimate (more on that later).
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GDA: Learning

Learn the parameters for each class using maximum likelihood

For simplicity, assume binary classification

p(t |�) = �t(1� �)1�t

You can compute the ML estimates in closed form (� and µk are easy,
⌃k is tricky)

� =
1

N

NX

i=1

r(i)1

µk =

PN
i=1 r

(i)
k · x(i)

PN
i=1 r

(i)
k

⌃k =
1

PN
i=1 r

(i)
k

NX

i=1

r(i)k (x(i)
� µk)(x

(i)
� µk)

>

r(i)k = [t(i) = k]
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GDA Decision Boundary

Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule:

p(t |x) =
p(t) p(x | t)P
t0 p(t

0) p(x | t0)

Plug in the Gaussian p(x | t):

log p(tk|x) = log p(x|tk) + log p(tk)� log p(x)

= �
D

2
log(2⇡)�

1

2
log |⌃k|�

1

2
(x� µk)

>⌃�1
k (x� µk) +

+ log p(tk)� log p(x)

Decision boundary:

(x� µk)
>⌃�1

k (x� µk) = (x� µ`)
>⌃�1

` (x� µ`) + Const

What’s the shape of the boundary?

I We have a quadratic function in x, so the decision boundary is a
conic section!
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GDA Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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GDA Decision Boundary

Our equation for the decision boundary:

(x� µk)
>⌃�1

k (x� µk) = (x� µ`)
>⌃�1

` (x� µ`) + Const

Expand the product and factor out constants (w.r.t. x):

x>⌃�1
k x� 2µ>

k ⌃
�1
k x = x>⌃�1

` x� 2µ>
` ⌃

�1
` x+Const

What if all classes share the same covariance ⌃?
I We get a linear decision boundary!

�2µ>
k ⌃

�1x = �2µ>
` ⌃

�1x+Const

(µk � µ`)
>⌃�1x = Const
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GDA Decision Boundary: Shared Covariances

variances may be 
different 
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GDA vs Logistic Regression

Binary classification: If you examine p(t = 1 |x) under GDA and assume
⌃0 = ⌃1 = ⌃, you will find that it looks like this:

p(t |x,�,µ0,µ1,⌃) =
1

1 + exp(�wTx� b)

where (w, b) are chosen based on (�,µ0,µ1,⌃).

Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

I If this is true, GDA is asymptotically e�cient (best model in limit
of large N)

I If it’s not true, the quality of the predictions might su↵er.

Many class-conditional distributions lead to logistic classifier.

I When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

What if x is high-dimensional?

I The ⌃k have O(D2K) parameters, which can be a problem if D is
large.

I We already saw we can save some a factor of K by using a shared
covariance for the classes.

I Any other idea you can think of?

Naive Bayes: Assumes features independent given the class

p(x | t = k) =
DY

j=1

p(xj | t = k)

Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

I This is equivalent to assuming the xj are uncorrelated, i.e. ⌃ is
diagonal.

I Hence, only D parameters for ⌃!
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Gaussian Näıve Bayes

Gaussian Näıve Bayes classifier assumes that the likelihoods are
Gaussian:

p(xj | t = k) =
1

p
2⇡�jk

exp

"
�(xj � µjk)2

2�2
jk

#

(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as GDA with diagonal covariance matrix

Maximum likelihood estimate of parameters

µjk =

PN
i=1 r

(i)
k x(i)

j
PN

i=1 r
(i)
k

�2
jk =

PN
i=1 r

(i)
k (x(i)

j � µjk)2

PN
i=1 r

(i)
k

r(i)k = [t(i) = k]
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Decision Boundary: Isotropic

We can go even further and assume the covariances are spherical, or
isotropic.

In this case: ⌃ = �2I (just need one parameter!)

Going back to the class posterior for GDA:

log p(tk|x) = log p(x | tk) + log p(tk)� log p(x)

= �
D

2
log(2⇡)�

1

2
log |⌃�1

k |�
1

2
(x� µk)

>⌃�1
k (x� µk) +

+ log p(tk)� log p(x)

Suppose for simplicity that p(t) is uniform. Plugging in ⌃ = �2I and
simplifying a bit,

log p(tk |x)� log p(t` |x) = �
1

2�2

⇥
(x� µk)

>(x� µk)� (x� µ`)
>(x� µ`)

⇤

= �
1

2�2

⇥
kx� µkk

2
� kx� µ`k

2
⇤
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Decision Boundary: Isotropic

* ? 

The decision boundary bisects the class means!
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Example
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Generative models - Recap

GDA has quadratic (conic) decision boundary.

With shared covariance, GDA is similar to logistic regression.

Generative models:
I Flexible models, easy to add/remove class.

I Handle missing data naturally.

I More “natural” way to think about things, but usually doesn’t work
as well.

Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t |x)).

Next up: Unsupervised learning with PCA!
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GPT
discriminative or generative
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