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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.
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@ p(x|t = k) for each class is shaped like an ellipse
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— we model each class as a multivariate Gaussian
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Overview

o Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.

@ Continuous random variables:

» Manipulating Gaussians to tackle interesting problems requires lots
of linear algebra, so we’ll begin with a linear algebra review.

» Additional reference: See also Chapter 4 of Mathematics for
Machine Learning, by Desienroth et al.
https://mml-book.github.io/
@ Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

e Generative classifier for continuous data: Gaussian
discriminant analysis, a Bayes classifier for continuous variables.

o Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.
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https://mml-book.github.io/

@ Lincar Algebra Review
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Figenvectors and Eigenvalues

(Vunea kiauwghes weien)
e Let B be a square matrix. e
e An eigenvector of B is a vector v such that N\ A7 is in span
Bv = \v € gevecter

(8-21)v =0

for a scalar A, which is called an eigenvalue.

@ A matrix of size D x D has at most D distinct eigenvalues,
but may have fewer.

e We will focus on symmetric matrices.
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Spectral Theorem

\
\[f;[_\/‘ \I"L " \/D] \/(\ V?,,... \/D
\ eigenjecters
V=T /! ench of fuese e &4
For a symmetric D x D matrix, \/—.‘( \/\‘3 =0 7Y
e All of the eigenvalues are real-valued. Tya=
Vi

@ There is a full set of D linearly independent eigenvectors.
These eigenvectors form a basis for R?.

@ The eigenvectors can be chosen to be real-valued.

@ The eigenvectors can be chosen to be orthonormal.
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:

N

( (= _ T
e|~g — | A-Qa A
9 T
where L’\E — [%l Az .- a[,n’& v @
@ Qis an ort%ogonal Tatrix An
» The columns q; of Q are eigenvectors.
. : . CZTQ =T
@ A is a diagonal matrix. - L
» The diagonal entries \; are the corresponding eigenvalues.
Check that this is reasonable: A Q = Q\/L

A qu q_z . ﬂ-ﬂ = [Q; Dlz 0{_4 ~
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Spectral Decomposition

e Because A has a full set of orthonormal eigenvectors {q;},
we can use these as an orthonormal basis for R”.

@ A vector x can be written in an alternate coordinate system:
X =21q1 + -+ Zpdp

e Converting between the two coordinate systems:

Coweris o e]qanhalg comves
e In the alternate coordinate system,

A acts by re-scaling the individual coordinates:

: (s to origersl bt

Ax =21Aq; +---+ZpAdap
= \MZ1491 + -+ ApZpap
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PSD Matrices

~

>,.
o If v Av > 0 for all v # 0, A is positive definite, denoted A > 0.

o If v Av > 0 for all v, A is positive semi-definite, denoted A > 0.
o If v Av < 0 for all v # 0, A is negative definite, denoted A < O.

o If v Av can be positive or negative, A is indefinite.

positive definite non-strictly PSD Q (\’\ 2 0

77 L

negative definite indefinite

Symmetric matrices represent quadratic forms, f(v) = v' Av.

-
/
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oF e'u?e«m/&(“es Cer
A7
e Exercise: Non-negative linear combinations of PSD matrices are

PSD. Avy0O ad BGZO

PSD Matrices Whah are Yhe @penvectur

fove {1870
prve A48 KT (A4B)X
Vx <'Axz20 = x Ay X 0OX
KBy =z O 20
e Related: If A is a random matrix which is always PSD, then %
E[A] is PSD.
o Exercise: For any matrix B, the matrix BB ' is PSTD. -
Conslolef af b't{raf\/ X (Ab) =D /4
— — T T A
T T\ < 7
SBRTx ~ (BTx) (8')= B« 20
Te =llel
cte=llel,

@ Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x — p)(x — p) '] is a PSD matrix. (Special case of
above, since x — pu is a column vector, i.e. a D x 1 matrix.)
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PSD Matrices

Claim: A is positive definite (PSD) if and only if
all of its eigenvalues are positive (non-negative).

=

VAV

Proof: Write v in terms of the eigenbases, < T
& = QNQ V
v=Q'v
B ' wi A w
N
Then, we have = z zinZC)
= —
v Av = VTQAQTV {=7
_ NTA{} A'l Z o

§ ~ 2
— )\’ivi
1

This is positive (nonnegative) for all v if and only if
all the \; are positive (nonnegative).
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PSD Matrices

e If A is positive definite, then the contours of the quadratic form
are elliptical.

o If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

7
O“;K?—“’ Ko

0.5 0
= (0)

- —7

fv)=v'Av

E CLi’U,L-2
1
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PSD Matrices

For a positive definite A = QAQ', the contours of the quadratic form
are elliptical, and the principal axes of the ellipses are aligned with the
elgenvectors.

=5

f(v)=v'QAQ'v

— v AV

E : ~2
7

In this example, A1 > Ao.
All symmetric matrices are diagonal if you choose the right coordinate

system.
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Matrix Powers

By the Spectral Decomposition, we can square a symmetric A:

A?=(QAQ") =QAQ'QAQ" =QA%*Q’

A ceally had geaeally =1 A" x —
: ‘oenbs:
We can take the k-th power of A: Geometric Shit {o_e v e
fov _ T ntes pfda\'m 5C°‘(C Ql?@ﬂ\""
i ”GI Wifts Wacl¢
- kE __ EnyT s
A"« QAL AF = QAFQT. oy 11
Scale egenveluaes
If A is invertible, we calculate its inverse: Shif4 bzc\(

A—l _ (QT)—IA—lQ—l _ QA_lQT-

If A is PSD, then we can calculate its square root:

AL/2 QA1/2QT.
(A*)(A)= A

CSC311-Lec8 14 /53
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Determinant Properties

Claim: The determinant of a symmetric matrix equals

the product of its eigenvalues.

Al =]QAQ'|=1Q[A|IQ"| = |A| = HA@-.
IAl@Tel = AL

Corollary: The determinant of a PSD (positive definite) matrix is

non-negative (positive).
Basic properties of a determinant:

BC| = [B|-[C

B| = 0 iff B is singular

B~!| = |B|™! if B is invertible (nonsingular)
B'| =B

o If Q is orthogonal, then |Q| = +1

(i.e. orthogonal transformations preserve volume)
o If A is diagonal with entries {);}, then |A| =[], \i.
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© Multivariate Gaussian Distribution
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Univariate Gaussian distribution

) - el (- E512)

no"
2

e Parameterized by mean p and variance o“.

e Why is Gaussian so popular?

» Sums of lots of independent random variables are approximately
Gaussian (Central Limit Theorem).

» Machine learning uses Gaussians a lot because they make the
calculations easy.

CSC311-Lec8 17 /53
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Multivariate Mean and Covariance

Mean
p=E[x] =
Covariance E BX M\(_K ’MJ’& \ &S (_K \\
/ 01 0122
% = Cov(x) = E[(x — p)(x — 1) "] = "2
\UDl 0 D2

01D
02D

2
D

(p and X)) uniquely define a multivariate Gaussian (or Normal)

distribution, denoted N (u, 3) or N (x; p, ).
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PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution (d

e
exp | —
o

V2m

PDF of the multivariate Gaussian distribution:

N (25 p,0%) =

N, S) = — 1

,-//”i'oﬁ‘\\ N
fff”’"lé:‘&\“%\‘
‘,1(1{ 00“‘ “\\\\\\‘
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Univariate Shift + Scale

e All univariate Gaussian distributions are shaped like
the standard normal distribution.

o Obtain N (u,0?) by starting with A(0, 1), shifting by u, and

stretching by o = V2. o b Jaconce
S skaw:(wﬂl dev.

Lo LIS L B B L B N B [ sca.le"\ne
i 120, 07202, _ Joulonce
I H=0, 0%=1.0, == 1

81 U=0, 02=50, == |
- H=-2, 0?=0.5, == 7
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Multivariate Shift + Scale

e Start with a standard Gaussian x ~ N (0,I). So E[x] = 0 and
Cov(x) =L

e What happens if we apply the map x = Sx + b?

e By linearity of expecation,
E[x| = SE[x] + b = b.
e By the linear transformation rule for covariance,
Cov(X) = SCov(x)S' =SS'.

@ X is also Gaussian distributed.

CSC311-Lec8 2. ) B
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Multivariate Shift + Scale

E[Sx+b]=b
Cov(Sx+b) =SS'.

e To obtain N (u, X), we start with A (0,1),
shift by u, and scale by the matrix square root »1/2,
» Recall: /2 = QA'/2Q.

» For each eigenvector q; with eigenvalue \;, we stretch by a factor of
Vv A; in the direction q;.
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Bivariate (Gaussian

o
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Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate (Gaussian
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Bivariate (Gaussian

Aysua@ Anngqeqoid

Figure: Probability density function
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Figure: Contour plot of the pdf
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© Gaussian Maximum Likelihood
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Maximum Likelihood for Mu@@e (Gaussian

model ¥he temperaiure h’tg\ns . Wietfe down (iceliedd
eq. -2.5, vA%, -2, 1. wagimize lie ook
owd find mean OQ Gaussion | h(x -,M)?'
—_— 20
Jne®

Model the distribution of highest and lowest temperatures in Toronto
in March, and recorded the following observations

(-2.5,-7.5) (-9.9,-14.9) (-12.1-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution N (u, X).
We want to estimate p and 32 using data.
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+muo¢h«€s'. x(,Xq_‘ .- Xn ‘ {
-i.d | N Nr
T (Wt gt
L_(g) = ‘l e‘ 205 l
7 e |
ﬂla’ 1=\ \.Te::g“§w./
A (gmax L(m) = wq::ax/(ﬂ)
’ _ N _(K'.—M)z
et ]oa(e T )
M FEN ”
N (xi-M)
= oQcgmaxX - < I
?‘A bee ol 3‘)0::-'\812‘\%
w 27
T ovqmax Z{ki-m)
moo )
< aujvv\l/\ 2 (Xi—M}
M L=

N
A i)« 25~ =0
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Maximum Likelihood for Univariate Gaussian

LS X0 =0
Op S
1 N
e — (2)
MML = N ZX
1=1
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Maximum Likelihood for Univariate Gaussian

or 9 1 1
— =Y -2 —logo — — (x(V — p)?
do 9o ; 5 log2m —logo — 575 (7 — )
N
19 o o 1
_\"_+19 _ o RN () B
EZ: 2 0o log 2 oo loga oo 20'(X 1)
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:

T logl_[[%)d/;m’l/2 exp{—§( 0 _ )T —1(X<i)_“)}]

L 1 (i
- Zlog [ o d/Q‘E‘l/Q CXp {_§(X( ) — )" E T (x) — H)}]

1

= Z; log(2m)"2 —log |52 — _(x1V — )" 57 (x'V) — p)
1=1 constant
RO Tt 30753




Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

— Z > Hx® — p) =0 using identity Vyx' Ax = 2Ax

Solving for wu, we get

L)
= — X
pa

The best estimate for p is the sample mean of the observed values,
or the empirical mean.

CSC311-Lec8 Bl ) B3

Intro ML (UofT)




Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix Y.

oY
s "
1 N
S D _ 5 (x® — )T
3 N;:lﬁ(x p)(x" — f)

where 1 is an N-dimensional vector of 1s.

The best estimate for X is the empirical covariance.
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O Revisiting Linear Regression
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Recap: Linear Regression

o Given a training set of inputs and targets {(x(®), ¢}V

@ Linear model:

@ Squared error loss:

@ Lo regularization:

A
R(w) = © [wl?
@ Closed-form solution:
1L w07 [ w&: (X'X 4+ D)Xt

e Gradient descent update rule:
E w (1—aNw—aX'(y—t)
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Linear Regression as Maximum Likelihood

@ Let’s give linear regression a probabilistic interpretation.

@ Assume a Gaussian noise model. 0 %)(, A %

tx ~N(w'x, o2

@ Linear regression is just maximum likelihood under this model:

—Zlogp (tD %9 w, b) Zlog/\f (tW: w'x,o?)
1=1
N
1 1 (t(z) —w ' x)?
=~ Zlog { Nor exp ( 502

_ (1) _ 2
= const 2N02 ; (t N4 X)A
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Regularization as MAP Inference

@ View an Lo regularizer as MAP inference with a Gaussian prior.
@ Recall MAP inference:

arg max log p(w | D) = arg max [log p(w) + log p(D | w)]

@ We just derived the likelihood term logp(D | w):

N

1 |
~ 2No? E (Y — wx)? + const
o2 -

=1

logp(D|w) =

@ Assume a Gaussian prior, w ~ N (m, S):
log p(w) = log N(w;m, S)

= log [(27-‘-)17/12’8’1/2 exp (—%(W —m)' S Y (w-— m))]

= —2(w— m)' S™!'(w — m) + const

@ Commonly, m =0 and S = nl, so

1
log p(w) = ——||w||* + const.
2n
This is just Lo regularization!
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© Gaussian Discriminant Analysis
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Generative vs Discriminative (Recap)

Two approaches to classification:

e Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.

» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

» Tries to solve: How do I separate the classes?

o Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

K
» Model p(x|t) ?L \ mox (¢ (&)
» Apply Bayes Rule to derive p(t|x). t

b‘w\an[ clagsificattion

» Tries to solve: What does each class ”look” like?
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Classification: Diabetes Example

@ Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

@ Observation per patient: White blood cell count & glucose value.

40

@ p(x|t = k) for each class is shaped like an ellipse
— we model each class as a multivariate Gaussian
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Gaussian Discriminant Analysis

KA LS 2

R°— K

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution: .. 1 R .
/1\,«\1\0‘(:0:2;‘(7 | // q’uad’a"‘c rom
p(X | t = k) — (27T)D/2’2k’1/2 exXp [_5(}( o uk>T§lzl(X o I’l’k)

—
where |3 | denotes the determinant of the matrix.

@ Kach class k has associated mean vector p, and covariance matrix 3

@ How many parameters? O 0x0O

» BFach p;, has D parameters, for DK total.
» Each X, has O(D?) parameters, for O(D?K) — could be hard to
estimate (more on that later).

CSC311-Lec8 40 /53

Intro ML (UofT)




GDA: Learning

@ Learn the parameters for each class using maximum likelihood

@ For simplicity, assume binary classification
p(t|¢) =o' (1—¢)

@ You can compute the ML estimates in closed form (¢ and u, are easy,

3l is tricky) cpam
N () peior peoloaldliy w
K ¢| — Z " 4 fotal

x (9)

1
N

K
‘ "\3—9 B, = 2 (ave«age feadure vediers for ol

N
— N (i) spam ewails
Zi:l Tk ’

N
1 D) (i i
Bos v > = gy ) (xD = pay) T
i=1Tk =1 (SW"\ of outer (,mo(uds)
P = 1D = g
S
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GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule: pelor peeo. k-~ Multvodiode gaussian
p(t) p(x|t)
p(t|%) = ’

; Zt’ p(t/) p(X ‘ t/) (o(eﬂmiv\o:fcf same
for every clas9)

@ Plug in the Gaussian p(x |?):

logp(tk|x) = logp(x[ty) + logp(ty) — logp(x)
D 1 1 _
Y log(27) — 9 log |Xk| — §(X — :u’k)TEk 1(X — Hy) +

+log p(tx) — log p(x)
log p(t %) = leg plezix)

@ Decision boundary:
(x — Mk)ngl(X — M) = (X — He)TEe_l(X — ) + Const
oluo‘dmﬁc fesms of X
@ What’s the shape of the boundary?

» We have a quadratic function in x, so the decision boundary is a
conic section!
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GDA Decision Boundary

NN
JJ/*W! ’f " ‘:t\‘
,vlf/ﬁ)fg{" ::'0:‘:{

N
#0450

y ,"};"/f;’_c'

discriminant:
P(t;|x)=0.5

posterior for t, O
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GDA Decision Boundary

@ Our equation for the decision boundary:

(x — ) Tt (x — ) = (x — pp) 'y (x — ) + Const
o Expand the product and factor out constants (w.r.t. x):
TE X—Z,u > X—XTZ X—2[1, X, 'x + Const

@ What if all classes share the same covariance X7
» We get a linear decision boundary!

—2u) 37 x = —2u,) 7 'x + Const

(g — Hg)TE x = Const
| weas function of X
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GDA Decision Boundary: Shared Covariances

variances may be
Q different

Intro ML (UofT)
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GDA vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
3o = X1 = X, you will find that it looks like this:

1
14 exp(—wTx —b)

p(t | X, Qb, I*"O? I*l'lv 2)

where (w, b) are chosen based on (¢, g, pt1, 2).

@ Same model as logistic regression!

Intro ML (UofT)
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

» If this is true, GDA is asymptotically efficient (best model in limit
of large N)
» If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

» When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
= ‘geore features with Missig A<torpoints X X
K

X
VAN « %
.\.-G'-(-

CSC311-Lec8 A} 47 / 53
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A
Gaussian Naive Bayes (sl hoed to
55\’“""4“ )

¢ -Baussion
@ What if x is high-dimensional? Whe’l fve doda g Nom-Caussa

» The X have O(D?K) parameters, which can be a problem if D is
large.

» We already saw we can save some a factor of K by using a shared
covariance for the classes.

» Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class
D
p(x|t=k)=]]pz;|t=Fk)
j=1

@ Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

» This is equivalent to assuming the z; are uncorrelated, i.e. 3 is
diagonal.
» Hence, only D parameters for X!

Intro ML (UofT)

CSC311-Lec8 48 / 53




Gaussian Naive Bayes

@ Gaussian Nalve Bayes classifier assumes that the likelihoods are

Gaussian:
1 (s — )2
exp (CUJ 2M3k)
V2710 207,

(this is just a 1-dim Gaussian, one for each input dimension)

plz;|t=Fk)=

@ Model the same as GDA with diagonal covariance matrix

@ Maximum likelihood estimate of parameters

N (i) (i
L
JE N (d
21:17“12)
N (), (i
2 Zi:1ré)(x§)_ﬂjk)2
. = 7:
J fo\;ﬁi)
r = 1@ = g
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Decision Boundary: Isotropic

@ We can go even further and assume the covariances are spherical, or
isotropic.

@ In this case: X = 0°I (just need one parameter!)

@ Going back to the class posterior for GDA:

logp(tk|x) = logp(x|tk) + logp(tx) — logp(x)

D 1 1 _
—Elog@”)_il 1|_§(X—I~Lk)TEk1(X—Nk)‘|‘

+log p(tk) — log p(x)

og |2,

@ Suppose for simplicity that p(t) is uniform. Plugging in ¥ = 0?1 and
simplifying a bit,

1
log p(ty, [ x) —log p(te|x) = —5— [(x - )| (x = py) = (x — pg) " (x — )]
1
=5z lx- I = 1% — pag||?]
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Decision Boundary: Isotropic

@ The decision boundary bisects the class means!
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)

Intro ML (UofT)

CSC311-Lec8 52 /) B3




Generative models - Recap

o GDA has quadratic (conic) decision boundary. ( less liey

lineas decisicn boardary fo ovedit)
e With shared covariance, GDA is similar to logistic regression.

@ Generative models:
» Flexible models, easy to add/remove class.

7 3 — =Y. .
» Handle missing data naturally.
g y (skip que ones ‘fhtf‘h&{fﬂ )
» More “natural” way to think about things, but usually doesn’t WOI‘IZ

as well.

@ Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t|x)).

Next up: Unsupervised learning with PCA!
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