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Today

@ So far in the course we have adopted a modular perspective, in
which the model, loss function, optimizer, and regularizer are
specified separately.

e Today we begin putting together a probabilistic interpretation of
our model and loss, and introduce the concept of maximum
likelihood estimation.
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@ Probabilistic Modeling of Data
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Example: A Biased Coin

You flip a coin N = 100 times and get outcomes {x1,...,zxN}
where x; € {0,1} and x; = 1 is interpreted as heads H.

Suppose you had Ny = 55 heads and Nr = 45 tails. 1 datn
CStimate prob. of heads

We want to create a model to predict the outcome of the next coin flip.
That is, we want to answer this question:

What is the probability it will come up heads if we flip again?
WoHT, ..
-0 (-0)
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Model

The coin may beliefs biased. Let’s assume that one coin flip outcome x
is a Bernoulli random variable for a currently unknown parameter

0 < |0,1].
| S
p(x=1/) =60 and p(x=0/0)=1—-40
or more succinctly p(z|6) = 0%(1 — 9)'~®
Assume that {x1,...,zx} are independent and identically distributed
(i.i.d.). Thus, the joint probability of the outcome {x1,...,zxN} is

100

N
p(xb ey xN‘e) — H sz(l — 9)1—213,@
Qtu\oo of date glosorued =1
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LLoss Function

The likelihood function is the probability of observing the data as a

. h‘(\
tunction of the parameters 6: —

— L —

N
L) =]]o" -6

maoximize s
exe $Sion

arguar [ (6)-
Q (MMD&M‘(C .@m«sldm\"w)

N a(gwax loj L(g’)
(0) = wilogh+ (1 — x;)log(1 — 0) o

1=1
@osier to manipulede
V\wmeﬂca( s(abl(\{x/

‘ (

\- O
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We usually work with log-likelihoods (why?):




Maximum Likelihood Estimation

How can we choose 67 Good values of 6 should assign high probability
to the observed data.

The maximum likelihood criterion says that we should pick the 1
parameters that maximize the likelihood.

) N
Oz, = argmax £(6) lf\l—H/ e
0c[0,1] o |-©
’t\lne ”"Q

We can find the optimal solution by setting derlvatlves to zero.

N
N N
ié_%(inlogH—l—(lxi)log(l9)>——H L =0

dé 0 1—46
L 1

1=1

where Ng = > . z; and Np =N — ) . z;.
Setting this to zero gives the maximum likelihood estimate:

0“\,@ NH V\\A.Mb(‘ d€ heads

@\ I Ont, = L —
Q Ny + Nt For o\ Qe

T
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Maximum Likelihood Estimation
ot £ (olx (e y) & & (-A8G) /
£ )20

o define a model that assigns a probability (or has a probability
density at) to a dataset

e maximize the likelihood (or minimize the neg. log-likelihood).

(o)

= QS ﬁ'mm{
&

H
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© Discriminative and Generative Classifiers
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Spam Classification

>
i

Dear Karim,

| think we should postpone the board meeting to be held
after Thanksgiving.

Regards,
Anna

Dear Toby,

| have an incredible opportunity for mining 2 Bitcoin a day. Please
Contact me at the earliest at +1 123 321 1555. You won’t want to miss
out on this opportunity.

Regards,
Ark
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For a large company that runs an email service, one of the important
predictive problems is the automated detection of spam email.
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Discriminative Classifiers

Discriminative classifiers try to learn mappings directly from the
space of inputs X to class labels {0,1,2,..., K}

Features Class probability

T ~p(y| )

postpone, board, meeting, Not spam
Thanksgiving
mining, Bitcoin, contact, Spam
opportunity
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(Generative Classifiers

Generative classifiers try to build a model of “what data for a class
looks like”, i.e. model p(x,y). If we know p(y) we can easily compute

p(xy). p(x ltz‘ )

Classification via Bayes rule (thus also called Bayes clasdi

Probability of feature given label Class label

p(x|y)- Y

postpone, board, meeting, Not spam
Thanksgiving
mining, Bitcoin, contact, Spam
opportunity
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(zenerative vs Discriminative

e Discriminative approach: estimate parameters of decision

boundary/class separator directly from labeled examples.
cose cbsut
» Model p(t|x) directly (logistic regression models) decision lrundocy

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)
» Tries to solve: How do I separate the classes?

@ Generative approach: model the distribution of inputs
characteristic of the class (Bayes classﬁier)c.JC \ 7 P(t\ p(x H:)
» Model p(x|t) _ PLu
> Apply Bayes Rule to derive p(t|x). =  ¢(x)
» Tries to solve: What does each class ”"look” like?

e Key difference: is there a distributional assumption over inputs?
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© Naive Bayes Models
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Example: Spam Detection

o Classify email into spam (¢ = 1) or non-spam (c = 0).
o Binary features x = [z1,...,zp],2; € {0,1} saying ()2 (cOC
whether each of D words appears in the e-mail.

Example email: “You are one of the very few who have been selected
as a winner for the free $1000 Gift Card.”

Feature vector for this email:

o ...

@ “card”: 1

o .

@ “winners”: 1
@ “winter”: 0
o .

@ “you’: 1
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Bayesian Classifier

Given features x = [x1, T2, - ,zp]’
want to compute class probabilities using Bayes Rule:
geneiciie Mw'e(hj ﬂw\
gs(e"‘\ ol Pr. feature given class ‘Z P(IU(
v p(x|c) p(c)
p(clx) =
N—— p(X)

Pr. class given feature

In words,

Pr. of feature given class x Prior for class

Posterior for class =
Pr. of feature

To compute p(c|x) we need: p(x|c) and p(c).
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Motivation for Compact Representation

994"’\
¢ (0,1)
X, (0,1) whetnes wedd %ﬂ ?;;P
o Two classes: c € {0,1}. Xy (;Ol 1) word 2 Exowrple
e Binary features x = |z1,...,zp], = {0,1}

e Define a joint distribution p(c, z1, ... ,a:D)./’
How many probabilities do we need to specify (t)hi's joint dist.?
+
25 =
e Let’s impose structure on the distribution so that  expomeafial
the representation is compact and
allows for efficient learning and inference

Cou b 3]
Coo f2 vomfz ]
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Naive Bayes Independence Assumption

. k "
Wt 0(Crk - xo)= p ()plr)plk, |x, &) ples e, xic )

Nalve assumption:
the features x; are conditionally independent given the class c.

@ Allows us to decompose the joint distribution:
p(caxla . 7:CD) — p(C) p(il?l’C) o p(CUD’C)

Compact representation of the joint distribution
@ Prior probability of class:
p(c=1) =m (e.g. prob of spam)

e Conditional probability of feature given class:
p(z; = 1|c) = ;. (e.g. prob of word appearing in spam)
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Intro ML (UofT)




Bayesian Network for a Naive Bayes Model

C
X” .- X0 D‘H
sawe 1
arfn fvicie
(1) (2 (D) 20+
We can form a graphical model. O( O) pobabitieS

@ Which probabilities do we need to specify this dist.?
e How many probabilities do we need to specity this dist.?

\.W\QU‘J
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log alo=lesy @ ley b

A odasef v€
Decompose the log-likelihood into indepepdent terms. E (& /‘1)3
[

Optimize each term independently. H P(C (t) M)

N
ZZIng(c(i),X(Z) Zlog{ <z>‘c<z>) (c <7:)>)}

D definition of jeint prob.
— Z 10g { H ‘ C( ) } Nalve bms{es osswmplion
1 71=1

N | D o Loy ettty

Decomposing the Log-Likelihood

4 \ - 4

Log-likelihood Log-likelihood
of labels for feature z;
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Learning the Prior over Class gpam, nok spsen , Nt

7C - ((’K) 9 (\/K)

@ To learn the prior, we maximize Zf\;l log p(c(i)) | gpom
@ Define m = p(c(i) =1) pcosiilily gl s spar ¢ deate %O not

o Pr. i-th email: p(c¥)) = 7'('6(7;)(1 — W)l_c(i).

1 — () o 3TV spam
e Log-likelihood of the dataset: P(C ) - %l*ﬂ nok spam

N
Zlogp () = Z (%) logw—l—Z(l — DY log(1 — )

1=1 1=1 C() | - C‘)
logT © (l )
e Maximum likelihood estimate of the prior = 03 e ,

is the fraction of spams in dataset. = | Oﬂ ( 1 Hej[l— T()pdd]
- oV ootn)
LD ]I[c(z) = 1] # spams in datagset
" N total # samples
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Learning Pr. Feature Given Class

(()

@ To learn p(x

— 1 ] ) we maximize ij\;l log p(xy)! C(i))
@ Define Qjc — ( 5)

=1]c).
20 (4)

o Pr. of i-th email: p(ajy) lc) =6, 9 (1—6;0)' .
o Log—likelihood of the dataset:
N

Zlogp ()|C =) {()10g931+( y))log(l—@jl)}

1=1
+ Z (7’) {xgz) log 00 + (1 — xgz)) log(1 — Hjo)}

e Maximum likelihood estimate of 0. 6
is the fraction of word j occurrances in each class in the dataset.

. > ]I[:c;i) =1 & ) = c . <=1 7word j appears in class ¢

0;. = , <
L_\JJ > ]I[C(Z) = (| # class ¢ in dataset
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.. . ct ccuneal
Predicting the Most Likely Class P nc'ﬁ\ O[()C out £ 2L0O
L,
MLE est IO o

@ We predict the class by performing inference in the model.

wert
e Apply Bayes’ Rule: 2 out ok 8wgp='

2~

pep(xle) _ PO Pl o
S p( () Ty p(e) T play | )
prec Pk | clags)

plc|x) =

e For input x, predict ¢ with the largest p(c H p(z;|c)

(the most likely class). K/—/

Xy X2 3 D naw awel
QLC?; og 04 0% plelx) ocp(e) [[nte;]e) A (L, andxa |
A o 5 =1
o 0.2 o4 08 @ ! o\icne P(C"\ Kﬂggb)
‘ Q“’V
=08:0.3-09:-0.2
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.. . (C <0, Keest )

Naive Bayes Properties P - 0.0 G005
plc) 0.1 04 P(c) - P& 1C) playlc) plrgic)
plclx) _,9_(.» =0.2 oA =C.9 | i i

0.[10.4 O.(fe4

e An amazingly cheap learning algorithm!

e Training time: estimate parameters using maximum likelihood
» Compute co-occurrence counts of each feature with the labels.
» Requires only one pass through the datal

e Test time: apply Bayes’ Rule

» Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

@ Analysis easily extends to prob. distributions other than Bernoulli.

@ Less accurate in practice compared to discriminative models

due to its “naive” independence assumption. e of

uen
seq weids matte/
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( P(Ojed’ O
\,'w(Qy {u(aria‘

2 Hw 3 release dcmore”

@ Bayecsian Parameter Estimation

Intro ML (UofT)

CSC311-Lec7 26 /37




Data Sparsity

vl uses Twe dede
/!

Maximum likelihood can overfit if there is too little data.

Example: what if you flip the coin twice and get H both times?

o, = —H 2
M NG+ Np 240

The model assigned probability 0 to T.
This problem is known as data sparsity.
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Defining a Bayesian Model

MLE . @ Lixed 1‘4"""{”‘/

We need to specify two distributions:

(’ randove \/od'w«.ble,
@ The prior distribution p(0)

encodes our beliefs about the parameters
before we observe the data.

@ The likelihood p(D | 0)
encodes the likelihood of observing the data
given the parameters.
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The Posterior Distribution

@ When we update our beliefs based on the observations,

we compute the posterior distribution using Bayes’ Rule:
(01D) = —HOWDIO)_* R60)
[p(@)p(D]6) 8" p( T o)

@ Rarely ever compute the denominator explicitly.

@ In general, computing the denominator is intractable.
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Revisiting Coin Flip Example
We already know the likelihood:

L(0) = p(D|f) = 0 (1 — 6)™7
&,_/'\__’—/
It remains to specify the prior p(f).

@ An uninformative prior, which assumes as little as possible.
A reasonable choice is the uniform prior.

@ But, experience tells us 0.5 is more likely than 0.99.

One particularly useflil El:i(()l‘ is the beta distribution:
((-)
T o [(a+b) v or ok
p(0;a,b) = 0 (1—6)". oo
I'(a)I'(b) o

\ .

@ We can ignore the normalization Constant.\l

p(6:a,b) o< 8471(1 —6)> 1,
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Beta Distribution Properties

o
o The expectation is E[f] = a/(a + b). € Ot

@ The distribution gets more peaked when a and b are large.

@ When a = b =1, it becomes the uniform distribution.

“|
o\ b
- uge
— a=05, b=05
s|| — a=1b=1 = |
/\ — a=5, b=5
O — a=2, b=6
Ml — a=200, b=100
| o=b=|
2_
8.0 0.2 0.4 0.6 0.8 1.0
CSC311-Lec? 31/37




Posterior for the Coin Flip Example

e Computing the posterior distribution:

p(8|D) o< p(8)p(D|0)

“.l‘ o m“‘ggi] 6

a—14+N b—14+N (1-)
Qos’(eﬁo( =19 "(1-0) i o
G ')

A beta distribution with parameters Ng + a and Nt + b.
N

@ The posterior expectation of 8 is:
Ng+a \/ atb

E|0|D| =
?1P] Ng+Nr+a+b

@ Think of a and b as pseudo-counts.
beta(a,b) = beta(1,1) + a — 1 heads + b — 1 tails.

@ The prior and likelihood have the same functional form

(conjugate priors).
- —
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Bayesian Inference for the Coin Flip Example

When you have enough observations, the data overwhelm the prior.

Small data setting Large data setting
Ny =2, Ny =0 ) Ny = 55, Ny = 45
N )1\
— Prior — Prior
25| Ueliood OnR | = petnoos redlgfeen Luie
2.0l 6 .l"d‘q*w_
5|
15
4l
1.0 3|
ol
0.5 ] 1,
1 /b{, o
a_ll
3 0.2 0.4 0.6 0.8 1.0$ 80 0.2 0.4 0.6 0.8 1.0
QOQ. - priur x lilkefiheed (nucrma('tzeoo
E Epa&’fer‘wf_l
eI e oy




Maximum A-Posteriori (MAP) Estimation

Finds the most likely parameters under the posterior (i.e. the mode).

3.0 , . . . e Mok p(@, 0)
— Prior

> 5|| — Likelihood

' —— Posterior @,M\Q

2.0} :

1.5} G—E C(e.l cwue::\

1.0t

0.5}

0875 0.2 0.4 0.6 0.8 1.0
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Maximum A-Posteriori Estimation

Converts the Bayesian parameter estimation problem
into a maximization problem

Buiap = argmax p(6| D)

0
= argmax p(6) p(D | 0)
= argmax logp(0) + logp(D | 0)
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Maximum A-Posteriori Estimation

Joint probability of parameters and data:

log p(6, D) = log p(0) + log p(D | 0)
= Const + (Ng +a —1)logf + (Np + b — 1) log(1 — 0)

Maximize by finding a critical point

d Ng+a-—1 NT—|—b—1_

— 1 0.D) = 0
Solving for 0,
é o NH —|— a — 1
MAP = N+ Nr+a+b—2
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Estimate Comparison for Coin Flip Example

chovs€ 0\|b o 9\0-.//\ o 'W\Q‘\vﬁ?&dﬁ“"; A
\/a(,\acz " conveigede Omp
Formula Ng =2, Nr =20 Ny = 55, Ny = 45
2 N 55 __
O, NHfNT 1 55 = 0.9
E|0|D] NH+ﬁTfa+b & ~ 0.67 151 ~ 0.548
A Ng+a—1 3 _ 56
Onap g\ 3 —0.75 36~ 0.549
u~ (@05
éM AP assigns nonzero probabilities as long as a,b > 1.
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