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Learning Weights in a Neural Network

Goal is to learn weights in a multi-layer neural network
using gradient descent.

Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

Define a loss L and compute the gradient of the cost dJ /dw,
the average loss over all the training examples.

Let’s look at how we can calculate dL/dw.
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Example: Two-Layer Neural Network
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Figure: Two-Layer Neural Network
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Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

z(1)1 = w(1)
01 · 1 + w(1)

11 · x1 + w(1)
21 · x2

h1 = �(z1)

z(2)1 = w(2)
01 · 1 + w(2)

11 · h1 + w(2)
21 · h2

y1 = z1

z(1)2 =

h2 =

z(2)2 =

y2 =

L =
1

2

�
(y1 � t1)

2 + (y2 � t2)
2
�
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Simplified Example: Logistic Least Squares

z = wx + b

y = �(z)

L =
1

2
(y � t)2

x

b
w

z y
t

L
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Computation Graph

The nodes represent the inputs and computed quantities.

The edges represent which nodes are computed directly
as a function of which other nodes.
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Uni-variate Chain Rule

Let z = f(y) and y = g(x) be uni-variate functions.
Then z = f(g(x)).

dz

dx
=

dz

dy

dy

dx
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Univariate Chain Rule

How you would have done it in calculus class

L =
1

2
(�(wx+ b)� t)2

@L
@w

=
@

@w


1

2
(�(wx+ b)� t)2

�

=
1

2

@

@w
(�(wx+ b)� t)2

= (�(wx+ b)� t)
@

@w
(�(wx+ b)� t)

= (�(wx+ b)� t)�0(wx+ b)
@

@w
(wx+ b)

= (�(wx+ b)� t)�0(wx+ b)x

@L
@b

=
@

@b


1

2
(�(wx+ b)� t)2

�

=
1

2

@

@b
(�(wx+ b)� t)2

= (�(wx+ b)� t)
@

@b
(�(wx+ b)� t)

= (�(wx+ b)� t)�0(wx+ b)
@

@b
(wx+ b)

= (�(wx+ b)� t)�0(wx+ b)

What are the disadvantages of this approach?
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Logistic Least Squares: Gradient for w

Computing the gradient for w:

@L
@w

=
@L
@y

@y

@w

=
@L
@y

@y

@z

@z

@w

= (y � t) �0(z) x

= (�(wx + b) � t)�0(wx + b)x

Computing the loss:

z = wx + b

y = �(z)

L =
1

2
(y � t)2
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Logistic Least Squares: Gradient for b

Computing the gradient for b:

@L
@b

=

=

=

=

Computing the loss:

z = wx + b

y = �(z)

L =
1

2
(y � t)2
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Logistic Least Squares: Gradient for b

Computing the gradient for b:

@L
@b

=
@L
@y

@y

@b

=
@L
@y

@y

@z

@z

@b

= (y � t) �0(z) 1

= (�(wx + b) � t)�0(wx + b)1

Computing the loss:

z = wx + b

y = �(z)

L =
1

2
(y � t)2
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Comparing Gradient Computations for w and b

Computing the gradient for w:

@L
@w

=
@L
@y

@y

@z

@z

@w

= (y � t) �0(z) x

Computing the gradient for b:

@L
@b

=
@L
@y

@y

@z

@z

@b

= (y � t) �0(z) 1

Computing the loss:

z = wx + b

y = �(z)

L =
1

2
(y � t)2
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Structured Way of Computing Gradients

Computing the gradients:

@L
@y

= (y � t)

@L
@z

=
@L
@y

�0(z)

@L
@w

=
dL
dz

dz

dw
=

dL
dz

x
@L
@b

=
dL
dz

dz

db
=

dL
dz

1

Computing the loss:

z = wx + b

y = �(z)

L =
1

2
(y � t)2
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Error Signal Notation

Let y denote the derivative dL/dy, called the error signal.

Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss:

z = wx + b

y = �(z)

L =
1

2
(y � t)2

Computing the derivatives:

y = (y � t)

z = y �0(z)

w = z x b = z
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Computation Graph has a Fan-Out > 1

L2-Regularized Regression

z = wx + b

y = �(z)

L =
1

2
(y � t)2

R =
1

2
w2

Lreg = L + �R
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Computation Graph has a Fan-Out > 1

Softmax Regression

z` =
X

j

w`jxj + b`

yk =
ezkP
` ez`

L = �
X

k

tk log yk
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Multi-variate Chain Rule

Suppose we have functions f(x, y), x(t), and y(t).

d

dt
f(x(t), y(t)) =

@f

@x

dx

dt
+

@f

@y

dy

dt

Example:

f(x, y) = y + exy

x(t) = cos t

y(t) = t2

df

dt
=

@f

@x

dx

dt
+

@f

@y

dy

dt

= (yexy) · (� sin t) + (1 + xexy) · 2t
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Multi-variate Chain Rule

In the context of back-propagation:

In our notation:

t = x
dx

dt
+ y

dy

dt
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Full Backpropagation Algorithm:

Let v1, . . . , vN be a topological ordering of the computation graph
(i.e. parents come before children.)
vN denotes the variable for which we’re trying to compute gradients.

forward pass:

For i = 1, . . . , N ,
Compute vi as a function of Parents(vi).

backward pass:

For i = N � 1, . . . , 1,

v̄i =
X

j2Children(vi)

v̄j
@vj
@vi
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Backpropagation for Regularized Logistic Least Squares

Forward pass:

z = wx + b

y = �(z)

L =
1

2
(y � t)2

R =
1

2
w2

Lreg = L + �R

Backward pass:

Lreg = 1

R = Lreg
dLreg

dR
= Lreg �

L = Lreg
dLreg

dL
= Lreg

y = L dL
dy

= L (y � t)

z = y
dy

dz
= y �0(z)

w= z
@z

@w
+ RdR

dw
= z x + R w

b = z
@z

@b
= z
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Backpropagation for Two-Layer Neural Network

Forward pass:

zi =
X

j

w(1)
ij xj + b(1)i

hi = �(zi)

yk =
X

i

w(2)
ki hi + b(2)k

L =
1
2

X

k

(yk � tk)
2

Backward pass:

L = 1

yk = L (yk � tk)

w(2)
ki = yk hi

b(2)k = yk

hi =
X

k

ykw
(2)
ki

zi = hi �
0(zi)

w(1)
ij = zi xj

b(1)i = zi
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Backpropagation for Two-Layer Neural Network

In vectorized form:

Forward pass:

z = W
(1)

x + b
(1)

h = �(z)

y = W
(2)

h + b
(2)

L =
1

2
kt � yk2

Backward pass:

L = 1

y = L (y � t)

W(2) = yh
>

b(2) = y

h = W
(2)>

y

z = h � �0(z)

W(1) = zx
>

b(1) = z
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Computational Cost

Computational cost of forward pass:
one add-multiply operation per weight

zi =
X

j

w(1)
ij xj + b(1)i

Computational cost of backward pass:
two add-multiply operations per weight

w(2)
ki = yk hi

hi =
X

k

ykw
(2)
ki

One backward pass is as expensive as two forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.
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Backpropagation

The algorithm for e�ciently computing gradients in neural nets.

Gradient descent with gradients computed via backprop is used to
train the overwhelming majority of neural nets today.

Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

Despite its practical success, backprop is believed to be neurally
implausible.
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Auto-Di↵erentiation

Suppose we construct our networks out of a series of “primitive”
operations (e.g., add, multiply) with specified routines for
computing derivatives.

Autodi↵erentiation performs backprop in a completely mechanical
and automatic way.

Many autodi↵ libraries: PyTorch, Tensorflow, Jax, etc.

Although autodi↵ automates the backward pass for you, it’s still
important to know how things work under the hood.

In CSC413, learn more about how autodi↵ works and use an
autodi↵ framework to build complex neural networks.
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1 Back-Propagation

2 Convolutional Networks
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Robust to Transformations

Must be robust to transformations or distortions:
I change in pose/viewpoint
I change in illumination
I deformation
I occlusion (some objects are hidden behind others)

We would like the network to be invariant:
if the image is transformed slightly,
the classification shouldn’t change.
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Too Many Parameters

Want to train a network that takes a 200 ⇥ 200 RGB image as input.

1000 hidden units

200

200

3

densely connected

What is the problem with having this as the first layer?

Too many parameters! Input size = 200 ⇥ 200 ⇥ 3 = 120K.
Parameters = 120K ⇥ 1000 = 120 million.
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1000

200 200 3

720M in IFC layer



Shared Structures in the Network

Some features, e.g. edges, corners, contours, object parts,
may be useful in multiple locations in the image.

We want feature detectors that are applicable
in multiple locations in the image.
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Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

Intro ML (UofT) CSC311-Lec6 32 / 55

3

15weights
3 biases

5



Convolution Layers

Locally connected layers:

Each set of hidden units looks at a small region of the image.
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Convolution Layers

Convolution layers:

Tied weights

Each set of hidden units looks at a small region of the image, and
the weights are shared between all image locations.
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Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights
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1-D Convolution

We have two signals/arrays x and w.

x is an input signal (e.g. a waveform or an image).

w is a set of k weights (also referred to as a kernel or filter).

Often zero pad x to an infinite array

The t-th value in the convolution is defined below.

(x ⇤ w)[t] =
k�1X

⌧=0

x[t � ⌧ ]w[⌧ ].
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Convolution Method 1: Translate-And-Scale
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Convolution Method 2: Flip-And-Filter
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Properties of Convolution

Commutativity
a ⇤ b = b ⇤ a

Linearity
a ⇤ (�1b + �2c) = �1a ⇤ b + �2a ⇤ c
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If x and w are two 2-D arrays, then:

(x ⇤ w)[i, j] =
X

s

X

t

x[i � s, j � t] ⇤ w[s, t].
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2-D Convolution: Translate-and-Scale
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2-D Convolution: Flip-and-Filter
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Example 1: What does this convolution kernel do?

⇤
0 1 0
1 4 1

0 1 0
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Example 2: What does this convolution kernel do?

⇤
0 -1 0
-1 8 -1

0 -1 0
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Example 3: What does this convolution kernel do?

⇤
1 0 -1
2 0 -2

1 0 -1
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Convolution Layer in Convolutional Networks

Two types of layers: convolution layers (or detection layer), and
pooling layers.

The convolution layer has a set of filters and
produces a set of feature maps.

Each feature map is a result of convolving the image with a filter.

convolution

Example first-layer filters
826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The � indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2
DeCAF [7] - - 19.2
Krizhevsky et al. [18], 1 convnet 40.7 18.2 ��
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. �[18], 1 convnets 39.0 16.6 ��
Krizhevsky et al. �[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 ��
1 convnet as per Fig. 3 38.4 16.5 ��
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3
1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1
6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013, Visualizing and

understanding convolutional networks)
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Non-linearity in Convolutional Networks

Common to apply a linear rectification nonlinearity:

yi = max(zi, 0).

Why might we do this?
Convolution is a linear operation. Therefore, we need a nonlinearity,
otherwise 2 convolution layers would be no more powerful than 1.

convolution linear
rectification

convolution layer
Intro ML (UofT) CSC311-Lec6 47 / 55
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Pooling Layers

These layers reduce the size of the representation and
build in in-variance to small transformations.

z1 z2 z3 z4 z5 z6

y1

z7

y2 y3

Most commonly, we use max-pooling,
which computes the maximum value of the units in a pooling group:

yi = max
j in pooling group

zj
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Convolutional networks

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer
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Convolutional Network Structure

Because of pooling, higher-layer filters can cover a larger region of the input

than equal-sized filters in the lower layers.

convolution linear
rectification

max
pooling

convolution

...

convolution layer pooling layer
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Equivariance and Invariance

The network’s responses should be robust to translations of the input.
But this can mean two di↵erent things.

Convolution layers are equivariant: if you translate the inputs,
the outputs are translated by the same amount.

Want the network’s predictions to be invariant:
if you translate the inputs, the prediction should not change.
Pooling layers provide invariance to small translations.
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Convolution Layers

Each layer consists of several feature maps, or channels each of which is
an array.

If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the
previous layer. This includes all of the previous layer’s feature maps.
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LeNet

The LeNet architecture applied to
handwritten digit recognition on MNIST in 1998:

The!architecture!of!LeNet5!
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AlexNet

AlexNet, like LeNet but scaled up in every way
(more layers, more units, more connections, etc.):

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 � 224 � 3-dimensional.

5

(Krizhevsky et al., 2012)

AlexNet’s stunning performance on the ImageNet competition is
what got everyone excited about deep learning in 2012.
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ImageNet Results Over the Years

There are 1000 classes. Top-5 errors mean that the network can make
5 guesses for each image. So chance is 0.5%.

Year Model Top-5 error

2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

Human-level performance is around 5.1%.

No longer running the object recognition competition
because the performance is already so good.
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