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Progress During Learning
P]g'\' IS (CE' MSE)

@ Track progress during learning by plotting training curves.

@ Chose the training criterion (e.g. squared error, cross-entropy)
partly to be easy to optimize.

e May wish to track other metrics to measure performance
(even if we can’t directly optimize them).
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.
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Tracking Accuracy for Binary Classification

We can track accuracy, or fraction correctly classified.

e Equivalent to the average 0—1 loss, the error rate,
or fraction incorrectly classified.

@ Usetul metric to track even if we couldn’t optimize it.

Another way to break down the accuracy:

A TP+TN TP+TN
CC = p—
P+ N (TP+ FN)+ (T'N + FP)
—"alge%

_ e N . . o |
@ P=num positive; N=num negative; Q(eo\‘lc*‘”" 0 1N [ EN
@ TP=true positives; TN=true negatives —t—
e F'P=false positive or a type I error | TP

e F'N=false negative or a type II error
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Accuracy is Highly Sensitive to Class Imbalance

Suppose you are screening patients for a particular disease.
It’s known that 1% of patients have that disease.

@ What is the simplest model that can achieve 99% accuracy?
pf@d‘td evenjene o(aeg at have dieage
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Sensitivity and Specificity

Useful metrics even under class imbalance!

Sensitivity = PJEI ~ |True positive rate|

Specificity = -~ iVF 5 |True negative rate]

What happens if our problem is not linearly separable?
How do we pick a threshold for y = o(x)?
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Designing Diagnostic Tests

@ A binary model to predict whether someone has a disease.

— 0.4
e What happens to sensitivity and specificity €9 0. r
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Tradeoft between Sensitivity and Specificity

As we increase the criterion value (i.e. move from left to right),
how do the sensitivity and specificity change?

trade -off
A _
Specificity C lose U
True Negative rate
True Positive rate
Sensitivity
>
|
O Criterion value \
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Receiver Operating Characteristic (ROC) Curve

Area under the ROC curve (AUC) can quantify if a binary classifier
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Confusion Matrix for Multi-Class classification

e Visualizes how frequently certain classes are confused.

o K x K matrix; rows are true labels, columns are predicted labels,
entries are frequencies

e What does the confusion matrix for a perfect classifier look like?
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© Limits of Linear Classification
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XOR is Not Linearly Separable

Some datasets are not linearly separable, e.g. XOR.

eyxcluswe o
A
T2 \ |
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CRAN convekty

Visually obvious, but how can we prove this formally?
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Proot That XOR is Not Linearly Separable

Proof by Contradiction: alx <o

e Half-spaces are convex. That is, if two points lie in a half-space,
the line segment connecting them also lie in the same half-space.

@ Suppose that the problem is feasible.

e If the positive examples are in the positive half-space,
then the green line segment must be as well.

e Similarly, the red line segment must lie in the negative half-space.

e But, the intersection can’t lie in both half-spaces. Contradiction!

A
)

L1
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Classitying XOR Using Feature Maps

Sometimes, we can overcome this limitation using feature maps,

e.g., for XOR.

1 w2 | 1(x) Ya(x) vs(x) | ¢

0 0] 0 0 0 |0

1 0o 1| o0 1 0 |1

px)=| o 1 0| 1 0 0 |1
L1X9

1 1| 1 1 1 10

o This is linearly separable. (Try it!)

@ Designing feature maps can be hard. Can we learn them?
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O Midterm Review
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@ Introducing Neural Networks
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Neurons 1in the Brain

Neurons receive input signals and accumulate voltage.
After some threshold, they will fire spiking responses.
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[Pic credit: www.moleculardevices.com|]
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A Simpler Neuron g,

€u\\x[ comecked newal netwevlks

. r o
For neural nets, we use a much simpler model for neuron 0 ‘dl_lnlt:
oS

Y . _
output output weights bias

e yl:(b(‘iVTle))

inputs T \

L1 L9 I3
activation function inputs

o Similar to logistic regression: y = o(w'x + b)
e By throwing together lots of these simple neuron-like processing
units, we can do some powerful computations!
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A Feed-Forward Neural Network
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Multilayer Perceptrons

e A multi-layer network consists of fully connected layers.

e In a fully connected layer, all input units are connected to
all output units.

e Each hidden layer ¢ connects NV;_1 input units to /NV; output units.
Weight matrix is NV; x N;_1. L - l -

@ The outputs are a function of the input units: Meduiactty

y = f(x) = ¢ (Wx +b)

¢ is applied component-wise.
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Some Activation Functions

-3 L
7777777777777

Identity Rectified Linear Unit Soft ReLU
L
Y=z (ReLU) y =logl+¢e°
y = max(0, z)
— —
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More Activation Functions

Hard Threshold
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Computation in Each Layer

Each layer computes a function.

et
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A Composition of Functions

y O O O
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Feature Learning

Neural nets can be viewed as a way of learning features:
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Feature Learning

@ Suppose we're trying to classity images of handwritten digits.
e Each image is represented as a vector of 28 x 28 = 784 pixel values.
@ FEach hidden unit in the first layer acts as a feature detector.

@ We can visualize w by reshaping it into an image.
Below is an example that responds to a diagonal stroke.

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 35 /47




Features for Classifying Handwritten Digits

Features learned by the first hidden layer of a handwritten digit
classifier:

¢.

Unlike hard-coded feature maps (e.g., in polynomial regression),
features learned by neural networks adapt to patterns in the data.
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O Expressivity of a Neural Network
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Expressivity

@ A hypothesis space H is the set of functions that can be
represented by some model.

@ Consider two models A and B with hypothesis spaces H 4, Hpg.

o If Hg C H 4, then A is more expressive than B.
A can represent any function f in Hpg.
expressi Jit ‘/
f 4

\inear newal befter
clossfers = newales

e Some functions (XOR) can’t be represented by linear classifiers.
Are deep networks more expressive?
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Expressive Power of Linear Networks

e Consider a linear layer: the activation function was the identity.
The layer just computes an affine transformation of the input.

e Any sequence of linear layers is equivalent to a single linear layer.

y = WOWRwWW
I~

\ %25

w =ww w

@ Deep linear networks can only represent linear functions
— no more expressive than linear regression.
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Expressive Power of Non-linear Networks

R R \

@ Multi-layer feed-forward neural networks — _
with non-linear activation functions

@ Universal Function Approximators: linear 0t
They can approximate any function arbitrarily well, UFA
i.e., for any f: X — T there is a sequence f; € H with f; — f.

@ True for various activation functions KNS NZ\
(e.g. thresholds, log\i/stic, ReLU, etc.) Vig
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Designing a Network to Classity XOR

Assume a hard threshold activation function. K0 Xo Y ‘{\: h, ho
c o ©0wO O
| tos| O
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Designing a Network to Classity XOR

hi1 computes x1 V x9
4_ (& {rue

Mx1 + x2 — 0.5 > 0] O € e

ho computes x1 A x
H[.Cl?l +x9 — 1.5 > O]

y computes hi A (—he) = x1 ® a2

I[[hl — hy — 0.5 > O]
= I[[hl -+ (1 — hg) —1.5> O]

Intro ML (UofT) Lec05 Linear Models 3, Neural Nets 1 42 /47



Universality for Binary Inputs and Targets

@ Hard threshold hidden units, linear output
o Strategy: 2" hidden units, each of which responds to one

particular input configuration hiddea wnit adivodes for
one deton

‘oo'wd‘

@ Only requires one hidden layer, though it is extremely wide.
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Expressivity of the Logistic Activation Function

e What about the logistic activation function?

@ Approximate a hard threshold by scaling up w and b.

1.0 - ‘ ‘ : ‘ - - 1.0
0.8} 0.8+
0.6 0.6+
0.4} 0.4}

0.2 0.2}

=== T 0 1T 3 3 1 === ¢ 1T 2 3 1

y =o(z) y = o(bx)

e Logistic units are differentiable, so we can learn weights with
ogradient descent.
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What is Expressivity Good For?

e May need a very large network to represent a function.

@ Non-trivial to learn the weights that represent a function.

e If you can learn any function, over-fitting is potentially

a serious concern!

For the polynomial feature mappings, expressivity increases with
the degree M, eventually allowing multiple perfect fits to the
training data. This motivated L? regularization.
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@ Do neural networks over-fit and how can we regularize them?
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Regularization and Over-fitting for Neural Networks

@ The topic of over-fitting (when & how it happens, how to
regularize, etc.) for neural networks is not well-understood, even
by researchers! dropout

» In principle, you can always apply L? regularization. bodeh normalizdon
» You will learn more in CSC413.

@ A common approach is early stopping, or stopping training early,
because over-fitting typically increases as training progresses.
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e Don’t add an explicit R(0) term to our cost.
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Conclusion

@ Multi-class classification
@ Selecting good metrics to track performance in models

@ From linear to non-linear models
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