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Multi-class Classification

Task is to predict a discrete(> 2)-valued target.
It is very hard to say what makes a 2         Some examples from an earlier version of the net 
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Targets in Multi-class Classification

Targets form a discrete set {1, . . . ,K}.

Represent targets as one-hot vectors or one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)| {z }
entry k is 1

2 RK
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Linear Function of Inputs

Vectorized form:

z = Wx+ b or

z = Wx with dummy x0 = 1

Non-vectorized form:

zk =
DX

j=1

wkjxj + bk for k = 1, 2, ...,K

W: K x D matrix.

x: D x 1 vector.

b: K x 1 vector.

z: K x 1 vector.
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Generating a Prediction

Interpret zk as how much the model prefers the k-th prediction.

yi =

(
1, if i = argmax

k
zk

0, otherwise

How does the K = 2 case relate to the binary linear classifiers?
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Softmax Regression

Soften the predictions for optimization.

A natural activation function is the softmax function,
a generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezkP
k0 e

zk0

Inputs zk are called the logits.

Interpret outputs as probabilities.

If zk is much larger than the others,
then softmax(z)k ⇡ 1 and it behaves like argmax.

What does the K = 2 case look like?
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Cross-Entropy as Loss Function

Use cross-entropy as the loss function.

LCE(y, t) = �
KX

k=1

tk log yk = �t>(logy),

where the log is applied element-wise.

Often use a combined softmax-cross-entropy function.
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Gradient Descent Updates for Softmax Regression

Softmax Regression:

z = Wx

y = softmax(z)

LCE = �t>(logy)

Gradient Descent Updates:

@LCE

@wk
=

@LCE

@zk
·
@zk
@wk

= (yk � tk) · x

wk  wk � ↵
1

N

NX

i=1

(y(i)k � t(i)k )x(i)
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